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Abstract: In an increasingly wireless world, spatiotemporal monitoring of the exposure to environ-
mental radiofrequency (RF) electromagnetic fields (EMF) is crucial to appease public uncertainty
and anxiety about RF-EMF. However, although the advent of smart city infrastructures allows for
dense networks of distributed sensors, the costs of accurate RF sensors remain high, and dedicated
RF monitoring networks remain rare. This paper describes a comprehensive study comprising the
design of a low-cost RF-EMF sensor node capable of monitoring four frequency bands used by
wireless telecommunications with an unparalleled temporal resolution, its application in a small-scale
distributed sensor network consisting of both fixed (on building façades) and mobile sensor nodes (on
postal vans), and the subsequent analysis of over a year of data between January 2019 and May 2020,
during which slightly less than 10 million samples were collected. From the fixed nodes’ results,
the potential errors were determined that are induced when sampling at lower speeds (e.g., one
sample per 15 min) and measuring for shorter periods of time (e.g., a few weeks), as well as an
adequate resolution (30 min) for diurnal and weekly temporal profiles which sufficiently preserves
short-term variations. Furthermore, based on the correlation between the sensors, an adequate
density of 100 sensor nodes per km2 was deduced for future networks. Finally, the mobile sensor
nodes were used to identify potential RF-EMF exposure hotspots in a previously unattainable area of
more than 60 km2. In summary, through the analysis of a small number of RF-EMF sensor nodes
(both fixed and mobile) in an urban area, this study offers invaluable insights applicable to future
designs and deployments of distributed RF-EMF sensor networks.

Keywords: radiofrequency electromagnetic fields (RF-EMF); spatiotemporal exposure assessment;
sensor node; distributed sensor network

1. Introduction

Wireless communications infrastructure is currently blooming, particularly in urban
environments. The fifth generation of telecommunications networks (5G) is introducing
new frequencies—between 700 MHz and 60 GHz—to the current range of environmental
radiofrequency (RF) electromagnetic fields (EMF), and growing smart city networks are em-
ploying RF-EMF for wireless communications between geographically distributed sensors,
embracing the Internet of Things (IoT) [1]. These additions to the RF environment con-
tinue to alter our everyday exposure to environmental RF-EMF. In order to appease public
uncertainty and anxiety about RF-EMF and overcome associated delays in the rollout of
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telecommunications infrastructure [2], it is crucial to continuously monitor the environmen-
tal levels of RF exposure, not only in space, but also in time. In addition, spatiotemporal
assessment of RF-EMF is of general interest to epidemiologists and governmental agencies
dealing with environmental issues [3,4].

There are, or have been, RF-EMF monitoring networks in European countries such
as France, Greece [5,6], Italy [7], Malta, and Portugal [8], in which a number of high-
end, relatively expensive monitoring systems were spread over a large geographical area.
Furthermore, mobile RF monitoring has been performed with car-mounted measurement
devices [9–11]. However, in recent years, the advent of IoT infrastructure has made it
feasible to deploy distributed (wireless) networks of cheaper, low-complexity sensing
devices to monitor various environmental parameters, such as temperature, humidity, and
air quality, autonomously over a long period. Smart Cities such as the SmartSantander
IoT platform in the city of Santander, Spain, and the City-of-Things platform in Antwerp,
Belgium, can straightforwardly incorporate a network of RF sensors in order to provide
effortless public access to up-to-date information on the current RF-EMF exposure [12,13].
Nonetheless, the large amount of densely-distributed RF-EMF sensors that is required to
realize accurate spatiotemporal exposure maps on a local scale remains a serious economic
and logistic challenge, which makes the availability of a cheap RF-EMF sensor no less than
essential [12].

This paper describes the design and the deployment of a distributed network of
low-cost RF sensor nodes in Antwerp, Belgium. The new RF sensor node was designed
with off-the-shelf components and was able to sample four frequency bands at high tem-
poral resolution. The deployed distributed sensor network consisted of ten fixed sensor
nodes scattered within a small geographical area in the city centre of Antwerp and four
mobile sensor nodes installed on vans of the local postal services. All fourteen nodes
were calibrated in an anechoic room, and after deployment, the fixed sensor nodes were
further validated in situ with specialized RF-EMF measurement equipment. The sensor
nodes in the fixed network boasted an unrivalled temporal resolution, while the mobile
sensor network covered an extensive geographical area of a size which had been previously
unattainable. The fixed sensor nodes’ high temporal resolution was further used to calcu-
late the potentially induced errors in spatiotemporal RF exposure assessment with lower
sampling rates and/or fewer days of measurements. From this, an adequate sampling
rate for future fixed network deployments as well as an adequate resolution to assess the
short-term (diurnal/weekly) variability was deduced. Furthermore, through analysis of
the temporal correlation between the sensors and a subsequent clustering, the covered
area was divided into regions of similar temporal behaviour, based on which an adequate
sensor density was obtained. Finally, from the mobile measurements, potential hotspots of
RF-EMF exposure were identified within an area of roughly 60 km2 around Antwerp.

In summary, through the analysis of a small distributed number of such sensors (both
fixed and mobile) in an urban area, this paper offers invaluable insights applicable to future
designs and deployments of distributed RF-EMF sensor networks.

2. Materials and Methods
2.1. RF-EMF Sensor Node

For this study, an RF-EMF sensor node (further also denoted as ‘RF sensor node’;
Figure 1) was designed to be able to measure the RF-EMF exposure in four frequency bands
at a rate of at least one sample per band per second (Table 1). To minimize the costs, all
of the components were off the shelf, and no specific component design was performed.
The frequency bands considered in this study are used in Belgium by second to fourth
generation (2G–4G) cellular or mobile telecommunications technologies—Global System for
Mobile Communications (GSM; 900 and 1800 MHz), Universal Mobile Telecommunications
System (UMTS; 900 and 2100 MHz), and Long-Term Evolution (LTE; 1800 MHz)—as well
as by Wireless Fidelity (Wi-Fi; 2400 MHz). The three cellular frequency bands contain only
downlink communications, i.e., from the cellular base station to the user, whereas the Wi-Fi
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band contains bidirectional communications. More specifications of the designed sensor
are listed in Table 1.
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Figure 1. (a) The radiofrequency (RF) electromagnetic field (EMF) sensor in its casing. The black stubs
are RF-EMF antennas for different frequency bands (Table 1), the green printed circuit board (PCB) is
a custom RF-EMF measurement system, the blue PCB is a commercially available communication
module with a microcontroller, and the white casing is a custom polyvinylchloride casing; (b) Block
diagram of the RF EMF sensor. HWMA, half-wavelength monopole antenna; SAW, surface acoustic
wave; tRMS, true root-mean-square; ADC, analogue-to-digital convertor; USB, universal serial bus.
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Table 1. Specifications of the radiofrequency (RF) electromagnetic field (EMF) sensor.

