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Abstract: The feature of a space-based infrared signal is that the intensity of clutter is much stronger
than that of an aerial target. Such a feature poses a great challenge to aerial target detection since
the existing infrared target detection methods are prone to enhance clutter but ignore the real
target, which results in missed detection and false alarms. To tackle the challenge, we propose a
concise method based on local spatial–temporal matching (LSM). Specifically, LSM mainly consists of
local normalization, local direction matching, spatial–temporal joint model, and inverse matching.
Local normalization aims to enhance the target to the same strength as the clutter, so that the weak
target will not be ignored. After normalization, a direction-matching step is applied to estimate the
moving direction of the background between the basic frame and referenced frame. Then the spatial–
temporal joint model is constructed to enhance the target and suppress strong clutter. Similarly,
inverse matching is conducted to further enhance the target. Finally, a salience map is obtained, on
which the aerial target is extracted by the adaptive threshold segmentation. Experiments conducted
on four space-based infrared datasets indicate that LSM handles the above challenge and outperforms
seven state-of-the-art methods in space-based infrared aerial target detection.

Keywords: space-based infrared detector; aerial target detection; local spatial–temporal matching;
staring imaging mode

1. Introduction

The task of aerial target detection is of great importance in many fields, including
air traffic surveillance [1] and intelligence reconnaissance [2]. Space-based infrared (IR)
imaging technology has the advantages of all-day and wide-area imaging, while both the
on-orbit experiment [3] and ground theoretical research [4] have certified that an aerial
target can be detected by space-based IR detectors. Therefore, research on space-based IR
aerial target detection continues to attract much attention.

The sizes of the aerial targets on the space-based IR images range from 5 × 5 to
9 × 9 pixels, which is in accordance with the definition [5] of IR small target. However,
space-based IR aerial target detection is considerably different from ground-based IR small
target detection. First, a remote imaging distance (>300 km) weakens the intensity of aerial
targets. Second, the complex earth background and frequent human activities generate
strong clutter whose spatial characters are similar to the small target in space-based images.
The above two factors result in a feature in which the aerial target is much weaker than
the clutter in the space-based IR image. As shown in Figure 1, both aerial target and
clutter cover several pixels in the space-based IR image, while the intensity of clutter is
nearly twenty times stronger than that of the target. During detection, the weak target
may lead to missed detection, and the strong clutter could yield false alarms. Third, the
computational resources are limited on the space-based platform, while they are unlimited

Sensors 2022, 22, 1707. https://doi.org/10.3390/s22051707 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22051707
https://doi.org/10.3390/s22051707
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7658-5787
https://doi.org/10.3390/s22051707
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22051707?type=check_update&version=3


Sensors 2022, 22, 1707 2 of 16

on the ground-based platform, which means the space-based detection method must be
resource-friendly. Therefore, how to enhance weak targets and suppress strong clutter
efficiently has been a critical issue for the space-based detection method, and it has been
the challenge for space-based IR aerial target detection.

Figure 1. (a) The aerial target and strong clutter in the space-based IR image; their details are
magnified in (b–e). (b) The local slice of an aerial target. (c) Three-view of the aerial target. (d) Local
slice of strong clutter. (e) Three-view of strong clutter.

In the past decades, researchers continually proposed hundreds of IR small target
detection methods, aiming for efficient detection under different scenarios. Nevertheless,
most methods are proposed for ground-based detection instead of space-based detection.

