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Abstract: In this research, we analyse data obtained from sensors when a user handwrites or draws
on a tablet to detect whether the user is in a specific mood state. First, we calculated the features
based on the temporal, kinematic, statistical, spectral and cepstral domains for the tablet pressure,
the horizontal and vertical pen displacements and the azimuth of the pen’s position. Next, we
selected features using a principal component analysis (PCA) pipeline, followed by modified fast
correlation–based filtering (mFCBF). PCA was used to calculate the orthogonal transformation of the
features, and mFCBF was used to select the best PCA features. The EMOTHAW database was used
for depression, anxiety and stress scale (DASS) assessment. The process involved the augmentation
of the training data by first augmenting the mood states such that all the data were the same size.
Then, 80% of the training data was randomly selected, and a small random Gaussian noise was added
to the extracted features. Automated machine learning was employed to train and test more than
ten plain and ensembled classifiers. For all three moods, we obtained 100% accuracy results when
detecting two possible grades of mood severities using this architecture. The results obtained were
superior to the results obtained by using state-of-the-art methods, which enabled us to define the
three mood states and provide precise information to the clinical psychologist. The accuracy results
obtained when detecting these three possible mood states using this architecture were 82.5%, 72.8%
and 74.56% for depression, anxiety and stress, respectively.

Keywords: autoML; data augmentation; negative mood states recognition; feature extraction; SVM

1. Introduction

Morphological biometrics, based on quantitative measures of the human body [1,2], as
well as behavioural biometrics, based on the patterns of actions performed by a subject, have
proved to be helpful for e-security and e-health [3]. This research focuses on behavioural
biometrics. We analyse the online activities performed during certain specific drawing
and handwriting tasks performed by the subjects [4]. For monitoring health conditions,
behavioural biometrics, especially online handwriting/drawing, has proved to be more
useful in indicating states of mental disorders and diseases, such as dementia, than other
popular morphological biometrics traits, such as fingerprint and iris recognition [3,4]. Also,
behavioural biometrics is a minimally invasive methodology because it is based on tasks
that are part of routine functional activities.

Figure 1 represents the tablet application that captures the sensor data of the tablet
and the pen when the user handwrites or draws on the tablet.
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Figure 1. Capture of sensor data from the tablet and pen when handwriting or drawing on a tablet.
Sensor data are processed and sent to a clinical psychologist for analysis.

Treatment of mental illnesses is a health priority because they significantly impact
human well-being and are among the major causes of inabilities in populations worldwide.
Indeed, depression, stress and anxiety are the most prevalent negative moods in the world,
and stress is often present as a comorbidity. It is estimated that the number of people
affected by depression (resp. anxiety) is 4.4% (resp. 3.6%) of the global population [5],
and these numbers are rapidly increasing because of the global spread of the coronavirus
disease 2019. The manifestation of such disorders is commonly accompanied by the
deterioration of social behaviour mainly because of the inability to express one’s emotions
and decode others’ moods [6]. Unfortunately, these diseases do not have a definitive
treatment, and treatments can last for the entire lifetime with a consistent impact on the
quality of life of patients and on the health costs of public administrations. Therefore, it is
imperative to detect early indicators of mental disorders to provide timely treatment so
that they do not become chronic and difficult to treat. Identifying early indicators hence
enables early implementation and effective interventions, which reduces public health care
costs [7]. These indicators include changes in a person’s voice, facial expressions and body
postures as well as changes in behaviours and functional abilities, such as handwriting and
drawing [8].

We focus on negative moods (depression, stress and anxiety) because they last for
long periods and a negative state of mind (mood) deteriorates the quality of life of patients.
Depression is a mood disorder that causes energy and interest to disappear, and instils a
persistent feeling of sadness, which results in high energy consumption by the brain; this
can lead to various emotional and physical problems. Clinical depression can be serious; in
fact, when depression is left untreated, it can lead to suicide [9].

Anxiety is a cognitive-affective response characterised by feelings of tension and worry
regarding a potentially negative outcome that the individual perceives as highly probable
and imminent [10]. Anxiety signs and symptoms include nervous sweating, increased
heart rate and hyperventilation [9]. It impacts the activities of the patients because this
state causes tiredness [11].