Parameter Value

Frequency Range 925–2484 MHz

• Frequency band 1 ‘900 MHz’: 925–960 MHz

• Frequency band 2 ‘1800 MHz’: 1805–1880 MHz

• Frequency band 3 ‘2100 MHz’: 2110–2170 MHz

• Frequency band 4 ‘2400 MHz’: 2400–2484 MHz

Sensitivity level 0.02 V/m
Dimensions (L ×W × H) 18 × 18 × 15 cm3

Dynamic range 70 dB
Supply voltage 5 VDC USB power

Power consumption Max. 150 mA (0.75 W)
Output sampling time ∆s 1000 ms

Internal sampling time 5 ms
Output format fixed nodes ASCII UART serial output at 9600 baud

Output format mobile nodes I2C ASCII output

VDC, volts of direct current; UART, universal asynchronous receiver–transmitter; I2C, Inter-Integrated Circuit;
ASCII, American Standard Code for Information Interchange.

In order to increase the isolation between the considered frequency bands, the sensor
node contains four dedicated narrowband half-wavelength monopole antennas (black
stub antennas in Figure 1). Each stub antenna is connected to a frequency-band specific
transmission line on a custom printed circuit board (PCB) using a sub-miniature A (SMA)
connector, which then leads to a surface acoustic wave (SAW) filter tuned to the respective
frequency band. After filtering the signal, a true-root-mean-square (tRMS) RF detector
(type HMC1020LP4E) measures its power (Figure 1b). This detector has a dynamic range
limited at 70 dB, with a lower detection level of 65 dBm, and a programmable integration
bandwidth within the frequency range 0 Hz to 3.9 GHz. The detector provides an analogue
output, which is then converted to a 12 bit value using an internal analogue-to-digital
convertor (ADC; type ADS1015) at a 5 ms internal sampling rate. The four individual input
channels of the ADC (Figure 1b) permit fast and easy switching between the four RF tracks
and ensure fast sequential measurements per band. The digital values are then processed
in an energy-efficient microcontroller (type ATSAMD cortex M0) to obtain the linear
average of the detected RF power within each second (averaged over 200 samples) which is
communicated to the backbone via a universal asynchronous receiver–transmitter (UART).
The final exposure value (in power density S or electric field strength E) is calculated via
the effective antenna aperture (AA) determined during the calibration (see Appendix A)
using S = P/AA and E =

√
120π S.

The communication protocol and power supply between the smart city gateway and
the RF sensor was via a universal serial bus (USB) set up as a virtual communications port
(Figure 1b). This communication is one-way in the direction of the gateway.

Because of the separate antennas, the RF sensor node is larger than the exposimeter
designed for the SmartSantander IoT platform [14]. However, in contrast to body-worn
exposimeters, in a smart city context—where the node is attached to a building, placed on
top of a car, etc.—the sensor node’s size is less restrictive.

The planned sensitivity of the RF sensor was 0.02 V/m or 1 µW/m2. Given the
dynamic range of 70 dB, the upper limit would be 63 V/m (10 W/m2), which is higher than
the ICNIRP reference level for the general public up to 2400 MHz (i.e., 61 V/m) [15]. The
sensitivity reached was further assessed per RF sensor during calibration (Appendix A)
and an in situ validation (Appendix B).

Finally, outside the pass bands (Table 1), the attenuation of the SAW filters is typically
between 17 and 24 dB relative to the passband insertion loss.
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2.2. Deployment of Fixed RF-EMF Sensor Network

In January 2019, ten RF sensor nodes (with IDs EMF08–EMF13, EMF17–EMF19, and
EMF21) were mounted on building façades, at a height of 4.0–7.5 m, within an area of
0.11 km2 in the city centre of Antwerp, Belgium (the IMEC City of Things ‘Smart Zone’,
Available online: https://antwerpsmartzone.be/en/ (accessed on 22 December 2021);
Figure 2a). These fixed sensor nodes were connected to the mains and to a gateway with
wired internet access (Figure 2b).
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Figure 2. (a) Locations of the fixed RF-EMF sensor nodes (labelled with their ID number) in an area
of 0.11 km2 in the IMEC City of Things SmartZone in Antwerp, Belgium (coordinate system: Belgian
Lambert 1972). (b) Fixed RF-EMF sensor node and gateway mounted on a building façade, and the
in situ validation setup (see Appendix B) consisting of an additional RF sensor node (EMF20) and a
spectrum analyser and tri-axial antenna at ground level.

The fixed sensor nodes were set to sample the four considered frequency bands (900,
1800, 2100, and 2400 MHz; Table 1) once per second (sampling time ∆s = 1 s), and the
samples were collected in a central database.

2.3. Deployment of Mobile RF-EMF Sensor Network

In November 2018, four RF sensor nodes were placed on top of postal vans based in
Antwerp (available online: www.bpost.be (accessed on 22 December 2021)). These mobile
sensor nodes were connected to a long-range wide area network (LoRaWAN) gateway and
to the vehicle’s onboard direct current (DC) power. Their sampling time ∆s was set to 30 s

https://antwerpsmartzone.be/en/
www.bpost.be
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in order to lower the burden on the LoRa network. The postal vans did not have a fixed
schedule or route nor a fixed speed. Furthermore, the effective capture and transmission of
sampling data depended on the vehicle’s driver to plug in the node.

Between 16 November 2018 and 11 December 2019 (390 days), the mobile nodes
spanned an area of roughly 35.4 by 51.6 km (roughly 6% of Belgium; Figure 3a). However,
95% of the measurement locations were found in an area of 6.6 by 10.5 km (3.8% of the total
area; red rectangle in Figure 3). This area was delineated by taking the 98% intervals (i.e.,
between the 1st and 99th percentiles) of the samples’ (x, y)-coordinates. Moreover, because
GPS coordinates have an inherent uncertainty, they were mapped (or ‘snapped’) to the
streets using the algorithm described in [16] (example shown in Figure 4).