The filter-based methods, such as TDLMS [6] and Top-hat [7], are easy to achieve, but
they still struggle to enhance weak the target. Recently, some researchers have designed
more complicated filters to detect small targets under specific background; for example,
Lu et al. proposed a filter-based method for maritime IR small target detection [8]. The
local contrast method (LCM) proposed by Chen et al. [9] attracts much attention for the
concise structure. Additionally, a great number of LCM-based methods [10–12] working
on the ground-based platform have subsequently been proposed and detect small targets
under complex backgrounds. Moreover, most space-based detection methods, such as
local blob-like contrast map and local gradient map (LBCM-LGM) [13], neighborhood
saliency map (NSM) [14], spatial–temporal local contrast method (STLCM) [2], and spatial–
temporal local contrast filter (STLCF) [15], are LCM based. Though these methods perform
well on weak target enhancement, they suppress the strong clutter inefficiently, leading
to false alarms. In recent years, the mainstream detection methods are mostly based on
IR image patch (IPI), low-rank representation (LLR), and deep learning (DL). According
to the different spatial correlations of target and background, some methods based on
IPI [16–19] or LLR [20–22] have been proposed to extract the small target from the IR
image. However, these methods cannot distinguish the real target from the background
when the target has close intensity to its neighboring region. In addition, they show poor
real-time performance since they require a great number of iterations during optimization.
Other mainstream methods based on DL [23–26] show effective performance in complex
backgrounds. However, the performance of DL-based methods severely relies on their
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datasets; thus, they are not suitable for space-based detection because the space-based
dataset is scarce in its current state.

As far as we know, although thousands of infrared small target detection methods
have been proposed, most are ground-based detection methods; the number of space-based
detection methods is much fewer than ground-based methods. Most existing space-based
detection methods are LCM-based since computational resources on space platforms are
limited while LCM-based methods are easy to implement on hardware and consume fewer
computational resources than IPI- or DL-based methods. In 2018, a single-frame method
called neighboring saliency map (NSM) for space-based detection was proposed and
detected a dim target with a signal-to-clutter (SCR) less than 1. The space-based detection
methods based on spatial–temporal local contrast maps (STLCF) [15] and spatial–temporal
local contrast maps (STLCM) [2] are both LCM-based methods. Lv et al. proposed a method
that detects the space-based weak moving target with an SCR ≈ 1 or even <1 [27]. They
further proposed a dim small moving target detection and tracking method based on a
spatial–temporal joint processing model (STJP) [28], which also performed well on space-
based dim target detection. However, the existing space-based detection methods mainly
focus on dim target enhancement but ignore interference resulting from the strong clutter.

Although current methods, both space-based and ground-based methods, achieve
detection in complex backgrounds, they are only for conditions where the target strength is
close to or stronger than the clutter or highly light background. Therefore, it is significant
to overcome the space-based detection challenge posed by a feature in which the clutter is
much stronger than the aerial target.

To conquer the above challenge, we propose a space-based IR aerial target detection
method based on local spatial–temporal matching (LSM), which has a concise structure.
The contributions of LSM are given as follows.

(1) Local normalization is proposed to shorten the difference between aerial target and
strong clutter, which ensures that the weak target and strong clutter will be processed
in subsequent steps within the same value domain.

(2) Local direction matching and spatial–temporal joint model are constructed to suppress
the strong clutter and enhance aerial target by considering the spatial–temporal
difference between aerial target and background.

(3) A reverse matching step is leveraged to further enhance the target and eliminate the
residual clutter.

(4) Experiments conducted on the space-based IR datasets demonstrate that LSM can
enhance the weak target and suppress the strong clutter simultaneously and effec-
tively and that it performs better than the existing methods on space-based IR aerial
target detection.

2. Proposed Methods

The local spatial–temporal matching detection method (LSM) is suitable for the IR
image sequence obtained by a space-based platform under staring imaging mode. LSM
consists of five steps: local normalization, local direction matching, spatial–temporal joint
model, reverse matching, and adaptive threshold segmentation. The details of LSM are
elaborated in this section, and an overview is given in Figure 2.