Stress is a natural reaction to the pressure that the body undergoes when faced with
complicated or dangerous life situations [12]. In general, stress is a normal human response
and is part of life, but it becomes a mood disorder when it is experienced frequently and
interferes with the ability to perform daily activities. Moreover, when facing stressful
situations, the body releases large amounts of several hormones, which can damage the
body (causing diabetes and cardiovascular diseases) and cognitive processes [13].

The use of behavioural biometrics, especially, in particular, the online analysis of the
activity of a subject performing a handwriting or drawing task enables the characterisation
of mood states, especially, depression, anxiety and stress [14]. The use of technological
tools (e.g., smartphones, tablets and touch screens) and the multiple interactions among
subjects on social media, public administration or health platforms provide access to a
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large amount of data; this is helpful for discovering or evaluating important features of the
subject’s condition.

The characterisation of mood detection through behavioural biometrics, in particular,
by the online analysis of handwriting and drawings is a novel and promising research field.
Unfortunately, to the best of our knowledge, there are few studies and very few datasets
that can be used as a benchmark for potential applications.

This research is based on a study published by Likforman-Sulem et al. [15]; they pro-
posed a methodology to use online handwriting/drawing data to discriminate depressed,
stressed and anxious patients from a healthy control group. Their work shows the use of
various features to discriminate among negative moods (depression, anxiety and stress)
with significant accuracy, sensitivity and specificity by using random forest classification.
These features are based on several factors: the duration for which the pen is used on the
sheet or near it (in the air), the total time to complete a specific handwriting/drawing task
and other features based on the number of strokes performed during a task and/or the
pressure applied by the pen on the paper,

In this research, we have improved upon the classification accuracies as compared
with our previous research [15] by using principal component analysis (PCA) and modified
fast correlation–based filtering (mFCBF) strategies. However, we had to compromise on the
explainability of the results. It was not possible to translate the principal components (PCs)
into specific sets of kinematic, temporal and pressure variables for any given handwriting
task. Clinicians who tried to apply these findings to their clinical settings could not perform
a manual handwriting analysis even though we had provided a list of explainable features
in Table II of [15]. This can be done easily for an automatic machine system that classifies
moods by using online handwritten tasks.

In this research, we test our system using the EMOTHAW database. This database uses
the same software and hardware that we had already used when detecting Parkinson’s dis-
ease. The main difference is that the EMOTHAW database uses other handwriting/drawing
patterns to detect mood states. Therefore, we can use the same features to characterise the
user’s data.

In our work on Parkinson’s disease detection [16], we found it useful to add kinematic
and statistical features; therefore, the first contribution of this work is to add these features
to the user’s features that we used in [17]. The second contribution of this work is the use
of a PCA–mFCBF pipeline; in fact, it is probably the most important contribution. In this
paradigm, the features are orthogonalised using PCA. Then, the PCs are selected using
mFCBF [17]. The third contribution of this work is the use of the automated machine
learning (AutoML) approach. We proposed to use AutoML because we had successfully
used it in our research on Parkinson’s disease. These three contributions allow for achieving
a level of accuracy in the results that highly outperformed state of the art results in mood
detection [16].

The last contribution of this research is assessing the detection of three mood states
and allowing a high level of precision to the clinical psychologists. This was possible
because we achieved 100% accuracy when detecting two mood states.

Section 2 reviews the theory of PCA, which is one of the key concepts used in this
work. Section 3 describes the EMOTHAW dataset, which is used in this research to test
our methodology. This section also contains information about the distribution of scores
for two and three mood states and the explanation of the overlapping of mood states.
Section 4 describes the data captured from the tablet and pen. Section 5 describes the
temporal, kinematic, statistical, spectral-domain and cepstral-domain features. This section
also includes the augmentation method used in this work to synthetically increase the
training dataset. Section 6 describes the feature selection (FS) methodology, which includes
the PCA [18–21], mFCBF [17] and the new proposed PCA–mFCBF pipeline. Section 7
describes the hyperparameters of the front end. Section 8 defines the machine learning (ML)
modelling to maximise the accuracy detection task. Section 9 reviews the AutoML concepts
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and AutoML H2O platform used in this work. Section 10 describes the experiments
conducted and their results. Finally, in Section 11, we state our remarks and conclusion.

2. Principal Component Analysis (PCA)

PCA is useful when multi-colinear vectors are present. PCA can be used to reduce the
dimensions and variances of the vectors and to denoise them.

