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Abstract: In recent years, the successful application of Deep Learning methods to classification
problems has had a huge impact in many domains. (1) Background: In biomedical engineering,
the problem of gesture recognition based on electromyography is often addressed as an image
classification problem using Convolutional Neural Networks. Recently, a specific class of these
models called Temporal Convolutional Networks (TCNs) has been successfully applied to this task.
(2) Methods: In this paper, we approach electromyography-based hand gesture recognition as a
sequence classification problem using TCNs. Specifically, we investigate the real-time behavior
of our previous TCN model by performing a simulation experiment on a recorded sEMG dataset.
(3) Results: The proposed network trained with data augmentation yields a small improvement in
accuracy compared to our existing model. However, the classification accuracy is decreased in the
real-time evaluation, showing that the proposed TCN architecture is not suitable for such applications.
(4) Conclusions: The real-time analysis helps in understanding the limitations of the model and
exploring new ways to improve its performance.

Keywords: sEMG; hand gesture recognition; deep learning; CNN; TCN; real time; attention

1. Introduction

Accurate gesture recognition is important for a number of applications, including
human computer interaction [1], prosthesis control [2], and rehabilitation gaming [3,4].
Surface electromyography (sEMG) signals measured from the forearm contain useful
information for decoding muscle activity and hand motion.

Machine Learning (ML) classifiers have been used extensively for determining the
type of hand motion from sEMG data. A complete pattern recognition system based on
ML includes acquiring data, extracting features, specifying a model, and reasoning about
new data. In the case of gesture recognition based on sEMG, electrodes attached to the
arm and/or forearm acquire the EMG signals, and the typical extracted features are RMS,
variance, zero crossings, and frequency coefficients that are applied as inputs to classifiers
such as k-NN, SVM, MLP, and Random Forests [5].

Recently, Deep Learning (DL) models have been successfully applied to sEMG-based
gesture recognition. In these approaches, EMG data are represented as images, and a
Convolutional Neural Network (CNN) is used to determine the type of gesture. Although
EMG signals are time-series data, to our knowledge, only recently appropriate DL models
(e.g., Recurrent Neural Network—RNN, such as Long Short-Term Memory—LSTM) have
been utilized [6–8]. In this work, taking into account the outcomes of [9], we investigate
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the application of temporal convolutional networks (TCN) [10] to the problem of sEMG-
based gesture recognition. In contrast to the image classification approach, EMG signals
are considered as a multi-dimensional time series, and only 1D convolutions are applied.
Additionally, the outputs of the convolutions are computed using only past and current
data (causal convolutions).

The problem of sEMG-based hand gesture recognition has been studied thoroughly
using either conventional ML techniques or DL methods. In the case of ML-based methods,
the first significant study is presented in [11] for the classification of four hand gestures
using time-domain features extracted from sEMG measured with two electrodes. The
authors of [12] achieve a 97% accuracy in the classification of three grasp motions using the
RMS value from seven electrodes as the input to an SVM classifier. The works of [13–15]
evaluate a wide range of EMG features with various classifiers for the recognition of 52
gestures (Ninapro dataset [16]). The best performance is observed with a combination of
features and a Random Forest classifier, resulting in 75% accuracy.

On the other hand, the first DL-based architecture was proposed in [17]. The authors
built a CNN-based model for the classification of six common hand movements, resulting in
a better classification accuracy compared to SVM. In [18], a simple model consisting of five
blocks of convolutional and average pooling layers resulted in accuracy figures comparable,
though not higher, to what was obtained with classical ML methods. In our previous
work [19], we have investigated methods to improve the performance of this basic model.
The results have shown that opting for max pooling and inserting dropout [20] layers
after the convolutions boosts the accuracy by 3% (from 67% to 70%). The works of [21,22]
incorporate dropout and batch normalization [23] techniques in their methodology. Apart
from differences in model architectures, they measure EMG signals using a high-density
electrode array, which has been proven effective to myoelectric control problems [24–26].
Using instantaneous EMG images, the authors of [21] achieve 89% accuracy on a set of
eight movements, whereas in [22], a multi-stream CNN architecture is employed, resulting
in 85% accuracy on the Ninapro dataset. A quick comparison of the state-of-the-art accuracy
is difficult to make because of the lack of standardization of the databases and the number
of gestures to be recognized [27] (p. 36).

