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Abstract: The inertial navigation system (INS) is a basic component to obtain a continuous navigation
solution in various applications. The INS suffers from a growing error over time. In particular,
its navigation solution depends mainly on the quality and grade of the inertial measurement unit
(IMU), which provides the INS with both accelerations and angular rates. However, low-cost small
micro-electro-mechanical systems (MEMSs) suffer from huge error sources such as bias, the scale
factor, scale factor instability, and highly non-linear noise. Therefore, MEMS-IMU measurements lead
to drifts in the solutions when used as a control input to the INS. Accordingly, several approaches
have been introduced to model and mitigate the errors associated with the IMU. In this paper, a
machine-learning-based adaptive neuro-fuzzy inference system (ML-based-ANFIS) is proposed to
leverage the performance of low-grade IMUs in two phases. The first phase was training 50% of the
low-grade IMU measurements with a high-end IMU to generate a suitable error model. The second
phase involved testing the developed model on the remaining low-grade IMU measurements. A real
road trajectory was used to evaluate the performance of the proposed algorithm. The results showed
the effectiveness of utilizing the proposed ML-ANFIS algorithm to remove the errors and improve
the INS solution compared to the traditional one. An improvement of 70% in the 2D positioning and
of 92% in the 2D velocity of the INS solution were attained when the proposed algorithm was applied
compared to the traditional INS solution.

Keywords: INS; MEMS-IMU; machine learning; ANFIS; positioning; navigation

1. Introduction

With the advantages of being a self-contained system and providing an uninterrupted
navigation solution, the inertial navigation system (INS) has become an essential compo-
nent to obtain a robust navigation solution in several fields such as aircraft applications,
autonomous navigation, and vehicle dynamic control [1]. Despite the advantage of the
INS having a high short-term accuracy, it suffers from the drift accumulation of the biases
over time. The accuracy of the INS’s navigation solution and the ability to reduce the
errors accumulated over time depend on the type of inertial measurement unit (IMU) [2,3].
Recently, the utilization of micro-electro-mechanical systems (MEMSs) has been introduced
for inertial sensor systems with the advantages of low cost, small size, and low power
consumption [4]. On the other hand, the disadvantage of the high error accumulation rate
of MEMSs has raised the challenge of modeling these errors to improve the accuracy of the
navigation solution [5].

The difficulty of modeling these errors is due to the existence of non-linear errors.
These errors cannot be modeled by the traditional techniques such as the Kalman filter
(KF), the extended KF (EKF), the unscented Kalman filter (UKF), or even the particle filter
(PF) [3,6,7]. Accordingly, there is a great need to find an alternative to traditional methods
that does not have the difficulty and complexity of error modeling. Therefore, researchers
have taken advantage of the availability of a large amount of data extracted from the INS
and added machine learning (ML) techniques to the navigation algorithms [6,8–10].

Sensors 2022, 22, 1687. https://doi.org/10.3390/s22041687 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041687
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0621-3608
https://orcid.org/0000-0002-7697-6611
https://orcid.org/0000-0002-6702-4934
https://orcid.org/0000-0002-6319-2877
https://doi.org/10.3390/s22041687
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041687?type=check_update&version=1


Sensors 2022, 22, 1687 2 of 20

ML techniques are utilized as estimators/predictors or classifiers of the navigation
parameters. These techniques are utilized to smooth the choice of the sensors as an alterna-
tive to the KF in a plug-and-play manner [6,8]. This leads to the selection of the integration
process and the raw measurements. Consequently, training the ML model helps produce
a robust predictive model for the INS errors during GNSS outages. In addition, it can be
used to improve visual positioning, mitigating the non-line-of-sight (NLOS) effects such as
the multipath effect, spoofing, and jamming [11].