2.1. Local Slices Extraction and Normalization

The first step in the proposed methods is local normalization, which reduces the
sensitivity of the subsequent steps to the strong clutter. As shown in Figure 2, at the local
normalization step, a local slice named R11 is extracted at the point (x, y) in the base frame
Ib (b represents the frame number in the sequence). The neighboring region of R11 is
defined in Equation (1):

ΩR11 = {(i, j)|max(|i− x|, |j− y|) ≤ 3s + 4}, s = 1, 2, 3, 4, (1)
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where ΩR11 is the neighboring region, and s is the radius of the target. In reference frame
Ib+l , the local region of the pixel Ib+l(x, y) represented by Ωlocal is extracted and defined as:

Ωlocal = {(p, q) |max (|p− x|, |q− y|) ≤ rmatch}, (2)

where l represents frame interval, and rmatch represents the matching radius determined
by practical engineering tasks. In our work, rmatch is set to 1; the range of is illustrated in
Figures 2 and 3. Then nine slices with the same dimension as R11 are extracted and named
R2m, m = 1, 2, 3, . . . , 9. The positions of R2ms are further illustrated in Figure 4, and the
yellow points are the centers of R2ms.

Figure 2. Overview of LSM.

Figure 3. Local spatial–temporal matching and reverse matching.

Figure 4. Positions of the local slices in the reference frame Ib+l .
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The considerable difference between target and strong clutter causes missed detection
and false alarm. Thus, the local normalization is designed to transfer the intensity into
range [0, 1]. The definition of local normalization is as follows:

Rnor1(g, h) = {[R11(g, h)−min(R11)]/[max(R11)−min(R11)]}, (3)

Rm
nor(g, h) = {[R2m(g, h)−min(R2m)]/[max(R2m)−min(R2m)]}, (4)

where (g, h) represents the position in the R11 and R2ms, Rnor1(g, h) means the normalized
value at the point (g, h) within R11, Rm

nor(g, h) does the same. After the local normaliza-
tion, both the target and clutter are processed within the value domain [0, 1] during the
subsequent steps.

2.2. Local Direction Matching

When the space-based imaging system works under the staring mode, the back-
grounds including the strong clutter in the IR sequence are moving within a tiny area.
Therefore, the background can be supposed to move straightly in a short frame interval.
Local direction matching is designed to determine which local slice of R2m in Ib+l is the
most similar to R11 in the Ib. In this paper, the local matching function is designed to
measure the matching degree. The matching coefficient at point (x, y) is also determined.
The functions are given as follows:

rm =
2×∑g,h

[∣∣Rnor1(g, h)−Rnor1
∣∣× ∣∣∣Rm

nor(g, h)−Rm
nor

∣∣∣]
∑g,h

(
Rnor1(g, h)−Rnor1

)2
+ ∑g,h

(
Rm

nor(g, h)−Rm
nor

)2 , (5)

r1(x, y) = max(rm), (6)

mmax = arg max
m

rm, (7)

where rms represents the matching degree between Rnor1 and Rm
nors, r1 is the matching

coefficient, and mmax determines the local slice in Rm
nors that is most similar to Rnor1. As

shown in Figure 3, if mmax = 9, R9
nor is the slice matching to Rnor1, which means the

background moves from (x, y) to (x + 1, y + 1) during [b, b + l], as illustrated by the green
arrow at the local direction matching step.

2.3. Spatial–Temporal Joint Model

Once local direction matching is performed, suppression of strong clutter and aerial tar-
get enhancement can be achieved by the spatial–temporal joint model. First, the difference
slice Rdif is obtained by local slice difference:

Rdif = Rnor1 −Rmmax
nor , (8)

after which most backgrounds, including the clutter in Ib, are suppressed initially, even if
the clutter is much stronger than the aerial target.

The neighboring region of Rdif is divided into internal and external regions, and their
relationships are given as follows:

Ωint = {(g, h)|max(|g− x|, |h− j|) ≤ s + 1}, s = 1, 2, 3, (9)

Ωint ∪Ωext = ΩRdif , (10)

Ωint ∩Ωext = ∅, (11)

where Ωint and Ωext are the internal and external regions, respectively, and ΩRdif represents
the neighboring region of Rdif, which has the same range as ΩR11 ; ∅ is the null set. The
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relationship between Ωint and Ωext is illustrated in Figure 3, where the red region represents
Ωint, and the rest of the blue rectangle represents the range of Ωext.