Unfortunately, there were almost no mobile measurements in the area covered by the
fixed sensors (Figure 3b).
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Figure 3. Extent of the mobile RF sensor measurements (blue dots). (a) Area covered by the mobile
RF sensors (blue rectangle) in comparison to Belgium. (b) Zoom of the covered area, with sample
locations after processing the GPS data as shown in Figure 4 [16]. The area bounded by the red
rectangle contains 95% of the measurement locations. The area bounded by the orange polygon is the
area bounded by the fixed sensor network (Figure 2a) (coordinate system: Belgian Lambert 1972).
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3. Results

The results of this study are divided into three parts. In the first part, the temporal
behaviour of the RF-EMF measured by the sensors in the fixed network is analysed. Based
on this, the second part explores in detail three design parameters of a future sensor
network: the sampling speed of the sensor, the temporal resolution of the output data,
and the spatial density of the sensor network. Finally, in the last part, the search for RF-
EMF exposure hotspots in an extensive geographical area using a mobile sensor network
is examined.

3.1. Temporal Variability of RF-EMF

In order to reduce the computational load during post-processing, the fixed sensor data
were first resampled to a ∆s of 30 s by taking the median per 30 s period. This way, between
29 January 2019 and 18 May 2020 (475 days), the fixed sensors captured, on average, 809 k
30 s samples per frequency band, corresponding to an average temporal coverage (i.e., the
relative on-time of the sensor) of 59%, with a range of 11% to 96% (Table 2). Periods of
missing data (i.e., loss in temporal coverage) were caused by either connectivity loss or
power issues. Nevertheless, each sensor managed to collect more than 145 k 30 s samples,
which was much more than the maximum number of samples captured by any one sensor
during a similar measuring period in the state-of-the-art SmartSantander RF monitoring
network (i.e., 94 k samples in 434 days, albeit at a ∆s of 5–10 min) [13].
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Table 2. Number of 30 s samples (and corresponding temporal coverage or relative on-time) and
the 99% interval (0.5th to 99.5th percentiles) of the electric field values E30s (in V/m) measured by
the ten fixed RF sensor nodes in the IMEC City-of-Things network in Antwerp, Belgium. For each
validated sensor (all nodes except EMF08 and EMF09), the individual offsets compared to the SRM
validation setup were added to the measurements to better predict the exposure at ground level (see
Appendix B).

Node ID
Number of 30 s

Samples
Temporal

Coverage (%)
99% Interval of E30s (V/m)

900 MHz 1800 MHz 2100 MHz 2400 MHz

EMF08 * 508,398 37.09 0.19–0.40 0.05–0.62 0.10–0.20 0.02–0.03
EMF09 * 280,823 20.48 0.13–0.60 0.06–0.32 0.08–0.19 0.02–0.03
EMF10 323,434 23.59 0.20–0.28 0.11–0.25 0.07–0.17 0.03–0.04
EMF11 145,647 10.62 0.12–0.22 0.06–0.31 0.06–0.17 0.03–0.03
EMF12 1,127,490 82.25 0.12–0.31 0.03–0.18 0.06–0.23 0.03–0.04
EMF13 1,307,392 95.37 0.35–0.75 0.17–0.63 0.07–0.13 0.03–0.04
EMF17 922,189 67.27 0.05–0.13 0.03–0.11 0.02–0.05 0.03–0.06
EMF18 1,047,889 76.44 0.19–0.41 0.03–0.21 0.04–0.19 0.03–0.03
EMF19 1,105,401 80.63 0.10–0.22 0.02–0.11 0.03–0.07 0.03–0.03
EMF21 1,321,186 96.38 0.03–0.10 0.03–0.12 0.02–0.06 0.03–0.03

Avg. 808,985 59.01 0.17–0.39 0.08–0.34 0.06–0.16 0.03–0.04

* Not validated in situ.

In general, the 900 MHz band constituted the highest contribution (of the four as-
sessed bands) to the total outdoor environmental RF-EMF exposure (as was also previously
observed in RF-EMF exposure assessment studies in Belgium [17,18], although the differ-
ence with the 1800 MHz band was small (Table 2). Furthermore, the outdoor Wi-Fi levels
(measured in the 2400 MHz band) were often too low to be measured.

Figure 5 then shows the weekly averaged electric field strength measured by the
various sensors in the 900 MHz band. Although there are indications of seasonal varia-
tions (e.g., summer vs. winter months, see EMF08, EMF13, and EMF18 in Figure 5), the
measurements did not continue long enough for a thorough analysis.
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Figure 5. Weekly average electric field strength as measured by the fixed RF-EMF sensors in the
900 MHz frequency band. EMF08 (dark blue) and EMF09 (orange) were not validated in situ.

Figure 6 further shows the maximum and 90% ‘temporal variabilities’, i.e., the logarith-
mic difference between the maximum and minimum, Vmax, or the 95th and 5th percentiles,
V90, of the measurement samples [13], of the fixed sensors’ samples. The variability was
the highest in the 1800 MHz frequency band (with the median about 4 dB higher than
the next highest, the 2100 MHz band), used by GSM and presumably predominantly LTE,
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and lowest in the 2400 MHz frequency band (V90 under 3 dB). The results were similar to
those found in the SmartSantander IoT sensor network [13], despite the 15–30 times slower
sampling rate in Santander (∆s = 5–10 min).
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20log10(Emax/Emin), whereas 90% equals the difference between the 95th and 5th percentiles [13].

All measured exposure levels were low (<0.05%) compared to the ICNIRP reference
levels for the general public (e.g., 41 V/m for 900 MHz) [15].

Then, as in [13], temporal profiles (TPs) of the RF exposure were made, which express
the average variation of the exposure, η, over a certain time interval (in this case a week
and a day). To determine η, the power density samples were first normalized to the average
of the considered time interval and then averaged over the entire measuring period. The
goal of a TP is to improve (spatiotemporal) interpolation of the RF-EMF exposure (e.g., [13])
by rescaling samples taken at different times of the day or week to the same time instance.
For example, a TP can be applied in measurement campaigns where only a single or a few
measurements have been performed at each assessment location, each at a different time of
day. In this study, both diurnal and weekly temporal profiles (denoted as TPD and TPW,
respectively) were created. In contrast to the fixed temporal resolution (denoted as ‘∆t’) of
1 h in [13], ∆t of 30 s (i.e., the sampling time of both the fixed (after resampling) and mobile
nodes in this study) up to 4 h were investigated here.