Other important works based on DL architectures deal with the problem of model
adaptation. In [28], the technique of adaptive batch normalization (AdaBN) [29] updates
only the normalization parameters of a pretrained model, whereas in [30], the authors use
weighted connections between a source network and the model instantiated for a new
subject. Additionally, in [30], they propose data augmentation methods for sEMG signals.

The current article is based on the conference presentation [31], where the offline
analysis of the TCN models is described. To extend that work, a real-time simulation is
performed using an existing sEMG database that allows the analysis of the performance of
the TCN models for real-time application purposes. In addition, the optimization procedure
was redesigned in order to incorporate the findings of our previous study [32]. The main
contributions presented in this paper are as follows:

• Analysis of the real-time performance of the proposed TCN models using a simulation
experiment;

• Improved offline accuracy compared to our previous study [31] as a result of the
optimized hyperparameter values.

The paper is organized as follows. In Section 2, we give a detailed description of the
proposed TCN architecture and the experimentation methodology. Section 3 provides the
results followed by a discussion. Finally, Section 4 summarizes the conclusions.

2. Materials and Methods

In the domain of sEMG-based gesture recognition, the majority of existing works
solve this problem as an image classification task, where recordings of multiple electrodes
are arranged in a 2D representation that resembles a gray-scale image. In this study, we
continue our exploration of a time sequence recognition model and specifically the TCN
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model, which was originally described in detail in our previous publication [31]. Here,
we provide a brief description of the TCN model as well as more implementation details.
The main characteristic of TCNs is the use of causal convolutions, which given an input
sequence of length N produce an output sequence of the same length. A potential limitation
of using convolutional networks for a time-sequence problem could be the lack of modeling
long-term correlations between the samples of the signal, which LSTMs solve with the
state vector. However, TCN models can solve this problem by using dilated convolutions
that enable a large receptive field (RF) [33] that may cover the entire duration of the signal.
Furthermore, residual connections [34] allow training deeper networks, which can extract
better features for the classification of the signals. Considering that our task is to classify
sEMG signals, the output of the model should be a single class label characterizing the
input sequence. Thus, the last convolutional layer of TCN is further processed by either an
average over time (AoT) calculation or an attention (Att) mechanism [35] followed by a
softmax activation.

An sEMG signal is represented as a C-dimensional sequence of length N, x =
{x0, . . . , xN}, where xi ∈ RC and x ∈ RN×C. The output feature map of a causal convolu-
tional layer of K filters is a sequence y ∈ RN×K where each element of the first dimension is:

yn = f (x0,...,n), ∀n < N (1)

Specifically for dilated convolutions:

yn = (x ∗d h)n =
2p

∑
i=0

xn−dihi (2)

where ∗d is the operator for dilated convolutions, d is the dilation factor, and h is the filter’s
impulse response of length 2p + 1. For the (l + 1)-th convolutional layer of Kl+1 filters, the
output yl+1 ∈ RN×Kl+1

is computed as:

yl+1
n,k =

Kl−1

∑
j=0

2p

∑
i=0

yl
n−di,jhi,j,k ∀n < N (3)

where k ∈ [0, Kl+1− 1], yl ∈ RN×Kl
is the output of the previous layer or the input sequence

x if l = 0, i.e., y0 = x. A schematic representation is shown in Figure 1a.
The architecture consists of successive residual blocks (Figure 1b) where the output

feature map is the element-wise summation of the input feature map and the same input
feature map processed by a series of causal convolutional and dropout layers. After every
convolutional layer, the value of the dilation ratio is doubled, i.e., dl+1 = 2dl . The RF after
a convolutional layer is computed as:

RFl+1 = RFl + 2pdl+1, l ∈ [0, . . . , L] (4)

where l = 0 is the input layer, RF0 = 0, and d1 = 1.
In a TCN model that consists of L convolutional layers, the output of the last layer,

yL, is used for the sequence classification assigning one out of G gesture labels. In the case
of the AoT approach, the class label ô attributed to the sequence is found through a fully
connected layer with softmax activation function:

s =
1
N

N−1

∑
n=0

yL
n (5)

ô = softmax(s ·Wo + bo) (6)

where s ∈ R1×KL
and Wo ∈ RKL×G, bo ∈ R1×G are trainable parameters. Otherwise, when

using the Att mechanism, the class label is calculated as follows [35]:
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v = tanh(yL ·Wa + ba) (7)

a = softmax(v · ua) (8)

s = ∑ a ◦ yL =
N−1

∑
n=0

anyL
n (9)

ô = softmax(s ·Wo + bo) (10)

where Wa ∈ RKL×KL
, ba ∈ R1×KL

are trainable parameters that compute a hidden represen-
tation v ∈ RN×KL

from the TCN output, ua ∈ RKL×1 is a learnable context vector, a ∈ RN×1

is the vector of normalized importance weights, ◦ denotes the element-wise multiplication,
and s ∈ R1×KL

is the weighted sum across the time steps n of yL based on the importance
weights. The output label ô is calculated as in AoT through the softmax activation.
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Figure 1. The TCN architecture. (a) Graphical representation of temporal causal convolutions with
exponential dilation factor d. (b) Each residual block performs a summation of a causal convolution
and the output of the TCN block that consists of a succession of causal convolutions, ReLU, and
Dropout layers. The Conv1D layer hyperparameters are k number of filters, f filter size, and d
dilation ratio.

The proposed TCN architecture was evaluated on data from the first dataset of the
Ninapro database. It includes data acquisitions of 27 healthy subjects (7 females and
20 males of age 28 ± 3.4 years) that perform each of the 52 gestures 10 times (repetition
sequences). The types of gestures can be divided into three groups: (i) basic finger move-
ments, e.g., index flexion/extension, (ii) isometric, isotonic hand configurations and basic
wrist movements, e.g., fingers flexed together in fist, wrist flexion, and (iii) grasping and
functional movements, e.g., prismatic pinch grasp, large diameter grasp. The data are
acquired with 10 electrodes (OttoBock MyoBock 13E200-50), of which eight are placed
at equal distances around the forearm and the other two are placed on the main activity
spots of the large flexor and extensor muscles (flexor and extensor digitorum superficialis
respectively) of the forearm [14].

The experimentation is based on existing works that have used this dataset [18,19,22]
and follow an intra-subject evaluation, where the train/test split of the data is performed
for each subject separately based on gesture repetitions. Specifically, for each subject, a
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new model is created with a random initialization of the weights and trained on data from
seven repetitions (i.e., 1, 3, 4, 6, 8, 9, 10) and tested on the remaining three (i.e., 2, 5, 7). As
performance metrics, we use the top-1 and top-3 accuracies (i.e., the accuracy when the
highest and any of the 3 highest output probabilities match the expected gesture) averaged
over all the subjects. Considering that the idle gesture is overrepresented in the dataset,
a weighted average of the metrics is calculated where the weight for each gesture label is
inversely proportional to the number of samples of that gesture.

The experiments consist of four different versions of the TCN model. The first distinc-
tion is based on the size of the RF, where models with an RF equal to 300 ms (short) and
2500 ms (long) were implemented. These values were achieved by using an exponential
dilation factor d = 2l for the l-th layer in the network. Secondly, the classification was
based on either the AoT or the Att mechanism described above. Therefore, four models
were evaluated using complete gesture repetition sequences as input. The details of each
model are shown in Table 1.

Table 1. Details of the evaluated models, average over time (AoT), and attention mechanism (Att).
The number of layers refers only to convolutions.