There is growing interest in utilizing ML techniques to improve the INS navigation
solution. An approach utilizing an artificial neural network (ANN) to overcome the
limitations of the KF to bridge the GPS outages during the GPS/INS integration process
was introduced in [12–15]. The proposed methodology was accomplished in two phases. In
the first phase, the ANN was trained to predict the INS position error and remove it from the
corresponding INS position without having the initial position of the INS. Furthermore, the
work in [16,17] utilized the ANN and ANFIS after the GPS/INS integration to enhance the
INS navigation solution. In contrast, the work in [18] introduced a non-linear autoregressive
neural network with external inputs (NARX) combined with the UKF to enhance the
position and velocity accuracy of the INS/GNSS integration. Furthermore, the work in [3]
proposed a fast orthogonal search (FOS) model to reduce and compensate the unmodeled
residual non-linear errors of a mag/radar/RISS/GPS integration system to improve the
navigation solution during GPS outages. The work in [19] utilized the FOS model as a GPS
swept anti-jamming technique to discriminate between the authentic GPS signal and the
interference from the chirp frequency jammer. In [20], two approaches were introduced
to overcome the drift during GNSS outages using parallel cascaded mechanization for
non-linear error estimation of the INS solution. The results showed a slight improvement
during the parts of the trajectory that had maneuvers such as turns, while the parts with
few maneuvers had a significant improvement. The work in [21] proposed a random forest
(RF) method for standstill recognition. The proposed method depends on the generated
features from the IMU signals that represent the standstill state as an input for the classifier.

In comparison, the work in [22] introduced a supervised machine learning technique
for spoof detection. The work in [23] introduced an adaptive fuzzy extended Kalman filter
(AFEKF) to enhance the prediction level of the position and velocity errors of the INS.
In [6,8], the authors introduced a sensor fusion technique based on fuzzy clustering to fuse
the Doppler speed from an FMCW radar and the speedometer data to improve the input
speed of an RISS model. The results showed the enhancement of the navigation solution in
some portions of the trajectory. On the other hand, the lack of sensor fault detection and a
false reading algorithm caused a drift in some portions that had wheel slippage. The work
in [24] proposed a fuzzy cluster means (FCMs) technique to fuse multiple IMUs to produce
a robust measurement, which was utilized in INS mechanization integrated with GPS. The
results in this work showed significant improvement when using FCMs with a multi-IMU
structure compared to using only one. Furthermore, the work in [25] utilized the ANFIS
model to predict the dual-mass MEMS gyroscope’s output drift caused by temperature.
The work in [26] utilized the ANFIS model to enhance the navigation solution of the INS
by training the ANFIS model on a differential GPS dataset as a reference position and
evaluated the model on a raw public dataset (KITTI) with a trajectory that lasted from
(140–300) s. Furthermore, the work in [27] utilized the ANFIS model as a solution for the
navigation problem of a mobile robot.

The work in [28] utilized empirical mode decomposition threshold filtering (EMDTF)
and a long short-term memory (LSTM) neural network. The EMDTF disposes of the noise
generated in the INS’s sensors, while the LSTM is used to predict the pseudo-GPS position
during GPS outages. The presented EMDTF scheme improved the accuracy of east velocity,
north velocity, longitude, and latitude by 9.12%, 15.14%, 13.78%, and 10.72%, respectively,
while the LSTM scheme reduced the RMSE by 21.79%, 14.85%, 55.03%, and 19.66% over the
traditional artificial neural networks. Moreover, the work in [29] overcame the dilemma
of poor navigation accuracy in challenging environments by proposing a fusion scheme



Sensors 2022, 22, 1687 3 of 20

utilizing machine learning techniques. The proposed scheme utilizes the support vector
regression-based adaptive Kalman filter (SVR-AKF) to regulate the covariance parameters
of the KF. In addition, the adaptive neuro-fuzzy inference system (ANFIS) was used to
predict the navigation solution errors of the INS during GNSS outages. The proposed
scheme was compared to the traditional schemes using the KF and EKF over two real
trajectories. The results showed an improvement in the position error of about 58.8%
against the KF over Trajectory 1and 48% to 67.5% against the KF and 34.2% to 57.6% against
the EKF over Trajectory 2. Another approach using the FIS to adapt the fuzzy covariance
matrix for the online calibration of multiple LiDAR systems was presented in [30]. The aim
of this work was enhancing the performance of low-cost laser sensors, and a minimum
error for distance of 2.8 cm and a rotation of 1.2 degrees were obtained.

A recent survey of ML techniques and how they can be involved in all the fundamental
steps of inertial sensing applications to improve the navigation solution obtained from
the INS was provided in [31], stating the advantages and the challenges. The authors
mentioned several challenges that the use of ML faces with regard to inertial sensors such as
the nonexistence of hardware combinations of inertial sensors and ML and the lack of work
on the sensor measurements’ improvement using ML. In addition, the authors mentioned
that the use of ML along with the sensor measurements is a promising field of research, as
most of the work conducted on ML has only been on the INS navigation solution.