Diurnal and weekly temporal profiles with ∆t = 30 s for the four considered frequency
bands are shown in Figures 7 and 8, respectively.
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area total) and for different frequencies (a) 900 MHz; (b) 1800 MHz; (c) 2100 MHz; and (d) 2400 MHz.
Here, η is the average power density at a certain time of the day normalized to the daily average.
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Figure 8. Weekly temporal profiles TPW with resolution ∆t of 30 s for each fixed RF sensor (and the
area total) and for different frequencies (a) 900 MHz; (b) 1800 MHz; (c) 2100 MHz; and (d) 2400 MHz.
Here, η is the average power density at a certain time of the week normalized to the weekly average.
Some data for 1800 and 2400 MHz were censored to allow for visual comparison of the different
frequencies (η values reached up to 5 for 1800 MHz).

The largest temporal variations in exposure were found for the 1800 MHz band, then
for 2100 MHz, 900 MHz, and lastly, small variations were observed for 2400 MHz. At a
sampling time ∆s of 30 s and subsequent TP resolution of 30 s, fast-changing phenomena
were noticed in the diurnal exposure: the sudden increases at 04H and 05H for 1800 MHz
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(Figure 7b), at 04H, 05H, and 06H for 2100 MHz (Figure 7c), and (barely observable) at
05H and 06H in 900 MHz (Figure 7a); and the decreases at 21H, 22H, 23H, and 00H20
for 2100 MHz (Figure 7c), and (barely observable) drops at 22H and 23H for 900 MHz
(Figure 7a). These phenomena indicate discrete changes in the output power of some base
station radios in or around the fixed sensor network area. Due to the lower sampling speed
of the sensors (5–10 min) and temporal resolution (1 h) in the SmartSantander network,
they could not be observed there (if they were present at all) [13].

Furthermore, there were clear differences in RF exposure in the 1800 and 2100 MHz
bands between the days of the week, especially between Saturday, Sunday, and the week-
days (Figure 8). For these bands, the highest relative exposure was observed on Saturday
morning up to noon (Figure 8b,c). For 2400 MHz, there were numerous peaks in relative
exposure measured by EMF09 (and a few by EMF11) (Figure 8d), but they were solitary
bursts and were thus not as strongly present in the daily profile (Figure 7d).

3.2. Lessons for Future RF-EMF Sensor Networks

The sensor nodes in this study have a high external sampling speed, which is a
rare feature, due to frequent design constraints on power, storage, and/or bandwidth for
transmission of the data (such as on the SmartSantander platform [12,13]). Here, the high
temporal resolution is exploited to assess the potentially induced errors by having to resort
to a lower temporal resolution of the reported data and/or to lower sample rates.

First, as there is a lot of jitter in the TPs with a ∆t of 30 s (Figures 7 and 8), they
were subsequently smoothed, using lower resolutions (longer ∆t) instead. As an example,
diurnal temporal profiles for the 1800 MHz band with four other ∆t (5 min, 30 min, 1 h,
and 3 h) are shown in Figure 9.
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From Figure 9, it becomes clear that with ∆t = 30 min, some of the sudden, discrete
changes in exposure remain visible (compare Figure 9b to Figure 7b), while a resolution ∆t
of 4 h provides only a vague idea of the diurnal variability (compare Figure 9d to Figure 7b).
At ∆t = 1 h, they remain visible for only one of the nodes (EMF08), which showed the
highest jump in relative exposure.

Using a lower resolution clearly introduces an additional uncertainty to the TP.
Figure 10 shows the (sensor-averaged) 95th percentiles of the (absolute) relative errors
(denoted as ‘∆t,95′ ) that are potentially induced when using different resolutions ∆t, com-
pared to the baseline TPs with ∆t = 30 s (Figures 7 and 8). In Figure 10, a resolution
∆t of 24 h (1440 min) was added to show the error when not using a TP, but only the
daily averages.
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Figure 10. Sensor-averaged 95th percentiles of the relative errors ∆t,95 when comparing (a) diurnal
(TPD) and (b) weekly temporal profiles (TPW) with different resolutions ∆t to the baseline TP with
∆t = 30 s (Figures 7 and 8). ∆t = 1440 min (=24 h) indicates the induced error when using only
daily averages.

Both diurnal (Figure 10a) and weekly figures (Figure 10b) follow the same trends: the
largest errors were found for 1800 MHz, due to the high temporal variability in this band
(Figures 6–8), while the errors for 900 and 2400 MHz remain below ~10% no matter the
resolution, except when using only daily averages for TPw (Figure 10b), owing to their low
or even negligible variability.

In the assumption that lower sampling speeds are generally more useful, for ex-
ample when using battery-powered sensors, it can be concluded from Figure 10 that
∆t = 30–60 min—for which ∆t,95 remains below 33% (1.2 dB)—would be a fair trade-off



Sensors 2022, 22, 1715 13 of 25

between accuracy and speed. In practice, this aligns with the ICNIRP (2020) guidelines that
prescribe an averaging time of 30 min for environmental RF exposure assessment of the
general public.

Then, TPD and TPW with ∆t = 60 min and based on an output sampling time ∆s of
30 s (e.g., Figure 9c) were used as a baseline to assess the potential errors induced by a
lower sampling speed. To this goal, ∆s of 1, 5, 10, 15, 20, 30, and 60 min were simulated by
taking only one of the samples per specific sampling interval (e.g., one per 60 samples for
∆s = 30 min). For each ∆s, all possible sampling subsets were simulated (e.g., 60 possible
subsets for ∆s = 30 min). The TPs resulting from these subset simulations formed an envelope
around the baseline profile (naturally, the average of the subset simulations resulted in the
baseline profile). The sampling error (denoted as ‘∆s,95’) was then calculated as the maximum
(relative) difference of the 97.5th and the 2.5th percentiles of this envelope to the baseline
profile. Moreover, the influence of the length of the measuring period was assessed by taking
an initial subset of seven days and sequentially adding single measurement days. In this
analysis, any non-detects and missing samples (e.g., due to network or power issues) were
retained. The results of this analysis for 1800 MHz are shown in Figure 11.
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with a resolution of ∆t = 60 min, when using different sampling times ∆s between 1 and 60 min, as a
function of the additional days of measurement data after an initial 7-day period.
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For a target value of ∆s,95 below 33% (1.2 dB) in the 1800 MHz band, sampling at a ∆s
of 60 min would take about 20 additional days for TPD (i.e., roughly four weeks in total), but
approximately 14 weeks for TPW. When sampling faster, the number of required additional
measurements days drops significantly (for example at ∆s = 30 min, 0 and 40 days for TPD
and TPW, respectively). For 2100 MHz only two and three additional weeks are needed,
and for the 900 and 2400 MHz bands, all errors were actually below 33%.