Then, the nonuniformity stripes resulting from the inadequate preprocessing can be
suppressed by the equation:

ddif1(x, y) = max(Rint)−max(Rext), (12)

where Rint is the matrix constructed by the pixels in Ωint, and Rext does the same.
If the target appears, the dipole containing positive and negative peaks are left in Rint.

The dipole is highlighted by a pair of red circles in Figure 2. Thus, the dipole value at (x, y)
is extracted:

ddipole1(x, y) = [max(Rint)−min(Rint)]
2, (13)

where ddipole1 is the dipole value. At this step, the clutter can be further suppressed, but
the aerial target can be significantly enhanced by quadratic operation.

Finally, the value of local spatial–temporal matching between Ib and Ib+l is calcu-
lated as:

Iv1(x, y) = [1− r1(x, y)]× ddif1(x, y)× ddipole1(x, y), (14)

where Iv1(x, y) represents the matching value at the point (x, y).

2.4. Reverse Matching

After obtaining Iv1(x, y), reverse matching is added into LSM. As shown in Figure 3,
at (x, y), if the offset from Ib and Ib+l is in the direction indicated by the green arrow, the
offset from Ib−l and Ib is in the direction indicated by the yellow arrow in Figure 3, and
Ib−l is another reference frame. In this case, the local backgrounds in Ib−l and Ib can be
reverse-matched. At (x, y) in Ib, the offsets of local background from Ib−l to Ib can be
determined by:

dy =


+1, mmax = 3, 6, 9

0, mmax = 2, 5, 8
−1, mmax = 1, 4, 7

, (15)

dx = fix((9−mmax)/3)− 1, (16)

where dy and dx denote the offsets in the horizontal and vertical directions, respectively,
and fix(∗) represents the operation calculating the nearest integer in the direction to zero.

As shown in Figure 3, the local slice in Ib−l , given by R31, is determined in the reverse
matching step. The neighboring region of R31 is formulated as:

ΩR31 = {(i, j)|max(|x + dx− i|, |y + dy− j|) ≤ 3× s + 4}, (17)

where ΩR31 denotes the neighboring region of R31. The normalized slice of R31 and the
matching coefficient between R11 and R31 are obtained by Equations (3) and (5), and R31

nor
and r2(x, y) represent the normalized slice and matching coefficient, respectively.

Finally, the spatial–temporal joint model is constructed. Identically, the value of local
spatial–temporal matching between Ib and Ib−l is calculated by Equations (8)–(14) and
represented by Iv2(x, y).

2.5. Adaptive Threshold Segmentation

The mean filter is introduced to suppress noise, which is conducted as:

ddif2(x, y) = Rnor1(3× s + 5, 3× s + 5)−Rnor1, (18)

where ddif2(x, y) denotes the value after mean filtering at point (x, y). In addition, the
saliency map Imap is obtained by:

Imap(x, y) = ddif2(x, y)× Iv1(x, y)× Iv2(x, y), (19)
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where Imap(x, y) is the map value at (x, y). The results are shown in Figure 5; even though
the target is much weaker than clutter in Figures 1 and 5a, it is enhanced significantly, and
the strong clutter is well suppressed.

Figure 5. (a) Three-view of raw image; (b) three-view of the result after spatial–temporal matching;
(c) three-view of the saliency map.

In Imap, clutter and background are suppressed, but the IR aerial target is retained and
enhanced. Finally, the aerial target is detected by adaptive threshold segmentation:

T = k× std
(
Imap

)
+ Imap, (20)

where std(∗) represents the standard deviation operation, and k is the segmentation param-
eter. k has been experimentally proved to show that k ∈ [10, 30] is effective. When the value
of the element in Imap is greater than T, it is set to one, and the opposite is set to zero. The
point set to one is the aerial target. The entire procedure of LSM is given in Algorithm 1.