Given the set of possible correlated feature vectors FV, PCA applies an orthogonal
transformation to obtain a set of linearly uncorrelated observations: the PCs. This is
achieved by projecting the original features into a reduced PCA space using the eigenvec-
tors, which are the PCs of the covariance matrix. The number of principal components
obtained by applying PCA is less than or equal to the minimum values between the number
of observations Oi and the number of features [18–21]. The resulting projected features are
a linear combination of the original features, which capture most of the feature variances.
In this transformation, the first component explains the maximum variance in the features,
and each subsequent PC explains less of the variance. Most of the useful PCs are dictated
by the rank of the matrix.

The variance–covariance matrix is defined as follows:

CX =
1
n
XTX

X is real symmetric matrix; therefore, the above expression can be decomposed as

CX = UΛUT

where U represents the PCs and is an orthogonal matrix whose columns are eigenvectors
of X, and Λ is a diagonal matrix whose entries are the eigenvalues of X [22].

Then, the projected features can be expressed as follows:

Y = XU

The PCA transformation corresponds to multiplying the original features X by the
transformation matrix U that represents the PCs. In other words, Y can be viewed as a
linear regression, that is, each element in Y can be predicted with a linear combination of
the original feature vector X weighted for a vector in the matrix U. CY is a diagonal matrix
that is defined as follows:

CY =
1
n
YTY

Now, substituting for Y, we obtain

CY = 1
n (XU)

T(XU) = 1
nU

TXTXU,

CY = UT
(

1
nX

TX
)
U = UTCXU.

Substituting CX = UΛUT , we obtain

CY = UT
(
UΛUT

)
U = UTUΛUTU

Finally, we obtain
CY = Λ,

which is a diagonal matrix; this implies that all PCs are uncorrelated with one another.
For example, Figure 2 shows the sepal length and sepal width features before and after
applying PCA for the well-known Iris dataset [23]. We can see that the first PC variance
PC1 is greatly reduced after applying PCA.
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Figure 2. Three classes before and after applying PCA. Three classes before and after applying PCA.
In black are shown Iris-setosa’s observations; in green are shown Iris-versicolor’s observations; in
yellow are shown Iris-virginica’s observations.

3. EMOTHAW Databases

In [15], the authors defined a database named EMOTHAW, which they abbreviated
from the phrase ‘emotion recognition from handwriting and drawing’; this database has
129 participants whose mood states have been assessed using the depression, anxiety
and stress scale (DASS) questionnaire. For each subject, this database includes raw data
recorded through a digitising tablet. DASS has approximately seven handwriting/drawing
tasks based on a set of well-assessed tests in the medical domain, namely, clock-drawing
test, mini-mental state examination test, house–tree–person test and four other simple
tasks [24,25].

3.1. The DASS Scale

DASS is a 42-item self-report questionnaire developed in [26]. The Italian version
(I-DASS-42) was assessed by Severino [27]. DASS consists of three scales that measure the
three related negative mood states of depression, anxiety and stress through a 14-point
questionnaire. The score ranges are given in Table 1. The DASS scores help establish a
bridge between the tasks and moods because the scores indicate whether stress, depression
and anxiety were of a normal, mild, moderate, severe or extremely severe degree. The
range values and usual interpretations (labels) for the three mood states are shown in
Table 1.

Table 1. Interpretation of DASS scores [26]: binary labelling [15] and trinary labelling [this paper].

Binary Labeling
Used in [15]

Trinary
Labeling

Interpretation
of DASS Depression Anxiety Stress

Normal Normal Normal 0–9 0–7 0–14

Above normal

Mild Mild 10–13 8–9 15–18

Above mild

Moderate 14–20 10–14 19–25

Severe 21–27 15–19 26–33

Extremely severe 28+ 20+ 34+

The database contained only 129 subjects; therefore, the detailed classification (de-
scribed in Table 1) would have generated outliers for most of the labels. In [15], the authors
adopted a binary classification of mood states for the DASS scores; Table 1 shows the
two mood states: normal and above normal. A person who scores higher than 9 on the
depression scale is considered to be depressed. A person who scores higher than 7 on the
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anxiety scale is considered to be anxious. A person who scores higher than 14 on the stress
scale is considered to be stressed.