The sudden increase in ∆s,95 around 110 additional days was due to EMF08 coming
online, which showed a larger temporal variation in the 1800 MHz band than the other
sensors (Figures 7b and 8b). As the differences were less pronounced for the other bands,
the corresponding bumps in ∆s,95 were as well.

As can be observed for the 1800 MHz band and to a lesser extent the 2100 MHz
band, as the temporal variability increases, more samples (using a longer measurement
period and/or shorter sampling time) are needed to mitigate the induced errors. This is
becoming increasingly more important with newer telecommunications technologies, such
as 4G LTE-Advanced and 5G New Radio (NR), as massive multiple-input-multiple-output
(MaMIMO) and beamforming technology massively increase the temporal variability [19].

Furthermore, as observed in Figures 7–10, there was quite some inter-sensor variability
in the TPs. For spatiotemporal exposure interpolation purposes (see [13]), it would be
interesting to cluster sensors into spatial groups with similar temporal behaviour. In this
study, hierarchical clustering was applied based on three similarity measures X: (a) the
correlation between the fixed sensors’ differentiated time series, (b) the correlation between
the sensors’ differentiated TPW, and (c) the correlation between the differentiated TPD. (All
three time series were differentiated to remove spurious correlations.) Each measure was
then transformed to a distance matrix 1–X, and the distance matrices were subsequently
summed using a one-third weight factor resulting in the weighted distance matrix on which
the hierarchical clustering would be based.

Figure 12 shows the range and medians of the three similarity measures per frequency
band. It was found that the time series correlation was the lowest for 900 and 2400 MHz,
especially for the raw sensor output, i.e., the 30 s electric field strength samples. In these
cases, there was also weak negative to moderate positive correlation between the sensor’s
TPs. For 1800 and 2100 MHz, the sample correlation was positive (0.1–0.2), with at least
some high-correlation outliers. Their TP correlations, however, were moderate to strong,
with high outliers.
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Figure 12. Boxplots showing the median and the range of the Pearson correlation coefficients per
frequency band between the differentiated time series measured by the fixed RF-EMF sensors denoted
as ‘samples’, ‘TPD’ (daily temporal profile), and ‘TPW’ (weekly temporal profile).
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The high variability of the correlation coefficients and the presence of high values
in Figure 12 both point to the existence of pairs of sensors with a higher similarity than
others. In the next step, the spatial extent of that similarity was investigated by means of
hierarchical clustering using the weighted correlation matrix rw (Figure 13), which holds
the average of the Pearson correlation coefficients of the frequency bands’ differentiated
time series of Figure 12 per sensor pair.
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Then, clustering was performed using a number of agglomerative hierarchical cluster-
ing methods, i.e., ‘single’, ‘average’, ‘complete’, ‘ward’, and ‘weighted’. For each method,
the number of clusters was based on the silhouette score [20]. Finally, each sensor was
assigned to the cluster it was most often allocated to when using the various methods. The
three resulting clusters are shown in Figure 14.

When using temporal profiles at higher resolution in the correlation analysis (e.g.,
∆t = 30 min instead of 60 min), the resulting correlation coefficients were lower, but the
clustering remained the same.

Finally, the bump in Figure 11 shows that a single sensor node can significantly change
the overall temporal profile of the area under study, which may in turn indicate that the
initial sensor node density was inadequate. The correlation between the fixed sensors’
(differentiated) time series (Figure 13) can also be used as a metric to define adequate sensor
density, i.e., such that the maximum minimum (maximin) distance between two sensors is
small enough for their measurements to be fairly well correlated in time (e.g., rw > 0.5). In
Figure 15, the weighted time series’ correlation coefficients of Figure 13 were plotted as a
function of the distance between the pairs of sensor nodes along with an isotonic regression
line, i.e., a (in this case) non-increasing fit by minimizing the mean squared error.
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Figure 14. Clustering of the fixed RF-EMF sensors (labelled with their ID number) based on their
temporal correlation (coordinate system: Lambert 1972).



Sensors 2022, 22, 1715 17 of 25

Sensors 2022, 22, x FOR PEER REVIEW 18 of 27 
 

When using temporal profiles at higher resolution in the correlation analysis (e.g., Δt 

= 30 min instead of 60 min), the resulting correlation coefficients were lower, but the 

clustering remained the same. 

Finally, the bump in Figure 11 shows that a single sensor node can significantly 

change the overall temporal profile of the area under study, which may in turn indicate 

that the initial sensor node density was inadequate. The correlation between the fixed 

sensors’ (differentiated) time series (Figure 13) can also be used as a metric to define 

adequate sensor density, i.e., such that the maximum minimum (maximin) distance 

between two sensors is small enough for their measurements to be fairly well correlated 

in time (e.g., rw > 0.5). In Figure 15, the weighted time series’ correlation coefficients of 

Figure 13 were plotted as a function of the distance between the pairs of sensor nodes 

along with an isotonic regression line, i.e., a (in this case) non-increasing fit by minimizing 

the mean squared error. 

 

Figure 15. Weighted correlation between fixed RF-EMF sensor pairs as a function of the distance 

between them. The black line is an isotonic regression. 

Based on the isotonic regression, the correlation reaches 0.5 at a distance of about 100 

m (Figure 15). At 90 m, the highest correlation (0.62) was found for two sensor nodes in 

the same street (EMF09 and EMF13; Figures 13 and 14). However, at closer inter-sensor 

distances, lower correlation coefficients were found between sensor nodes placed in other 

streets (e.g., EMF17 and EMF18; Figure 14). From this, it can be concluded that a minimum 

density on the order of 100 nodes per km2 (such that the average minimum distance 

between nodes is 100 m) would be required, ideally distributed such that at least one 

sensor is found in any one street. 

3.3. Identification of Hotspots in Mobile RF-EMF Sensor Network 

The four mobile sensors collected per frequency band an average of 442 k samples 

between 16 November 2018 and 11 December 2019 (390 days), which corresponds to an 

average temporal coverage of 38% (range: 13–63%). As the four sensors sampled the same 

general area over a long time, the same distribution in exposure samples was expected. 