Algorithm 1 Procedure of LSM.

Input: Base frame Ib, reference frames Ib−l and Ib+l .
Output: The position of the aerial target.
(1) Obtain the size [row, col] of Ib.
(2) for x = 1 : row do
(3) for y = 1 : col do
(4) Obtain the local slices R11 and R2ms by Equations (1) and (2);
(5) Obtain the normalized slices Rnor1 and Rm

nors by Equations (3) and (4);
(6) Calculate the matching coefficient r1(x,y) and determine the R2mmax by Equations (5)–(7);
(7) Construct the spatial–temporal joint model between Ib and Ib+l and calculate Iv1(x, y)
by Equations (8)–(14);
(8) Conduct reverse matching and obtain R31 by Equations (15)–(17);
(9) Calculate the normalized slice of R31 by Equation (3);
(10) Calculate the matching coefficient r2(x, y) by Equation (5);
(11) Construct the spatial–temporal joint model between Ib−l and Ib and calculate Iv2(x, y) by
Equations (8)–(14);
(12) Calculate the saliency map value Imap(x, y) by Equations (18) and (19);
(13) end for
(14) end for
(15) Obtain the saliency map Imap;
(16) Calculate the adaptive threshold T by formula Equation (20);
(17) Output the position of the aerial target.

3. Experiments
3.1. Experimental Condition and Evaluation Index

The datasets used for experiments were four space-based IR sequences with different
backgrounds, and the aerial targets were simulated targets with the same intensity distri-
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bution proportions as the real targets. The backgrounds and real targets were obtained
from the identical space-based system working under staring imaging mode. The details
of the four sequences are found in Table 1. The speeds of aerial targets ranged from 1.1
to 2.0 pixel/frame. The value of l was set to two after parameter analysis conducted in
Section 4.

Table 1. Details of experimental datasets.

Dataset
Size

Target Size Details of Backgrounds
Frame

Seq.1
300× 300

7× 7
Sea and land background, strong clutter, background moving speed is

0.11 pixel/frame;100

Seq.2
200× 256

7× 7
Sea background, strong clutter, residual nonuniformity stripe,

back-ground moving speed is 0.14 pixel/frame;135

Seq.3
200× 256

7× 7
Land background, strong clutter, background moving speed is

0.53 pixel/frame;135

Seq.4
200× 256

5× 5
Sea and land background, strong clutter, background moving speed is

0.24 pixel/frame.120

To evaluate the detection effectiveness, LSMs are compared with seven state-of-the-art
detection methods, including fusion saliency map (FSM) [10], double-neighborhood gradi-
ent method (DNGM) [11], neighborhood saliency map (NSM) [14], spatial–temporal local
contrast filter (STLCF) [15], spatial–temporal local contrast method (STLCM) [2], spatial–
temporal joint processing model (STJP) [28], and multiscale local target characteristics
algorithm (MLTC) [29]. NSM, STLCF, STLCM, and STJP are existing space-based detection
methods, FSM is a newly proposed detection method utilized for low-altitude slow target
detection that has a similar background to space-based detection, and DNGM and MLTC
are new detection methods proposed in 2020 and 2021, respectively.

The evaluation indices are background suppression factor (BSF), the gain of signal-
to-clutter ratio (GSCR), detection rate (Pd), false alarm rate (Pf), and area under the curve
(AUC). BSF is a global index for evaluating the performance of global background suppres-
sion and is defined as:

BSF = σbefore/σafter, (21)

where σafter and σbefore are standard deviations of the processed and raw image, respectively.
GSCR is the index used to evaluate the target enhancement performance. The GSCR is
calculated by:

SCR = |µtar − µbk|/σbk, (22)

GSCR = SCRafter/SCRbefore, (23)

where µtar represents the mean of the target, and σbk are the mean and standard deviation
of the background, respectively, and SCRafter and SCRbefore are SCR values of the processed
and primitive targets, respectively.