In this paper, we define trinary classification of mood states for the DASS scores;
Table 1 shows these three mood states: normal, mild and moderate. A user scoring a value
less than 10 on the depression DASS scale is considered to be normal. A person who scores
between 10 and 13 is considered to be mildly depressed. A person who scores more than or
equal to 14 is considered to be moderately depressed. A user scoring a value of less than
8 on the anxiety DASS scale is considered to be normal; a score of 8 or 9 is considered to
be mild depression; and a score higher than or equal to 10 is considered to be above mild
depression. A user scoring a value less than 15 in the stress DASS scale is considered to be
normal; a score between 15 and 18 is considered to be mild stress; and a score greater than
or equal to 19 is considered to be moderate stress.

3.2. Subjects

The EMOTHAW database consists of data obtained from 129 participants (71 females
and 58 males) aged between 21 and 32 years with a similar demographic background,
to ensure controlled experimentation. All the subjects were right-handed and were all
students of Università degli Studi della Campania L. Vanvitelli in Italy. The data acquisition
protocol consisted of filling in the DASS questionnaire (Italian version), followed by the
execution of seven handwriting/drawing tasks described below.

3.3. Tasks

The recorded tasks performed by each subject are shown in Table 2.

Table 2. Task performed for each user.

Tasks

(1) Drawing a copy of two overlapping pentagons

(2) Drawing a copy of a house

(3) Handwriting of four Italian words in capital letters

(4) Drawing circular loops with the left hand

(5) Drawing circular loops with the right hand

(6) Handwriting of an Italian sentence in cursive letters

(7) Drawing of a clock with twelve hours and hands

Figure 3 shows an example of the different tasks performed by the participants.
Figure 3a shows the pentagon-drawing task. Figure 3b shows the house-drawing task.
Figure 3c shows an example of the four Italian words in uppercase letters (BIODEGRAD-
ABILE (biodegradable), FLIPSTRIM (flipstrim), SMINUZZAVANO (to crumble), CHI-
UNQUE (anyone) [15]. Figure 3d,e show examples of the left- and right-hand loop draw-
ings, respectively. Hand loop drawings are the simplest tasks but still provide good
information. For example, we can observe users’ motor activities in their muscles. Figure 3f
shows an example of the cursive writing of a sentence. Figure 3g shows an example of the
clock-drawing task.

For data acquisition, the authors of [15] tested the differences between the online
and offline data collection methods and concluded that collecting online data had more
impact for the research because information, such as the pressure, pen position and
time stamp, could be obtained in this way. In their article, they proved the relevance
of these characteristics.

The analyses in [15] were based on four signals: time in the air (pen status = 0), time
on paper (pen status = 1), the total duration of the task and the number of strokes. Then, the



Sensors 2022, 22, 1686 7 of 22

authors selected five tasks and extracted the four abovementioned features for each task;
there were a total of 20 features. They compared the contributions of handwriting-based
tasks (two tasks = eight features), drawing-based tasks (three tasks = twelve features) and
the combination of the two tasks (20 features). The experimentation exploits a random
forest model for mood state detection using the leave-percentage-out (LPO) approach that
repeats the experiments ten times for each type of task.

In [15], the results showed that the writing-based tasks were less effective than the
other tasks in all the considered mood states, particularly on stress. For depression, the
drawing-based tasks were the most effective, whereas a combination of drawing and
writing tasks was the most effective solution for characterising stress and anxiety.

Figure 3. Cont.
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Figure 3. Examples of drawings for different tasks: (a) overlapping pentagons, (b) a house, (c) words,
(d) circular loops drawn with the left hand, (e) circular loops drawn with the right hand, (f) a cursive
sentence and (g) a clock.

3.4. Distribution of Scores for Two and Three Mood States

The distributions of DASS scores in the EMOTHAW database are shown in Figure 4.
For binary labelling, the bars in dark blue are the normal scores, and the bars in yellow
and red show the above-normal scores. For binary labelling, the proportions of depression,
anxiety and stress were approximately 67%, 58% and 57%, respectively. For trinary labelling,
the bars in dark blue are the normal scores, the bars in yellow are the mild scores and the
bars in red are the moderate scores. Moreover, these classes are highly unbalanced.
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Figure 4. DASS score distribution in the EMOTHAW database. For binary labelling, the dark blue
bars show normal scores, and the yellow and red bars show above-normal scores. For trinary labelling,
the dark blue bars show normal scores, the yellow bars show mild scores and the red bars show
above mild scores.