However, Figure 16, in which the distributions of the logarithmic power densities (when 

using the individual AAs obtained by the in-lab calibration—Appendix A) are plotted, 

shows that this was not the case. There were large differences in exposure measurements 

Figure 15. Weighted correlation between fixed RF-EMF sensor pairs as a function of the distance
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Based on the isotonic regression, the correlation reaches 0.5 at a distance of about
100 m (Figure 15). At 90 m, the highest correlation (0.62) was found for two sensor nodes in
the same street (EMF09 and EMF13; Figures 13 and 14). However, at closer inter-sensor
distances, lower correlation coefficients were found between sensor nodes placed in other
streets (e.g., EMF17 and EMF18; Figure 14). From this, it can be concluded that a minimum
density on the order of 100 nodes per km2 (such that the average minimum distance
between nodes is 100 m) would be required, ideally distributed such that at least one sensor
is found in any one street.

3.3. Identification of Hotspots in Mobile RF-EMF Sensor Network

The four mobile sensors collected per frequency band an average of 442 k samples
between 16 November 2018 and 11 December 2019 (390 days), which corresponds to an
average temporal coverage of 38% (range: 13–63%). As the four sensors sampled the same
general area over a long time, the same distribution in exposure samples was expected.
However, Figure 16, in which the distributions of the logarithmic power densities (when
using the individual AAs obtained by the in-lab calibration—Appendix A) are plotted,
shows that this was not the case. There were large differences in exposure measurements
(e.g., EMF03 compared to EMF05) which may be caused by differences in installation on
the postal van roof as well additional equipment installed near the sensor nodes and thus
a change in effective AA. Unfortunately, this indicates that the free-space calibration of
Appendix A is not usable for metal-mounted sensor nodes. As no additional in situ valida-
tion measurements were made and a direct comparison to the fixed sensor measurements
was also not possible, as there were few mobile measurements in the fixed sensor network
area (Figure 3b), the absolute sensor values were considered unviable.

However, the mobile nodes’ raw received power samples could still be used for hotspot
detection. For each sensor and frequency band, any sample above the combination’s 95th
percentile was given the value ‘1’, and below the 95th percentile the value ‘0’. The average
value per snapped location (Figure 4)—denoted as the ‘hotspot probability’—in the 95%
area is shown in Figure 17. Since these are relative hotspots, with no information on the
absolute exposure value, this map could be used by regulatory bodies to identify locations
in a relatively wide geographical area (here, roughly 6 km by 10 km) where an accurate
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RF-EMF exposure assessment would be more valuable compared to other locations with a
lower expected exposure. For example, in Figure 17, a high hotspot probability is observed
directly next to EMF09 and EMF13 (compare Figure 17 to Figure 2a), and relatively higher
electric field values were measured by these fixed sensors (Table 2).
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4. Discussion

A novel low-cost sensor node was designed to measure the radiofrequency (RF)
electromagnetic field (EMF) strength in four predetermined frequency bands. These bands
were selected based on their use by mobile telecommunications networks in Belgium.
However, the sensor design is modular and other frequency bands (e.g., 800 MHz and
2600 MHz for 4G LTE, and 700 MHz, 1400 MHz, or 3500 MHz for 5G NR) can be considered
according to the availability of an antenna and a Surface Acoustic Wave (SAW) filter.
Since the developed sensor is mains powered, a high sample rate can be achieved (e.g.,
1 sample per s). The raw samples can be collected in a central database over a wired
internet connection or transmitted over-the-air using e.g., a long-range wide area network
(LoRaWAN).

In this study, ten RF sensor nodes were installed on building façades in an urban
environment in the city centre of Antwerp, Belgium, with an area of 0.11 km2. Between
146 thousand and 1.307 million samples (per 30 s) were collected per sensor and per
frequency band over 475 days between January 2019 and May 2020.

As in other studies, e.g., [12], the fixed nodes were placed out of immediate reach
for practical and/or security reasons—in this case, at different heights between 4.0–7.5 m.
However, the influence of the node height on the exposure assessment at street level (1.5 m)
is unclear. Based on the validation measurements with a spectrum analyser (Appendix B),
the effect seemed to go both ways (sometimes underestimation, sometimes overestimation)
and can be large (between −7 and +9 dB; Figure A2). Hence, it is advised to perform
additional spectrum analyser measurements at street level (1.5 m) below every RF sensor
and add the difference as a calibration factor to the sensor’s measurements. An additional
motivation for this is that the antenna aperture (AA) determined in a lab environment
(anechoic chamber) may change when the sensor is placed in situ against a wall of varying
construction build-up.

Based on the temporal profiles, the overall diurnal exposure variability in this part
of Antwerp compared to Santander [13] was lower in the 900 MHz band, higher in the
1800 MHz band, and similar in the 2100 MHz band. The difference in the 1800 MHz band
can be attributed to its use by LTE, which was not as prevalent yet during the measurements
in Santander [12,13]. In addition, it is possible that the reliance on GSM (using the 900 MHz
band) for voice calls has diminished in favour of calls using voice over internet protocol
(VoIP) or LTE (VoLTE), or that there is a regional difference.

Furthermore, aside from a difference in relative exposure between hours of the day,
there were also clear differences between days of the week. Figures 6 and 7 emphasize the
importance of temporal profiles to rescale measurements taken at different times of the
week to properly compare exposure values or to assess the realistic worst-case values.

The high temporal resolution of the fixed sensor network was exploited to assess
the potentially induced errors by having to resort to lower sample rates (e.g., in [13]).
Furthermore, an adequate sensor density was established, i.e., on the order of 100 sensors
per km2, for which the average minimum distance between sensors in the area under study
is 100 m. However, to obtain a good coverage, at least one sensor should be installed in each
street. As the scope in this study (number of fixed sensors and area covered) was limited,
more research, with more sensors in a larger area, is needed to determine an optimal sensor
density. In the SmartSantander platform, the sensor density was 64 per km2 [12,13], which
is slightly too low, but a correlation analysis such as in Figures 12, 13 and 15 will be the
subject of future research in order to validate the results of this study.

Although a vast number of samples was collected, the area covered by the fixed
sensors was small and the inter-sensor variability in RF-EMF exposure was quite low
(Tables 2 and A1). For this study, the number of sensors, as well as the number of suitable
deployment locations (with gateways) were limited. In the future, the RF sensors should
not be dependent solely on wired internet access, but should use wireless networks, such as
mesh networks, LoRaWAN, or Narrowband IoT (NB-IoT). If data rates are limited, longer
sampling times can be used (Figure 11). Lastly, if there is no access to the mains, the RF
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sensor can be battery powered (possibly in combination with solar power). However, in
this case, a trade-off between sampling time and measuring time (i.e., the number of days
the device can last) can be based on Figure 11.