Classifier RF [ms] Size Layers

AoT 300 60 K 4
AoT 2500 70 K 7
Att 300 75 K 4
Att 2500 85 K 7

The optimization of the models was based on the procedure described in our previous
study on TCNs [31]; however, the findings of [32] regarding data augmentation techniques
for sEMG data were incorporated. To this effect, an extended hyperparameter search was
performed, which resulted in the following. All networks were trained using the Adam
optimizer [36] for 100 epochs with early stopping, a constant learning rate of 0.01, and a
batch size of 128. To avoid overfitting the networks due to the small training set (size of
53× 7 = 371), the training data of each subject were augmented by a factor of 10 using
the Wavelet Decomposition (WD), Magnitude Warping (MW), and Gaussian Noise (GN)
methods described in [32]. The details of the augmentation hyperparameters are shown in
Table 2. Finally, dropout layers were appended after each convolution with a forget rate of
0.05. These values were selected after performing a grid search on a validation set of five
randomly selected subjects.

Table 2. Hyperparameter values for each of the augmentation methods, Wavelet Decomposition
(WD), Magnitude Warping (MW), and Gaussian Noise (GN) .

Augmentation Hyperparameters

WD wavelets = [‘sym4’], levels = [2, 3, 4], b = [0, 2.5, 5], p = 0.75
MW sigma = 0.2, p = 0.75
GN snrdb = 30, p = 0.25

This study aims at providing insights into the real-time performance of the TCN
models. For this purpose, we performed a simulation experiment using the test data where
the input to the models was given a single sample at a time. During training and in the
offline evaluation, the signals that correspond to the entire gesture duration are used as
input to the models. On the other hand, in the real-time experiment, the sEMG signals of
the test set repetitions are provided as input in a sample-by-sample fashion in segments of
200 ms (20 samples for Ninapro DB1). For example, initially, only the first sample x0, i.e., a
vector of 10 values, is fed to the model, while at the n-th iteration, the input consists of a
sequence of 20 vectors xn−20,...,n ∈ R20×10. The process is repeated until the entire signal of
length N is covered. The label predictions of each model are recorded for further analysis.
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To utilize the parallel processing of the GPU, the input is zero-padded up to a maximum
sequence length. Additionally, these zero values are masked so that they do not interfere
during training and inference.

The model predictions during the real-time experiment are processed as follows.
Firstly, we utilize the classifier of [37] to compute the real-time accuracy. This approach is
similar to a majority voting classifier, but instead, it assigns the label of the gesture that is
predicted the most times above a threshold in an analysis window w. To that effect, at any
given iteration n, we count the amount of times each label i is predicted, Ni. If an sEMG
signal is classified more than τ times with a label l, i.e., Nl ≥ τ, this label is assigned as the
predicted gesture for the analysis window w. If the threshold is not met, a ‘no gesture’ label
is assigned. Thus:

Ψn(ô) =

{
l, Nl ≥ τ

−1, otherwise
(11)

Each sEMG sequence generates a sequence of gesture label predictions. For both
types of TCN models, i.e., AoT and Att, the predicted label sequences are compared to the
corresponding ground truth labels, and the index of the first correct model prediction as
well as the first index for which Ψ(ô) 6= −1 are recorded. Divided by the sampling rate
of the sEMG signals of the Ninapro DB1 dataset, i.e., 100 Hz, these indices are mapped to
the time in seconds that the model requires to successfully predict the performed gesture.
Then, for the Att models, the timings are compared to the peak of the attention weights
distribution computed during training.

The models were developed in Python using Tensorflow/Keras libraries. The training
was performed on a workstation with an AMD Ryzen 9 3950X 16-Core Processor, 126 GB
RAM, and an Nvidia GeForce RTX 3080, 11GB GPU. Each training epoch was completed in
approximately 30 s.

3. Results and Discussion

This section provides the experimental results for the offline and real-time experiments.
In the first case, the accuracy and loss curves along with the confusion matrices for each
TCN model are described. For the real-time experiment, the distribution of ‘the timings
until the first correct prediction’ for each gesture is shown in the form of a boxplot, while
the correlation coefficients of the relationship between these timings and the peaks of the
attention weights are presented.