3.5. Overlapping of Mood States

The consistency and temporal stability of the DASS scales have been assessed in
several studies [15]. In this study, participants performed the writing or drawing tasks
as soon as they completed the DASS questionnaire. Therefore, we are confident that the
participants performed the tasks under the measured states.

The cross-tables in Figure 5 show that depression, anxiety and stress can be ob-
served separately or simultaneously. The scores have been dichotomised. From the
matrices in the second row of Figure 5, we observe that for approximately 20% of the
participants (19.4% = 2.3% + 7.8% + 9.3%), a single negative state is observed (such as
anxious/non-stressed/non-depressed). For approximately the same percentage of par-
ticipants (21.8% = 3.1% + 4.7% + 14.0%), two negative mood states were observed simul-
taneously. However, due to the construction of the scales, each of these mood states
can be predicted separately. A Pearson’s χ2 test conducted on the anxious/stressed,
stressed/depressed and anxious/depressed cross tables showed that the qualitative vari-
ables anxiety–stress, stress–depression and depression–anxiety were linked (p-values be-
low 0.01). The strongest link is between anxiety and stress. The next strongest link is
between anxiety and depression. The weakest of the three links is that between stress and
depression.

We did not analyse the comorbid mood states because the number of available samples
in EMOTHAW for certain combinations was too small.
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Figure 5. Cross-tables showing the percentage of co-occurrence of mood states in the EMOTHAW
database.

4. Sensors Data

Figure 6 is a graphical representation of the signals captured in real time by the
software when drawing on the tablet. These signals are as follows:

• Horizontal position or displacement of the pen tip along the x-axis, x(n);
• Vertical position or displacement of the pen tip along the y-axis, y(n);
• Timestamps (in milliseconds), t(n);
• Pen status, that is, on-surface/in-air pen position status (touch/no-touch the pa-

per), sq(n);
• Altitude angle of the pen with respect to the tablet’s surface, al(n);
• Azimuth angle of the pen with respect to the tablet’s surface, az(n);
• Pressure applied by the pen tip on the tablet’s surface, p(n).

All tasks have a duration of T seconds (N samples).

Data Augmentation

In the EMOTHAW database, the classes for binary and trinary labelling are highly
unbalanced. Therefore, to improve accuracy, the training data needed to be augmented.
First, we augmented the data such that all the mood states had the same number of
observations. Then, we augmented all the mood states using the following steps:

1. Identify the mood states having few observations,
2. Calculate the number of samples required to make all the mood state observations of

the same size,
3. Randomly select observations from the original data and
4. For each selected sample, calculate the new feature vector by adding the Gaussian

random noise to the original features:

FVu∗
a = FVu∗ + α ∗ GV,

where FVu∗ is the feature vector of a random user, and α is a scale value lower than 0.2.
GV is a vector with the same dimension as FVu∗ with the Gaussian random values having
mean and variance values of 0 and 1, respectively.
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Figure 6. Online time-series drawing for the pentagon-drawing task.

5. Feature Extraction

The system front-end used in this research is shown in Figure 7. There are two main
differences between this research and our previous study on mood state detection [16].
The first difference is the addition of kinematic and statistical features in this study. We
added these features because they proved to be effective in increasing the accuracy of the
results obtained in our study on Parkinson’s disease detection [17]. The second and most
important difference is the inclusion of PCA, which is used to orthogonalise all features.
The inclusion of PCA as orthogonalisation before selection is novel because, instead of
selecting features by using the first PCA’s coefficients, we selected features by applying
mFCBF on the PC. In other words, we pipelined PCA and mFCBF.
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Figure 7. System front-end that starts with the temporal features, kinematic features, statistical
features, spectral-domain features and cepstral-domain features. These features are concatenated;
then, they are orthogonalised using PCA. Finally, the features are selected using our mFCBF.