The indices used to evaluate the detection effectiveness are Pd and Pf, whose formulas are:

Pd = Ndetected/Nreal, (24)

Pf = Nfalse/Npixel, (25)

where Ndetected is the number of real targets detected by the method, Nreal is the total
number of real targets, Nfalse is the number of targets falsely detected, and Npixel is the
number of pixels. To visualize the detection effectiveness, a receiver operating characteristic
curve (ROC) was drawn according to the relationship between Pd and Pf. The area under
the ROC curve is represented by AUC.
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3.2. Experimental Results

The three views of the results corresponding to different methods are given in Figures 6–9.
The experimental results under two situations are both exhibited. Under the first situation
where the aerial target is much weaker than clutter, as shown in images in Seqs.1, 2, and 4,
STLCF, STLCM, FSM, NSM, and DNGM suppress most of the background in the images,
but the clutter with strong intensities is still retained. STJP is sensitive to clutter. Only
MLTC and our method can enhance the weak targets. However, MLTC still enhances
the background component, which results in false alarms. The images in Seq.3 show a
situation in which the intensity of a small target is close to strong clutter. Most methods,
such as STLCF, STLCM, STJP, MLTC, and the proposed method, perform well on target
enhancement, but STLCM, STJP, and MLTC also bring a great number of false alarms.
According to the above comparison, our method fits the task to suppress the strong clutter
and enhance the weak target simultaneously. The quantitative comparison and analysis are
given in the next part, for more compelling results.
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Figure 6. Detection results of different methods in Seq.1. The positions of aerial targets are highlighted
by the red rectangles; (a) raw image, the details of target are magnified at the left bottom corner;
(b) three-view of raw image; (c) result of STLCM; (d) result of STLCF; (e) result of FSM; (f) result of
NSM; (g) result of STJP; (h) result of DNGM; (i) result of MLTC; (j) result of LSM.

The results of BSF are listed in Table 2. LSM achieved the highest BSF value on
Seq.4 but had lower values than FSM or STLCM on the other three sequences because of
the zero-setting operation in the two methods. In FSM, when the mean of the variance
difference between the internal window and the external window is less than zero, the
spatial variance saliency map value of a pixel will be zero, and the output will be zero
eventually. In STLCM, the final value of a pixel will be set to zeros if this pixel is not the
local maximum point. In an IR image, the local maximum points are usually composed of
the small target, clutter, and noise. Therefore, because of the zero-setting operation, those
pixels around the local maximum point will be assigned to values of zero. It is clear that the
more zero points the final saliency map has, the lower the value of σafter in Equation (21)
will be, and the value of BSF will consequently increase.

It is worth noting that BSF is a global index evaluating the background suppression
ability of a method in the whole image, but clutter only accounts for a little proportion
in the background. Thus, taking the results in Figures 6–9 and Table 2 into consideration,
STLCM and FSM fail to suppress the clutter even if they suppress conventional background
suppression better than our method. The other methods received lower values than LSM on
all sequences. These results indicate that most methods can suppress most backgrounds but
have poor abilities to suppress the strong clutter on the space-based IR images. STLCM and
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STLCF suppress background by the direct interframe difference, in which the weak target
is suppressed but residual clutter still exists. MLTC, NSM, and DNGM fail to suppress
clutter since it has a similar spatial distribution as the aerial target.

Figure 7. Detection results of different methods in Seq.2. (a) raw image, the details of target are
magnified at the left bottom corner; (b) three-view of raw image; (c) result of STLCM; (d) result of
STLCF; (e) result of FSM; (f) result of NSM; (g) result of STJP; (h) result of DNGM; (i) result of MLTC;
(j) result of LSM.