From the discussion of the previous related work, we noticed that most of the presented
research utilized ML techniques for the INS solution, but neglected the inertial sensors’
measurements. Therefore, in this paper, we propose an ANFIS algorithm to be applied to
the raw measurements of a commercial IMU to leverage its performance. This process was
carried out using a high-end IMU as a reference to provide a suitable model for the low-end
IMU in the ML structure. The model was generated in the training phase using both IMUs,
then applied only to the low-end IMU in the testing phase. The proposed ML algorithm
was evaluated on a real road trajectory. The results showed a significant improvement
of the commercial IMU measurements, as well as the INS navigation solution compared
to the traditional INS solution. The contributions of this research paper are summarized
as follows:

1. The development of an ML-based ANFIS algorithm as an ML technique to leverage a
low-grade IMU;

2. Comparing the low-grade IMU measurements before and after applying the proposed
algorithm to the reference IMU;

3. The validation of the proposed algorithm by applying the tested IMU data to the
INS mechanization.

This paper is organized into six sections. In Section 1, the introduction, related work,
and paper contributions are discussed. Section 2 gives the background of the INS and the
ANFIS algorithm. The methodology is explained in Section 3. The experimental setup and
the utilized units are detailed in Section 4. The results are discussed in Section 5. Finally,
the paper is concluded in Section 6.

2. Background
2.1. Inertial Navigation Systems

The traditional inertial navigation system is composed of an IMU and a navigation
processor. The IMU is composed of three accelerometers providing the specific forces and
three gyroscopes providing the angular rates [1,32–36], as shown in Figure 1.

The INS depends on the knowledge of the target’s initial states (position, velocity, and
attitude (PVA)) and updates its current states accordingly, as shown in Equations (1)–(3).

The mechanization process of the INS can be summarized in three main steps. First,
we obtained the angular rates (ωx, ωy, ωz) from the gyroscopes, the accelerations ( fx, fy, fz)
from the accelerometers, and the attitude angles of the pitch, roll, and yaw (p, r, y) from the
angular rates after calculating the transformation matrix. Second, with the assistance of the
rotation matrix, the forces in the navigation frame from the body frame can be obtained
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and then transformed to the local-level frame (LLF). Finally, the velocity was obtained
by integrating the transformed forces, and the position was obtained by integrating the
calculated velocity [1,37].

P = [ϕ λ h]T (1)

where P is the position, ϕ is the latitude, λ is the longitude, and h is the altitude.

V = [VN VE VD]
T (2)

where V is the velocity, VN is the north velocity, VE is the east velocity, and VD is the
down velocity.

IMU

3D-Gyroscopes 

3D-Accelerometers

Inertial Navigation 
System Mechanization

Position, Velocity, 
and Attitude (PVA)

Initial Position, 
Velocity, and 

Attitude (PVA-Initial)

Gravity Model 
(WGS84)

Figure 1. Strap down INS block diagram.

The attitude is determined by Equation (3) [35].

A =


q0
q1
q2
q3

 (3)

where A is the quaternion representation of the attitude and the quaternions q0, q1, q2, and
q3 are the parameters of the rotation matrix.

The attitude rates are calculated as Equation (4).
q̇0
q̇1
q̇2
q̇3

 = 0.5


0 ωx −ωy −ωz

ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0




q0
q1
q2
q3

 (4)

where ωx , ωy, and ωz are the gyroscopes’ angular rates in the x, y, and z directions,
respectively.

Furthermore, the quaternion attitude can be transferred to the Euler angles of the roll,
pitch, and yaw, respectively, as in Equation (5).φ

θ
ψ

 =

 atan2
(
2 q2q3 + 2q1q0 ),

(
q2

3 + q2
0 − q2

1 − q2
2
))

−asin(2 q1q3 − 2q2q0 )
atan2

(
(2 q1q2 + 2q0q3 ),

(
q2

0 + q2
1 − q2

2 − q2
3
))
 (5)

where φ is the roll angle in radians, θ is the pitch angle in radians, ψ is the yaw angle
in radians.
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Equation (6) shows the transformation matrix from the body frame to the LLF using
quaternion states [38].

Cn
b =

q2
1 + q2

o − q2
2 − q2

3 2(q1q2 − q3qo) 2(q2q3 + q2qo)
2(q1q2 + q3qo) q2

2 + q2
o − q2

1 − q2
3 2(q2q3 − q1qo)

2(q1q3 − q2qo) 2(q2q3 + q1qo) q2
3 + q2

o − q2
1 − q2

2

 (6)

The specific forces can be transformed into the LLF using the transformation matrix
Cn

b and are obtained with Equation (7).FN
FE
FD

 = Cn
b

 fx
fy
fz

 (7)

where FN , FE, and FD are the transformed specific forces in the north, east, and down
frame, respectively.