The fixed sensor nodes were clustered in groups based on the weighted correla-
tion between the (differentiated) raw samples’ time series, diurnal temporal profiles, and
weekly temporal profiles. The clusters formed geographically continuous areas that ex-
hibited distinct temporal variations in RF exposure. Hence, this clustering should im-
prove the spatiotemporal interpolation when compared to the area-wide temporal profiles
used in [13], but that hypothesis could not be tested in this study because of the limited
number of sensors and the limited size of the area. However, it will be tested on the
SmartSantander platform.

In addition to the fixed nodes, four RF sensor nodes were installed on the roof of postal
vans. The postal vans did not have a fixed schedule or route, nor a fixed speed. Furthermore,
the effective capture and transmission of sampling data depended on the vehicle’s driver
to plug in the node. Between November 2018 and December 2019 (390 days), between
120 thousand and 720 thousand samples (per 30 s) were collected per mobile sensor and per
frequency band. Moreover, the mobile measurements were performed in an area roughly
6% the size of Belgium (Figure 16a), with 95% of the samples were taken in an area of
6.6 km by 10.5 km (3.8% of the total area).

The sampling time of the mobile sensors was 30 s. At a speed of 30–50 km/h (i.e.,
the legal speed inside the city centre), this meant that the distance between successive
samples could reach about 250–420 m. For comparison, the maximum distance between
samples in [10] was 2.3 m. However, the sample rate was limited due to the LoRaWAN
data rate. Internally, samples were collected every 5 ms, i.e., every 4–7 cm at the mentioned
speeds. Thus, in the future, higher sample rates, which are possible with the described
sensor, or other means of mobility, such as bicycle couriers (perhaps with an electric bicycle
which could also power the sensor) or personal exposimeters measurements [21], could
be recommended.

The mobile sensor nodes were not validated in situ, and there were almost no mobile
measurements in the area covered by the fixed nodes (Figure 16b). In addition, it was
deemed probable that the in-lab free-space calibration of the car-mounted sensors would
not yield an accurate exposure evaluation [9]. Hence, the sensors’ received power samples
were not converted to electric field strengths or power density values. Instead, the mobile
RF nodes were used to identify potential hotspots of RF-EMF exposure (in the considered
bands) by pinpointing the received power samples above the 95th percentile. This resulting
map could be used by regulatory bodies to identify locations in a relatively wide geograph-
ical area where an accurate RF-EMF exposure assessment would be valuable. In addition,
mobile network providers could be interested in this data for coverage monitoring, al-
though no distinction can be made between technologies and specific frequency bands
used by individual operators.

When correctly calibrated, the mobile measurement data set can be used to assess the
outdoor RF-EMF exposure in the entire city centre of Antwerp (Figure 3b) by applying
spatial interpolation techniques such as kriging [10,18,22] or models based on artificial
neural networks [23]. Moreover, spatiotemporal assessment can be obtained by scaling the
samples taken at any time instance to any other time instance via the temporal profiles
obtained through the fixed sensor network [13]. This combination of fixed and mobile data
should be further explored.

Based on Figure 11, the case could further be made for nomadic sensor nodes. Battery-
powered sensors are less location dependent and can be moved to another location after an
initial deployment. Moreover, during each move, the battery can be changed. The sampling
time and the measuring time could be based on the battery specifications and Figure 11.
A nomadic sensor network would be an interesting hybrid of mobile and fixed sensor
networks: nomadic nodes could cover a large area in a relatively limited time while keeping
a high temporal resolution (if high sample rates can be maintained). At each new location,
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a validation measurement should be performed (Appendix B). New locations could be
selected based on the hitherto nomadic data set [18] or based on mobile measurements in
the area (Figure 17).

Finally, this study focused on frequency bands with downlink telecommunications
signals. Due to the use of frequency division duplexing (FDD), these bands do not include
any signals from user devices, i.e., uplink (except for Wi-Fi). In future sensor node designs,
uplink exposure can be measured by adding other frequency bands, or, in case of 5G NR or
4G LTE, specific frequency bands with time division duplexing (TDD).

5. Conclusions

In this study, a low-cost RF sensor node was designed that is essential for a large-
scale spatiotemporal assessment of human exposure to radiofrequency electromagnetic
fields (RF-EMF). The mains-powered sensor node, built with off-the-shelf components, can
sample four RF bands used by mobile telecommunications networks per second. An RF-
EMF exposure sensing network was deployed in the city of Antwerp, Belgium, comprising
ten RF sensor nodes installed at fixed locations and four sensors placed on the roof of postal
vans with a-priori unknown schedules. Between November 2018 and May 2020, slightly less
than 10 million samples (at one sample per 30 s) were collected by the combined networks.
The high variability in the measured exposure observed over time further underlined the
need for temporal monitoring. In the area covered by the fixed sensors, the electric field
levels per frequency band ranged from below sensitivity (0.02 V/m) to 0.75 V/m. As often
observed, overall, the 900 MHz frequency band resulted in the dominant contribution to
the total exposure. The high temporal resolution of the fixed sensors was then exploited
to assess the potential errors induced when sampling at lower speeds and measuring for
shorter periods of time. Moreover, an adequate resolution, which preserves short-term
variations, for diurnal and weekly temporal profiles was found to be 30–60 min, which
aligns with the ICNIRP guidelines for the assessment of environmental RF-EMF exposure
of the general public. Then, based on the spatial correlation between the sensor nodes’
time series, an adequate density of 100 nodes per km2 was deduced. Whereas the fixed
EMF exposure sensing network enabled accurate spatiotemporal exposure assessment on a
local scale (0.1 km2), the mobile measurements were used to identify potential hotspots of
RF-EMF exposure in a wide geographical area (on the order of 10–100 km2), which is of high
interest to regulatory bodies. In summary, this paper offers invaluable insights applicable
to future designs and deployments of distributed RF-EMF sensor networks: from the initial
deployment (e.g., the sensor placement and density) to the trade-off between the sampling
rate and the total measuring period (e.g., in the case of battery-powered sensors). Finally,
various techniques are proposed to improve the spatiotemporal assessment of RF-EMF
exposure in large geographical areas, such as nomadic sensors, optimized temporal profiles,
time-series clustering, and spatiotemporal interpolation techniques. In the future, these
techniques will be verified in a larger RF-EMF sensing network.
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Appendix A

Calibration of the radiofrequency (RF) electromagnetic field (EMF) sensor node was
necessary to determine the effective antenna aperture (AA) of the node in each frequency
band and consisted of the following parts.