Figure 2 shows the loss and accuracy curves on the training and validation sets, while
in Figure 3, the confusion matrices on the test set are shown. The average attention weight
distributions extracted from the training set are shown in Figure 4. Table 3 presents the
offline and real-time classification accuracy metrics for each of the models.

(a) (b)

(c) (d)

Figure 2. Loss and accuracy curves for training set (blue) and test set (orange) for each of the models.
(a) AoT300, (b) Att300, (c) AoT2500, and (d) Att2500. The line plots correspond to the subject average,
while shaded areas correspond to the standard deviation.
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(a) (b)

(c) (d)

Figure 3. Confusion matrices for each of the models. (a) AoT300, (b) Att300, (c) AoT2500, and
(d) Att2500.

Figure 4. Distribution of attention weights extracted from each gesture (1–52, 0 = resting state) in the
training set for the Att300 model. The vertical orange line corresponds to the median, and the x-axis
is time in seconds.
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Table 3. Offline and real-time results in terms of classification accuracy. The table shows the average
across subjects and the standard deviation in parentheses. An ‘*’ denotes a significant difference
(p-value < 0.05) between the top-1 accuracy in [31] and the current study.

Model Offline Top-1
Accuracy [31]

Offline Top-1
Accuracy

Offline Top-3
Accuracy

Real-Time
Accuracy

Response
Time (ms)

AoT300 0.8951 (0.0343) 0.9189 (0.0366) * 0.9832 (0.0157) 0.4293 (0.0415) 122.83 (0.89)
AoT2500 0.8929 (0.0380) 0.9147 (0.0402) * 0.9788 (0.0177) 0.2022 (0.0439) 121.29 (0.84)

Att300 0.8967 (0.0350) 0.9067 (0.0443) 0.9790 (0.0170) 0.4188 (0.0429) 122.51 (0.94)
Att2500 0.8976 (0.0349) 0.9100 (0.0365) 0.9774 (0.0165) 0.1772 (0.0435) 120.76 (1.34)

For the classifier of Equation (11), the analysis window w and the label count threshold
τ were set to 12 and 300 ms, respectively. The classification accuracy for different values of
the two parameters is shown as a heatmap in Figure 5. Boxplots showing the distribution
statistics of ‘the timings until the first correct prediction’ are presented in Figures 6–9.

Figure 5. Results of the grid search for the τ and w parameters. Colors represent the achieved
accuracy from low values (purple) to the maximum (yellow). The highest accuracy is achieved for
τ = 60 and w = 1.6 s.

Figure 6. Boxplots of the distribution of the time to the first correct prediction per gesture for the
AoT300 model. The boundaries of the boxes correspond to the Q1 and Q3 quartiles, the boundaries
of the standard deviations are Q1 − 1.5IQR and Q3 + 1.5IQR, where IQR = Q3 − Q1, and the circles
correspond to outliers.The red dashed line corresponds to 300 ms.
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Figure 7. Boxplots of the distribution of the time to the first correct prediction per gesture for the
AoT2500 model. The boundaries of the boxes correspond to the Q1 and Q3 quartiles, the boundaries
of the standard deviations are Q1 − 1.5IQR and Q3 + 1.5IQR, where IQR = Q3 − Q1, and the circles
correspond to outliers. The red dashed line corresponds to 300 ms.

Figure 8. Boxplots of the distribution of the time to the first correct prediction per gesture for the
Att300 model. The boundaries of the boxes correspond to the Q1 and Q3 quartiles, the boundaries of
the standard deviations are Q1 − 1.5IQR and Q3 + 1.5IQR, where IQR = Q3 − Q1, and the circles
correspond to outliers. The red dashed line corresponds to 300 ms.