Figure 8. Detection results of different methods in Seq.3. (a) raw image, the details of target are
magnified at the left bottom corner; (b) three-view of raw image; (c) result of STLCM; (d) result of
STLCF; (e) result of FSM; (f) result of NSM; (g) result of STJP; (h) result of DNGM; (i) result of MLTC;
(j) result of LSM.

The average GSCR values are listed in Table 3. LSM receives the best results on Seqs.1,
3, and 4. STJP and STLCF find it hard to enhance the target in the space-based IR image.
STLCM, FSM, and NSM receive malfunctions on Seqs.1, 2, and 4 because of the considerable
intensity difference between target and clutter. Only DNGM shows a better result than
LSM on Seq.3 but enhances clutter better, as shown in Figure 7. MLTC can enhance the
aerial targets that are much weaker than clutter in space-based images, but our method
performs better than MLTC, as shown in Table 3.
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Figure 9. Detection results of different methods in Seq.4. (a) raw image, the details of target are
magnified at the left bottom corner; (b) three-view of raw image; (c) result of STLCM; (d) result of
STLCF; (e) result of FSM; (f) result of NSM; (g) result of STJP; (h) result of DNGM; (i) result of MLTC;
(j) result of LSM.

Table 2. Average BSF values of different methods for four sequences.

Methods Seq.1 Seq.2 Seq.3 Seq.4

STLCF 7.0835 3.7508 2.4573 4.2582

STLCM 14.9534 8.3428 13.0866 13.7626

FSM 11.4422 7.3382 11.1237 28.0876

NSM 9.0671 2.4982 13.9567 20.3182

STJP 5.7969 1.1265 1.9641 4.8315

DNGM 6.0336 4.1818 6.2833 14.9458

MLTC 1.2551 0.6357 1.5488 2.1215

Proposed 9.5974 6.7767 14.2828 24.0300

The results of detection effectiveness are shown by the ROC curves and AUC values
in Figure 10 and Table 4. The Pds of LSM are more than 85% on the four sequences when
Pfs are 10−4 and more than 97% when s are 10−3. The AUC values of LSM on the four
sequences are 0.9994, 0.9990, 0.9986, and 0.9995, respectively. However, the results of other
methods are unstable on the four sequences. In Figure 10a,d, most AUC values of the most
compared methods are less than 0.8 because Seqs.1 and 4 have backgrounds of sea and
land, and the intensity of clutter is at least 10 times stronger than that of the target. On
Seq.2, DNGM has an AUC value of more than 0.99 because it enhances the target better
than LSM. However, the effectiveness of DNGM drops sharply when Pf < 10−4 because
DNGM enhances clutter better than target, and MLTC does the same on four sequences.
On Seqs.3, the compared methods achieved better detection performance; the five methods
obtained AUC values of more than 0.99 because the intensities of the target are close to
those of clutter. The average AUC values are also calculated and given in Table 4; MLTC
receives the highest average value of 0.9534 because of great target enhancement ability,
while the minimum value is 0.7345 belonging to the single-frame method NSM. Compared
with the seven methods, the average AUC value of LSM is 0.9991, indicating that LSM has
the best detection effectiveness.
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Figure 10. ROC curves and AUC values of different methods for the four sequences; (a–d) represent
Seqs.1–4, respectively.

Table 3. Average GSCR values of different methods for four sequences.

Methods Seq.1 Seq.2 Seq.3 Seq.4

SCRbefore 2.9400 1.7764 2.4502 2.2381

STLCF 1.7490 0.7818 0.6588 0.0897

STLCM 1.7231 2.8566 2.0138 0.5797

FSM 1.7213 1.3366 5.9280 0.0028

NSM 0.0118 0.7149 2.1257 0.0269

STJP 0.6507 0.1349 0.4681 0.0795
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Table 3. Cont.