The velocity rates can be obtained with Equation (8).

 V̇N
V̇E
V̇D

 =

 1 0 0 0 −
(
λ̇ + 2wesin(ϕ)

)
ϕ̇ 0

0 1 0
(
λ̇ + 2wesin(ϕ)

)
0

(
λ̇ + 2wecos(ϕ)

)
0

0 0 1 −ϕ̇ −
(
λ̇ + 2wecos(ϕ)

)
0 1




FN
FE
FD
VN
VE
VD
g


(8)

where λ̇ and ϕ̇ are the longitude and latitude rates, respectively, we = 7.2921158 × 10−5 rad/s
is the magnitude of the rotation rate of the Earth, and g is the acceleration due to gravity,
which can be obtained with Equation (9).

g = gWGS0
1 + gWGS1sin(ϕ)

[1 − E2sin2(ϕ)]
1
2
− [3.0877 × 10−6 − 0.0044 × 10−6sin2(ϕ)]h + 0.072 × 10−12 (9)

where gWGS0 = 9.78032677 m/s2 is the gravity at the Equator, gWGS1 = 0.00193185138639 m/s2

is the gravity formula constant, and E = 0.0818191908426 is the first eccentricity [1,2].
The position rates are obtained with Equation (10).ϕ̇

λ̇

ḣ

 =


VN

RM+h
VE

(RN+h)cos(ϕ)

−VD

 (10)

where RM and RN are the meridian radius and normal radius of the Earth’s ellipsoid
model, respectively.

Unfortunately, the INS suffers from error growth over time because of the two-times
integration process of the target’s acceleration. The errors in the INS can be categorized
and divided into deterministic and stochastic errors. The deterministic errors include the
bias offset, scale factor, and axis misalignment errors. In contrast, the stochastic errors
include bias drift, bias stability, scale factor stability, noise, and axis misalignment errors.
The deterministic errors can be reduced or compensated if the sensors are properly cali-
brated, especially high-end sensors, while the stochastic errors were modeled randomly to
reduce their effect [30]. Therefore, the gyroscope measurement model is represented by
Equation (11).

ω̃b
ib = ωb

ib + bg + Sωb
ib + Nωb

ib + εg (11)

where ω̃b
ib is the gyroscope measurement vector, ωb

ib is the true angular rate velocity vector,
bg is the gyroscope instrument bias vector, Sg is a matrix representing the gyro scale factor,
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Ng is a matrix representing the non-orthogonality of the gyro triad, and εg is the vector
representing the gyro sensor noise.

Furthermore, the accelerometers’ measurement model is represented by Equation (12).

f̃ b = f b + ba + S1 f + S2 f 2 + Na f + δg + ηg (12)

where f̃ b is the accelerometer measurement vector, f b is the true specific force vector, ba
is the accelerometer instrument bias vector, S1 is a matrix of the linear scale factor error,
S2 is a matrix of the non-linear scale factor error, Na is a matrix representing the non-
orthogonality of the accelerometer’s triad, δg is the anomalous gravity vector, and ηg is a
vector representing the accelerometer sensor noise.

The classification of the INS depends on the IMU’s accuracy and its ability to reduce
the error growth over time. Therefore, to compensate the low-cost commercial IMU’s
errors, either traditional techniques or ML techniques are applied to enhance the INS’s
navigation solution.

2.2. Adaptive Neuro-Fuzzy Inference System

The adaptive neuro-fuzzy inference system (ANFIS) is a fusion technique between
the artificial neural network (ANN) and the fuzzy inference system (FIS). Subsequently, it
provides the advantages of both techniques and compensates their disadvantages. It drives
the system to adapt through the self-organizing and self-learning process [39].

The main structure of the FIS is shown in Figure 2. The FIS is based on the fuzzy
conditional statements (if–then rules), which are responsible for making the decisions in an
uncertain environment and its influencing factors[40]. The structure of the FIS is composed
of five main blocks. The fuzzification process switches the crisp inputs into datasets by
applying the membership function (MF). The base rule contains the fuzzy if–then rules,
and the database comprises the MF utilized in the fuzzy rules. The decision-making unit
executes the inference operation on the fuzzy rules. The defuzzification process turns the
fuzzy results into a crisp output [41–43].