Figure 9. Boxplots of the distribution of the time to the first correct prediction per gesture for the
Att2500 model. The boundaries of the boxes correspond to the Q1 and Q3 quartiles, the boundaries
of the standard deviations are Q1 − 1.5IQR and Q3 + 1.5IQR, where IQR = Q3 − Q1, and the circles
correspond to outliers. The red dashed line corresponds to 300 ms.
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3.1. Offline Analysis

In the offline analysis, the entire sequence of each sEMG signal was used as input to
the models. The training and validation loss curves (Figure 2) show that the models were
trained until convergence, while the early stopping approach helped avoid overfitting. The
range of standard deviation of the results is similar to what can be achieved from other CNN
models applied to the Ninapro dataset. The test accuracy metrics (Table 3) were increased by
approximately 2% compared to our previous implementation [31]. However, the difference
is significant only for the AoT models (p-value < 0.05) and not in the case of attention-based
ones. We assume that this improvement stems from the better augmentation methods
utilized in this study. Furthermore, we observe that the accuracy of the attention-based
models is slightly lower than that of the time average.

The error analysis based on the average confusion matrices (Figure 3) confirms our
previous findings that some gestures are difficult to classify correctly [31]. All confusion
matrices display a few clusters of misclassifications between the following gestures: (i)
thumb adduction–abduction and flexion–extension (labels 9–12), (ii) thumb opposing little
finger and abduction of all fingers (labels 16–17), (iii) power grip and hook grasp (labels
31–32), (iv) types of three finger grasps (labels 40–42), and (v) types of pinch grasps (labels
43–44).

For the model using the attention mechanism, the importance weights was extracted
and the average weight distribution per gesture is shown in Figure 4. Each plot shows
the average values of the attention weights for the duration of the training repetitions of
each gesture. The y-axis is the amplitude of the weights, and the x-axis corresponds to
the time in s. For the Att300 model, we can see that in most of the gestures, the peaks are
between 2 and 4 s. This means that for the model, this region is the most important for
the classification.

3.2. Real-Time Analysis

In the real-time analysis, segments of 20 samples (200 ms) of sEMG signals were used
as input to the models. The time from the start of the gesture until the first correct prediction
is shown as a boxplot, where the measurements are collected for each gesture repetition in
the test set across the subjects in the dataset. Figures 6–9 show the results for each model. In
general, easy to classify gestures (label 1–12) have lower times compared to more complex
grasps (labels 30–52). This means that the model requires a bigger amount of input samples
in order to correctly classify a more difficult gesture. Furthermore, the models with larger
RF require more time to make a correct prediction, while the amount of outliers is smaller
in the attention-based models. This is expected, since during training, the calculation of
the last layer feature maps on which the classification is based takes into account a larger
portion of the input signal.

Next, the correlation between the time of the attention peak and the time to the first
correct prediction is calculated for the Att300 and Att2500 models. Measurements from all
the subjects and the gestures are taken, and then, the Pearson’s correlation coefficient is
calculated. The results for the two models are shown in Figure 10. In both models, no linear
relationship was found with r = −0.0579 (Att300) and r = −0.0216 (Att2500). This means
that we cannot make any assumptions about the time until the first correct prediction by
looking at the attention weights.
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(a) (b)

Figure 10. Correlation between attention layer peaks and time to first correct prediction for each of
the models. (a) Att300 and (b) Att2500.

The output sequence of the class labels was further processed over an analysis window
w = 300 ms and a label prediction threshold τ = 12 using Equation (11). The window
was selected in order to conform to real-time requirements [38], while τ was selected such
that the accuracy is maximized. In Figure 5, the real-time accuracy is shown for various
values of these parameters. The accuracy is maximized for w = 1.6 s and τ = 60 with a
value of 0.5660. As expected, increasing both the analysis window and the label prediction
threshold improves the accuracy performance. However, the response time, i.e., the time
from the start of the analysis window until a prediction is made, also increases. Figure 11
shows the classification accuracy and the response time for w = 1.6 s while τ is varied
from 10 to 80. The accuracy improves when the τ threshold increases, because the model
can filter out wrong predictions that are repeated less frequently than the correct label
within the processing window w. After a certain point, further increase of τ deteriorates
the performance, since the count of the correct label does not meet the threshold and the
model outputs either a different label or ‘no gesture’.