Methods Seq.1 Seq.2 Seq.3 Seq.4

DNGM 0.7587 12.8578 7.0548 0.4568

MLTC 13.1471 1.2697 8.7553 28.2292

Proposed 17.5890 7.4260 11.7774 28.4823

Table 4. AUC values of different methods. The last column shows the average values.

Methods Seq.1 Seq.2 Seq.3 Seq.4 Average

STLCF 0.3846 0.9902 0.9961 0.5688 0.7350

STLCM 0.5894 0.9902 0.9965 0.9478 0.8809

FSM 0.4982 0.9856 0.9926 0.4994 0.7440

NSM 0.5011 0.9728 0.9356 0.5286 0.7345

STJP 0.4985 0.9811 0.9970 0.6030 0.7699

DNGM 0.7839 0.9938 0.9666 0.7381 0.8706

MLTC 0.9331 0.9126 0.9527 0.9554 0.9534

Proposed 0.9994 0.9990 0.9986 0.9995 0.9991

According to the experimental results, LSM performs better than the seven compared
methods and can detect the aerial targets more effectively on the space-based IR sequences
with different backgrounds. The results prove that LSM can conquer the challenge of
enhancing the weak target and suppressing the strong clutter simultaneously.

4. Analysis and Discussion

Seqs.1–3 contain 7× 7 targets and Seq.4 contains 5× 5 targets. According to the results,
our method enhanced both targets significantly. The GSCR values in Table 3 revealed that
our method enhanced the targets with different sizes considerably. As for the detection
effectiveness, our method obtained Pd > 98% when the Pfs reached 10−3 on all sequences.
Meanwhile, the values of AUC were more than 0.9986. The above results indicate our
method can maintain its effectiveness when detecting targets of different sizes.

In order to analyze the influence of l, we selected Seq.1 as the example with which
to explore the influence of parameter l, in which the target speed is 1.55 pixel/frame; the
experiments were conducted with different values of l. Results of BSF and GSCR are given
in Table 5, and the detection effectiveness is shown in Figure 11. The results indicate that
there are few evidently different results between l and−l but that the tendencies of BSF and
GSCR are different with |l| increase. With |l| increase, the matching coefficient r1 decreases,
but the dipole is clearer; thus, the target can be further enhanced, but the background
cannot be well suppressed. The detection effectiveness shown in Figure 11 reveals that it
generates similar detection results when l = ±2 or ±3, which is better than the result when
l = ±1. Therefore, the value of l is recommended to be ±2, and set to two in this paper.

Table 5. The values of GSCR and BSF with different frame intervals.

l −3 −2 −1 1 2 3

GSCR 24.7905 17.2655 10.7153 10.7153 17.5890 24.7880

BSF 9.3730 9.4456 9.5933 9.5933 9.5974 9.3730
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Figure 11. ROCs and AUC values with different frame intervals.

The segmentation parameter k directly influences the detection effectiveness; the
relationships between k and detection results are shown in Figure 12. With the increase
in the k, both detection rate and false alarm rate decrease. The detection rate of different
experimental sequences showed similar trends, and the detection rates could be maintained
above 90% when 10 ≤ k ≤ 30. The variation trends of the false alarm rates of the five
test sequences are nearly the same as well. When k ≥ 10, the false alarm rates of all the
sequences are less than 10−3. In order to maintain the detection rate ≥ 90% and false alarm
rate ≤ 0.5× 10−3, the value range of k in this method is recommended to be [10, 30], which
was given in Section 2.5.

Figure 12. Influence of k. (a) Relationship between k and Pd; (b) relationship between k and Pf.
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5. Conclusions

This paper proposes a concise method, which is based on local spatial–temporal
matching, for detecting an aerial target on a space-based IR platform. The experimental
results determine that, compared with existing methods, LSM exhibits better detection
performance when the clutter is much stronger than the aerial target. However, LSM is
currently only suitable for the staring imaging mode and still needs to be optimized to
adapt to other modes.
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