Knowledge Base

Fuzzification

Decision-making unit

Base Rule Database

Defuzzification

Crisp inputs Crisp output

Fuzzy inputs Fuzzy results

Figure 2. The structure of the fuzzy inference system.

Similarly, ANFIS’s functionality is equivalent to the FIS, as shown in Figure 3 [44].
The ANFIS structure is composed of five layers. In the first layer, each node assigns the
crisp inputs after applying the MF. The output of this layer clarifies how well the input
matchesthe linguistic label, as given by Equation (13) [40,42].

O1
i = µAi (x) (13)

where µAi is the MF, X is the input to node i, and Ai is the linguistic label for input X.
The second layer multiplies the input signals at each node to obtain the rules’ weights

(firing strength), as given in Equation (14).

Wi = µAi (x)× µBi (y) (14)
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where x, y are the two inputs, Ai is the linguistic label for input X, and Bi is the linguistic
label for input y. The third layer normalizes the weights of each rule by computing the ratio
of the weight of each rule to the sum of all the rules’ weights, as given in Equation (15).

W̃ =
Wi

∑ W
(15)

In the fourth layer, the normalized weights of each rule are multiplied by the output
of the second layer, as given in Equation (16).

O4
i = W̃i fi = W̃i(pix + qiy + ri) (16)

where W̃i is the normalized weight obtained from the third layer and pi, qi, and ri are called
the consequent parameters.

Finally, the fifth layer sums all the incoming signals to compute the overall output O f ,
as given in Equation (17).

O f = ∑
i

W̃ fi =
∑i Wi fi

∑i Wi
(17)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
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Knowledge Base

Fuzzification

Decision-making unit

Base Rule Data Base

Defuzzification

Crisp inputs Crisp output

Fuzzy inputs Fuzzy results

A1

B1

A2

B2

Π

Π

Ν 

Ν

A1

Π

Π

Σ 

x

y

Layer 1

Layer 2
Layer 3

Layer 4

Layer 5

O/P

W1f1

W2f2W2

W1

W1

W2

Figure 3. The ANFIS’s structure [44].

3. Methodology

As mentioned in the previous section, the accuracy of the INS’s navigation solution
depends on the quality/grade of the IMU sensor and the ability to compensate its errors. In
this paper, we exploited the capability of the ML-ANFIS technique to estimate the inertial
sensors’ errors by training a low-grade IMU with a high-end one. This work aimed to boost
the low-grade IMU’s performance.

The proposed ML technique is composed of two phases, the training phase and the
testing phase. The training phase block diagram is shown in Figure 4. In this phase,
the training dataset consisted of the low-grade IMU’s sensor measurements as the input
and the high-grade IMU as the output. This phase was carried out using half of the
trajectory data. The triangular and Gaussian MFs were utilized. In this paper, six triangular
MFs were utilized as the ANFIS input layer for each IMU measurement. The triangular
MF is simpler and faster to implement compared to other MFs such as the Gaussian
MF [45,46]. Subsequently, the rule base contains one rule for every input MF combination.
The clustering method utilized was the “grid partition”, in which every input variable
is equally distributed over the input MF and generates a single-output “Sugeno fuzzy
system”. The output ANFIS layer utilizes linear MFs in which the output of every rule is
linearly related to the input variables and scaled by the previous result’s value. Finally, a
thousand iterations were used to produce the model, which was applied later to the IMU
measurements for the testing phase.
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X bow-I M U
(M EM S)

M L
Training Phase

(50% of the M EM S-I M U data)

I M U-CPT
(Reference)

M L M odel

Figure 4. The block diagram of the training phase of the ML-based-ANFIS showing the model
generation process.

The testing phase is shown in Figure 5. The ML model generates its predicted IMU
measurements (six sensor measurements) to obtain the position, velocity, and attitude
(PVA). Then, the navigation solution of the ML model is compared to the navigation
solution of the reference to obtain the ∆PVAML of the ML model. Similarly, the navigation
solution of the low-grade IMU is compared to the navigation solution of the reference to
obtain the ∆PVA of the low-grade IMU. The differences in the errors in the navigation
solution between the ML model and the low-grade IMU were calculated to compute the
influence of the ML model in enhancing the navigation solution of the low-grade IMU’s
sensor measurements, which is shown in the upcoming sections.

The overall algorithm is explained in Algorithm 1 in pseudo-code form.

Algorithm 1 ML–based–ANFIS algorithm for INS solution improvement.