Figure 11. Classification accuracy (green) and response time (blue) when w = 1.6 s and τ is varied
for the Att300 model. The red dashed line corresponds to 0.3 s.

The above results highlight the difference between the offline and the real-time per-
formance of the proposed models. These TCN architectures can successfully discriminate
between a large number of gesture labels when the entire signals are fed as inputs. However,
the real-time evaluation suggests that the specific architecture configuration is not suitable
for real-time applications. A similar analysis as ours on the Ninapro DB1 dataset was
not found. However, other approaches have been successful in Ninapro datasets. In [39],
a TCN encoder–decoder network is trained to predict a gesture label at each timestep,
i.e., the optimization procedure is oriented toward a real-time application. In Ninapro DB2,
which contains 40 different gestures, the classification accuracy is 0.8270, and the average
response time was calculated at 4.6 ms. In addition to making a fast correct prediction,
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the predictions were highly stable. Furthermore, in the work of [40], a TCN model con-
sisting of three convolutional layers is trained on 150 ms window segments using sliding
windows. The accuracy in classifying eight gestures in Ninapro DB6 was 0.7180 using only
the steady portion of the signal; i.e., the transients at the beginning and the end of the signal
were removed before the training.

Next, in order to take into account the real-time requirements into the training, the mod-
els were optimized using segments of the sEMG signal. Specifically, we used segments
with a duration of 200 ms (20 samples), i.e., equal to the real-time experiment, based on
the sliding windows method with a window size of 20 samples and step of 1 sample.
The remaining hyperparameters, i.e., augmentation, model architecture, training epochs,
learning rate, and batch size, were the same as before. Then, the models were evaluated
using segments of 200 ms and processed further with an analysis window w = 300 ms and
τ = 12. The results shown in Table 4 agree with the results found in the above-mentioned
works that follow a similar approach for the training [40]. Comparing Tables 3 and 4, we
observe that in the latter, the real-time accuracy has been improved, while the response
time remains in the same range of values as before. Although the average response time is
below the real-time threshold of 300 ms, it is much higher than the response time achieved
in [39].

Table 4. Offline and real-time results in terms of classification accuracy when training is performed
using a sliding windows of 200 ms. The table shows the average across subjects and the standard
deviation in parentheses.

Model Offline Top-1
Accuracy

Offline Top-3
Accuracy

Real-Time
Accuracy

Response Time
[ms]

AoT300 0.7442 (0.0548) 0.9019 (0.0349) 0.7527 (0.0582) 118.54 (1.56)
AoT2500 0.7619 (0.0618) 0.9079 (0.0383) 0.7696 (0.0667) 117.61 (1.50)

Att300 0.7062 (0.0531) 0.8825 (0.0314) 0.7481 (0.0630) 120.24 (1.56)
Att2500 0.7800 (0.0528) 0.9169 (0.0314) 0.7867 (0.0561) 119.31 (1.72)

4. Conclusions

This study follows our previous work regarding the application of a TCN model to
the problem of sEMG-based recognition [31]. In contrast to existing works that address
the problem as an image classification task, the proposed model can categorize complete
sEMG sequences. The architecture consists of a stack of layers that perform temporal causal
convolutions, while the class label is computed either with an average over time (AoT)
or an attention mechanism (Att) method. The model was successful in classifying the
sEMG signals of 53 gestures in Ninapro DB1 in the offline evaluation, i.e., when the entire
signal was used as input to the model, and an augmentation scheme based on [32] further
boosted the performance. However, in the real-time evaluation experiment consisting
of providing the model with 200 ms segments, the classification accuracy was quite low.
A comparison with similar approaches of TCN models in the literature suggests that a
tailor-made data-feeding procedure during training adapted for real-time application can
be more effective than our extension of an offline analysis scheme. Finally, using a training
procedure based on sliding windows, the real-time performance improves as expected.
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