First, the frequency response of the RF detectors was determined. To this aim, each
RF-EMF sensor was fed a sinusoidal signal, with known amplitude and a frequency in each
of the desired frequency bands, on the SMA connector using a calibrated signal generator.
While the generator’s input power was swept from −80 dBm (decibel milliwatt) to 2 dBm,
the output voltages by the RF detector were registered simultaneously so as to determine
the detector’s voltage as a function of the actual input power. It was found that the RF
detectors had a similar response for all frequency bands. This response was then registered
in a lookup table (LUT) on the microcontroller, which translates the measured voltages to
received power values.

Second, a free-space, over-the-air calibration in an anechoic room was used to deter-
mine the AA per frequency band for each RF-EMF sensor node (Figure A1), based on the
method for the on-body calibration of personal distributed exposimeters [24].
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Appendix B 

On 2 April 2019, eight of the fixed RF sensor nodes were validated in situ with a 

narrowband setup consisting of a spectrum analyser (SA) (a Narda SRM-3006 field 

Figure A1. The free-space calibration measurement setup in the anechoic chamber. In Step 1, an
RF-EMF sensor node is held by a Styrofoam arm mounted on a rotational platform (the location of the
node is indicated by ‘X’), and the received powers were registered as a function of two polarizations
of the transmitter antenna (TX) and the rotation (φ) over 360 degrees. In Step 2, a Narda NBM-550
broadband meter with EF 0391 triaxial field probe was placed at the same location and height of the
RF-EMF sensor, and the incident power densities were measured.

Figure A1 illustrates the free-space calibration setup. In the first step, each sensor node
was placed in the far field of a transmitting standard gain horn antenna (TX) in an anechoic
chamber, with the internal antennas in the vertical polarization direction (Figure A1). The
TX was fed a constant RF power of 50 mW using the same signal generator as in the
first scenario in the four considered frequency bands. The nodes were then rotated over
360 degrees in azimuth at an angular speed of two degrees per second, around its axis
perpendicular to the ground floor of the chamber. During a full rotation, the sensors
registered 180 received power samples with a sampling time of 1 s. This procedure was
repeated for both vertical and horizontal polarizations of the TX.

In the second step, a broadband field meter (Narda NBM-550) connected to a tri-axial
field probe (Narda EF 0391) was placed at the same location and height of the sensor node
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to measure the incident power density (S) in free-space for both polarizations of the TX
(Figure A1).

Then, for each sensor node, frequency band, azimuthal angle, and TX polarization,
the AA was calculated as the ratio of the power received by the node to the power density
measured with the broadband meter.

Since the sensor node contains linearly polarized antennas, the AA depends on the
polarization of the incident fields. However, in real environments, the polarization of the
incident RF-EMF is unknown, and it can be assumed that both horizontal and vertical
polarization are equally likely to occur. Hence, in order to determine the AA for a random
polarization, the measurements of steps 1 and 2 (Figure A1) were combined. For each
sensor node, the median of the resulting distribution of 360 AA samples (per frequency
band) was retained and further used to convert its received power (P) to an estimated
incident power density (S) using S = P/AA.

The spread on the AA was also determined in terms of the ratio of the 84th and 16th
percentiles of the AA distribution: R68 = AA84/AA16. To assess the inter-sensor variability,
the spreads of the 14 sensors were compared, and variations ranging between 5 (1800) and
12 dB (2400 MHz) were observed.

Finally, from the AA and the RF detector lower detection level of−65 dBm, the average
sensitivity of the sensors ranged from 0.02 (900) to 0.03 V/m (1800 MHz).

Appendix B

On 2 April 2019, eight of the fixed RF sensor nodes were validated in situ with a
narrowband setup consisting of a spectrum analyser (SA) (a Narda SRM-3006 field strength
analyser) and a tri-axial antenna (Narda EF 0391), as well as with another RF sensor node
(EMF20) (Figure 2b). The two other sensor nodes (EMF08 and EMF09) were not operational
at that moment. Both the tri-axial antenna (or probe) and the sensor node EMF20 were
placed on non-conductive tripods at ground level (i.e., 1.5 m), spaced 1.0 m apart and
1.0 m from the building, and at roughly equal distances from the node under test (NUT)
(example shown in Figure 2b). Depending on the height of the NUT, the distance between
the probe/EMF20 and the NUT was between 2.7 and 6.7 m. Each measurement lasted 30
min (ICNIRP, 2020). The expanded measurement uncertainty (for isotropic measurements)
of the SRM-3006 was +2.2 to +2.7 dB/−3.0 to−3.8 dB, depending on the frequency between
900 and 2700 MHz.

The validation measurements are listed in Table A1, and the comparison between the
three devices are shown in Figure A2. The NUT measurement errors (when compared
to the SA at ground level) exhibited a large variation in all bands, except for 2400 MHz
(Figure A2a). Whereas 50% of the 900 MHz field levels were overestimated by at least 5 dB,
the median errors in the 1800 and 2100 MHz bands were relatively low (1–2 dB), and the
field levels at 2400 MHz were underestimated by about 3 dB. Similar results (except for
2100 MHz) were found for the comparison between an RF sensor node and the SA setup at
ground level, although with much less variation (Figure A2c), indicating a rather random
(median ~0 dB; but potentially large, especially negative) effect of height on the RF-EMF
measurements, which is also observed in Figure A2b for the comparison between the fixed
sensors and the ground level sensor. However, in the case of 2100 MHz, the impact of the
sensor height was mostly positive (median +5 dB).

In conclusion, the RF sensors were found to overestimate the exposure in the 900 MHz
by about 5 dB and underestimate the levels in the 2100 and 2400 MHz bands by about
−2.5 dB (Figure A2c). Whereas the effect of the deployment height when predicting the
ground level exposure is generally positive for 2100 MHz (median +4.5 dB), it is seemingly
random for the other bands (median close to 0 dB), although large effects can occur (from
−7 to +4 dB, Figure A2b). These effects can be attributed to the estimation of the exposure
using single axis antennas and the influence of the environment (here: building wall) on
the measurement results. The individual errors of the fixed RF sensors compared to the SA
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setup were added to the measured values as an additional correction factor to take into
account the height and the change in antenna aperture (AA) close to the building.

Table A1. Average electric field values measured by three different setups (SRM-3006 at ground level,
RF sensor EMF20 at ground level, and the fixed RF sensors) during the fixed-sensor validation.

Device
Eavg (V/m)

900 MHz 1800 MHz 2100 MHz 2400 MHz

SRM-3006 0.24 0.15 0.10 0.03
RF sensor

EMF20 0.44 0.14 0.08 0.02

Fixed RF sensors 0.46 0.13 0.15 0.02
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