Algorithm INS Solution Improvement Using ML

Input
IMU’s sensor measurements of three gyroscopes and three accelerometers (ωx, ωy, ωz, ax, ax, ax)
for the MEMS-IMU and the reference IMU, initial PVA states

(
Lat0, Long0, Att0, VN

0 , VE
0 , VD

0 , p0, r0, y0
)
,

and the navigation solution of the reference IMU (pos_re f , vel_re f , att_re f ).

Step 1
Prepare and tune the ML-ANFIS options (input data, output data, type of clustering,
MF type, number of Ms, F and epochs/iterations).

Step 2 Apply the ML-ANFIS on 50% of the input data (training phase) .
Step 3 Generate the ML-ANFIS.
Step 4 Evaluate and apply the ML-ANFIS on the remaining data (testing phase).
Step 5 Evaluate the ML-ANFIS’s output (improved IMU sensor measurements (ωx, ωy, ωz, ax, ay, az).

Step 6

Compare the MEMS IMU’s sensor measurements and the ML-ANFIS IMU’s sensor measurements
to the reference IMU’s sensor measurements to compute the percentage
of improvement caused by the ML-ANFIS (RMSE).

RMSE =

√
1
n ∑n

(
Xn,Re f − Xn,ML

)2

where Xn,Re f and Xn,ML are the reference IMU and trained IMU measurements, respectively.
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Algorithm 1 Cont.

Step 7
Compute the ML-ANFIS’s navigation solution (PVA) by using the output of the ML-ANFIS as the input
to the INS.

Step 8
Compare the MEMS IMU (PVA) and the ML-ANFIS (PVA) to the reference IMU (PVA) to
compute the percentage of improvement of the ML-ANFIS (PVA) using the RMSE metric.

Output
The INS solution (PVA) of the MEMS-IMU and the ML model compared to the output
using the reference IMU.

X bow-I M U
(M EM S)

Generated 
M L-based-AN FIS 
Generated M odel 

I M U-CPT
(Reference)

IN S
Algor ithm

IN S
Algor ithm

IN S
Algor ithm

Position ML

Velocity ML

Attitude ML

Position

Velocity

Attitudet

Ref-Position

Ref-Velocity

Ref-Attitudet

Figure 5. The block diagram of the testing phase of the ML-based-ANFIS showing the application of
the generated model to the XBOW-IMU and comparing the produced PVA with the reference IMU.

4. Experimental Setup

The experimental work was carried out to verify the effectiveness of the ML model
through a real road test trajectory with no pre-processing steps. The IMUs utilized in the
experimental work were set up inside the test van as shown in Figure 6. The testbed was
installed inside the van, coinciding with its axes. Furthermore, utilizing a standard seat
chassis, the testbed was rigidly and firmly settled in the rear seat location. The low-grade
IMU sensor utilized in this research was the Crossbow MEMS-grade XBOW IMU300CC,
and the high-grade IMU utilized as a reference was the IMU-CPT, which includes three
MEMS accelerometers and three fiber-optic gyroscopes (FOGs). The specifications of the
two IMU units can be found in Table 1.
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Table 1. Utilized IMUs’ performance characteristics.

IMUs IMU300CC(XBOW)
(100 HZ)

IMU-CPT
(100 Hz)

Size (cm3) 7.62 × 9.53 × 3.2 15.2 × 16.8 × 8.9
Weight 0.59 Kg 2.28 Kg

Max data rate 200 Hz 100 Hz
Start-up time <1 s <5 s

Accelerometer

Range ±2 g ±10 g
Bias instability ±30 mg ±0.75 mg

Scale factor <1%, 1σ 300 ppm, 1σ

Gyroscope

Range ±100◦/s ±375◦/s
Bias instability <±2.0◦/s ±1.0◦/h

Scale factor <1%, 1σ 1500 ppm, 1σ
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Algorithm INS solution improvement using ML 
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IMU's sensors measurements 3 gyroscopes and 3 accelerometers 
(!!, !", !#, #!, #!, #!) for the MEMS-IMU and the reference IMU, 
Initial PVA states  (%#&$, 	%()*$, +&&$, ,$%, ,$& , ,$', -$, .$, /$)  and 
the navigation solution of the reference IMU (pos_ref, vel_ref, 
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Step 5 Evaluate the ML-ANFIS's output (improved IMU's sensors 
measurements (!!, !", !#, #!, #!, #!)). 
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ANFIS IMU's sensors measurements to the reference IMU's sensors 
measurements to compute the percentage of improvement caused by 
ML-ANFIS (RMSE). 
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Step 7 Compute the ML-ANFIS's navigation solution (PVA) by using the 
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reference IMU (PVA) to compute the percentage of improvement 
of the ML-ANFIS (PVA) using the RMSE metric. 
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compared to the output using the reference IMU. 
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Fig. 6 The Utilized IMUs mounted on the testbed  

Table 2 Performance Characteristics of IMUs 

IMUs IMU-CPT (100 HZ) XBOW-IMU (100 HZ) 

Size (cm3) 15.2×16.8×8.9 7.62×9.53×3.2 

Weight 2.28 Kg 0.59 Kg 

X bow-I M U
(M EM S)

Generated 
M L-based-AN FIS 
Generated M odel 

I M U-CPT
(Reference)

IN S
Algor ithm
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Velocity ML

Attitude ML

Position

Velocity
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Ref-Position

Ref-Velocity

Ref-Attitudet

Figure 6. The utilized IMUs mounted on the testbed showing their placement and orientation inside
the van.

5. Results and Discussion

A real road trajectory was used to test the proposed ML technique’s performance
in the downtown area of Kingston, ON, Canada. The reference trajectory was the INS
solution that utilized the IMU-CPT sensor measurements as a control input to the IMS
mechanization. Moreover, the trajectory lasted for 2300 s (almost 44 min) and contained
various maneuvers at different speeds.

The application of the ML-based-ANFIS to the XBOW IMU measurements was carried
out in two stages. The first stage was the training stage, in which the IMU-CPT was utilized
as a learning source. This stage was applied with 50% of the data to generate the ML-based-
ANFIS model. Three gyroscopes and three accelerometers were trained in this stage to
produce a suitable model. The ML-based-ANFIS utilized six membership functions with
an adaptive step size. In the results shown in Figures 7–15, the reference is designated by
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red color, the XBOW-IMU in blue, and the proposed ML-based-ANFIS in green for both
raw measurements and INS solution comparisons.

The 3D gyroscope and accelerometer measurements in the training stage are shown in
Figures 7 and 8, respectively.

The generated ML-based-ANFIS model was then applied to the remaining XBOW-IMU
measurements. This step was the testing stage where the generated model was applied
and its performance measured.

Figure 9 shows a comparison between the raw XBOW-IMU gyroscope measurements
in three directions (x, y, and z) and those with the applied ML model compared to the
reference angular rates from the IMU-CPT. A zoomed-in view for a portion of the testing
data is shown in Figure 10. The results in Figure 10 show that the biases and scale factor
and a significant part of the associated noise were removed when applying the proposed
ML technique to the low-grade IMU gyro measurements.

The accelerations’ comparison for the testing part is shown in Figure 11. Additionally, a
zoomed-in view for the accelerations in this stage is shown in Figure 12. The results showed
the proposed ML technique’s ability to estimate and remove the errors associated with
the low-grade IMU measurements. Furthermore, not only was the noise mostly removed,
but both the bias and scale factor errors were also reduced significantly. Therefore, the
produced IMU measurements from the proposed ML technique provided a more robust
input to the INS mechanization, which led to a more accurate navigation solution.
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Figure 7. The 3D gyroscope angular rates with the ML–based–ANFIS (training stage).
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Figure 8. The 3D accelerometers with the ML–based–ANFIS (training stage).
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Figure 10. A zoomed–in part of the IMU gyroscope measurements.

To validate the resulting measurements, a comparison of the raw XBOW-IMU mea-
surements before and after applying the proposed ML technique is shown in Table 2 using
the RMSE for each measurement. The results showed a significant improvement of the
IMU measurements when using the ML-based-ANFIS.

Table 2. IMU raw measurements’ RMSE comparison.

RMSE ωx ωy ωz ax ay az

XBOW 0.0158 0.0213 0.0064 0.1902 1.2629 0.3542

ML-XBOW 0.0084 0.0069 0.0026 0.1084 0.0757 0.2873

The output of this process was new IMU measurements that were ready to be applied
to the INS algorithm. Consequently, to verify the performance of the proposed ML-based-
ANFIS, the modified and unmodified measurements were applied to the INS algorithm
to produce the navigation information PVA. The output PVA was then compared to the
reference PVA to check the improvement and the worthiness of using ML in training on the
raw MEMS-IMU measurements by a high-end IMU.

The results showed the INS solution produced from the XBOW IMU (low-grade) and
the corresponding modified measurements (ML-based-ANFIS) when using the proposed
ML technique compared to the reference solution from the IMU-CPT.
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Figure 11. The 3D accelerometers with the ML–based–ANFIS (testing stage).

The position components’ (latitude in radians, longitude in radians, and altitude in
meters) comparison is shown in Figure 13. The results showed that the position components
when using the proposed ML technique were closer to the reference position components
compared to the ones when using the raw XBOW IMU measurements. Therefore, the
utilization of ML to improve the IMU measurements leveraged the position solution of
the unit.

The comparison of the velocity components in the navigation frame (VN , VE, and VD)
are shown in Figure 14.

The results showed that there was a significant improvement in all the velocity compo-
nents when using the proposed ML technique. A comparison of the attitude components’
(roll, pitch, and yaw) angle is shown in Figure 15, illustrating the significant improvement
of the attitude components’ solution.

The overall trajectory comparison is shown in Figure 16. The trajectory shows the 2D
position information obtained by applying the reference high-end IMU-CPT, the ow-end
XBOW IMU, and the ML-based-ANFIS XBOW IMU to the INS mechanization in red, blue,
and green, respectively. Furthermore, arrows show the start point and the direction of
motion. The trajectory from the low-end XBOW IMU severely drifted over time compared
to the one generated from the proposed ML-based-ANFIS XBOW. The result of the proposed
method showed the effectiveness of using the ML-based-ANFIS technique in improving
the performance of the INS navigation solution. Moreover, the proposed method trajectory
followed the reference even during maneuvers with a smaller shift compared to the original
XBOW one. This result came from the great enhancement of the XBOW IMU measurements
after applying the proposed ML technique.
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Figure 12. A zoomed–in part of the IMU accelerometers.
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Figure 13. Position (Lat, Long, and Alt) components’ comparison.
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Figure 14. Velocity (VN , VE, and VD) components’ comparison.
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Figure 15. Attitude (roll, pitch, and yaw) angles’ comparison.
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Figure 16. Overall trajectory comparison.

A statistical analysis of the INS solution position, velocity, and attitude components in
the LLF from the testing part of the trajectory (24 min) is shown in Table 3.

Table 3. Results’ analysis of the testing part of the trajectory (24 min).

Units XBOW ML-XBOW

Position RMSE (m)

North 311,899.4 222,857.2
East 732,549.2 83,613.3

Down 967,706.2 291,313.6
2D Pos 796,184.3 238,026.2
3D Pos 1,253,141.9 376,191.6

Velocity RMSE (m/s)

VN 2730.5 360.5
VE 5879.4 338.9
VD 2242.8 655.2

2D Vel 6482.5 494.8
3D Vel 6859.5 821

Attitude RMSE (Deg)
Roll 55.6 6.09
Pitch 42.6 6.5
Yaw 86.3 79.3

A 70% overall improvement of the 2D position and 92% improvement of the 2D
velocity were achieved when using the proposed ML-based-ANFIS technique. Moreover,
the attitude components had a great improvement. The roll angle RMSE was reduced
from 55.6 degrees to 6 degrees with an improvement of 89.2%; the pitch angle RMSE
was reduced from 42.6 degrees to 6.5 degrees with an improvement of 84.7%; the yaw
angle was reduced from 86.3 degrees to 79.3 degrees with an improvement of 8%. The
yaw angle’s improvement percentage was less than other attitude components due to the
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proximity of the raw wz to the reference wz, as shown in Figures 9 and 10. The results
showed the superiority of applying ML to leverage the low-grade IMU, which significantly
enhanced the INS navigation solution compared to the traditional solution using the raw
measurements of the low-grade IMU.

6. Conclusions and Future Work

This paper discussed the utilization of the ML-based-ANFIS to improve the raw
MEMS-grade IMU measurements. The proposed ML algorithm was applied to real data
collected with a low-cost IMU. The proposed ML technique was applied to 50% of the
collected data and tested on the remaining data. The output of this process was then applied
to a strap-down INS to produce a navigation solution PVA. The produced navigation
solution achieved a 2D position improvement of 70% and a 2D velocity improvement of
92%. Furthermore, an improvement of 89.2%, 84.7%, and 8% of the attitude components
of the roll, pitch, and yaw, respectively, was achieved. The work in this paper showed
that using ML to boost a low-grade IMU had a significant impact on the inertial sensors’
performance. Moreover, it had a great impact by producing a more accurate and robust
INS navigation solution. As a future step, this work can be combined with either another
ML technique or the EKF to bridge GNSS outages in challenging GNSS environments.
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