5.1. User’s Features

In this paper, we will use the following set of feature vectors for different feature sets:

FVu
T = TFu

FVu
T_SD_CD =

[
[TFu]T ∪ [SDFu]T ∪ [CFu]T

]T

FVu
T_K_S_SD_CD =

[[
FVu

T_SD_CD

]T
∪ [KFu]T ∪ [SFu]T

]T
=
[
[TFu]T ∪ [KFu]T ∪ [SFu]T ∪ [SDFu]T ∪ [CFu]T

]T
,

where FVu
T is the feature vector for the temporal features [16]; FVu

T_SD_CD is the feature
vector of the temporal, spectral- and cepstral-domain features; FVu

a is the feature vector
obtained by concatenating the kinematic and statistical features to FVu

T_SD_CD; TFu is the
raw vector of the temporal features of the user u as defined in Table 3; KFu is the raw vector
of the kinematic features of the user u as defined in Table 4; SFu is the raw vector of the
statistical features of the user u, as defined in Table 5; SDFu is the raw vector of the log
energy filterbank features of the user u in the spectral domain; and CFu is the raw vector of
the cepstral features calculated as the Fourier transform of the log energy of the filterbanks
of the user u. All these features are calculated for all the tasks, as follows:

T = {spiral, letter l, syllable le, trigramm les, word1, word2, word3, sentence}

Table 3. Temporal features for the user u (TFu) for all tasks T .

Notation Definition

dτ,u(n) Pen’s displacement at the sample n

Sτ,u
1

Trajectory taken during handwriting divided by the duration
of writing

Fτ,u
1 On-air pen duration

Fτ,u
2 On-paper pen duration

d(i) Duration of the stroke i
.
F

τ,u
2 Fτ,u

2 normalised to writing duration
rτ,u Ratio of time the pen spent in air or on the tablet’s surface

NCVτ,u Number of changes in the direction of the velocity vector
NCAτ,u Number of changes in direction of the acceleration vector
NCVτ,u

r NCVτ,u relative to writing duration
NCAτ,u

r NCAτ,u relative to writing duration
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Table 4. Kinematic features for the user u (KFu) for all tasks T .

Notation Definition

sτ,u(n) Stroke signal

wτ,u(n) Set of discrete, horizontal and vertical
displacements [dτ,u(n), xτ,u(n), yτ,u(n)]

kτ,u
w (n) Set of kinematic signals (vτ,u

w (n), aτ,u
w (n), jτ,u

w (n)),of signal in wτ,u(n)
vτ,u

w (n) Velocity of signals in wτ,u(n)
aτ,u

w (n) Acceleration of signals in wτ,u(n)
jτ,u
w (n) Jerk of signal in wτ,u(n)

Table 5. Statistical features for the user u (SFu) for all tasks T .

Notation Definition

Bτ,u
g(n)

(basic statistics features)

↔
g

τ,u
Range of signals in gτ,u(n)

ğτ,u Median of signals in gτ,u(n)
..
gτ,u Mode of signals in gτ,u(n)
...
g τ,u Standard deviation of signals in gτ,u(n)
...
↔
g

τ,u Outlier robust range (99th percentile –1st percentile),
applied to all signals in gτ,u(n)

Mτ,u
g(n)

(mean features)

↔
g

τ,u
Range of signals in gτ,u(n)

gτ,u Arithmetic mean of signals in gτ,u(n)
=
g

τ,u
Geometric mean of signals in gτ,u(n)

tri︷︸︸︷
gτ,u

Set of trimmed means; the mean after removing
the outliers for each of the values in [5, 10, 20, 30, 40, 50]
of the signals in gτ,u(n)

Mτ,u
g(n)

(momentum features)

qua︷︸︸︷
gC

Row vector of quartiles (Q3 = 25(lower, Q1 = 75/upper)
of signals in gτ,u(n)

per︷︸︸︷
gτ,u

Row vector of percentiles [, 5, 10, 20, 30, 90, 95, 100]
of signals in gτ,u(n)

mom︷︸︸︷
gτ,u Row vector of moments [3th, 4th, 5th, 6th]

kτ,u Kurtosis of signals in gτ,u(n)

5.2. Detection Task

The detection task involves identifying the mood state of the user. For binary labelling,
we define the mood state for each user as follows:

Su =

{
0, Normal
1, above Normal

f or all u = 1 . . . U,

Therefore, we can relate the feature vector F with the corresponding mood state
as follows:

FVSu
F =

[
[FVu

F ]
T ∪ [Su]T

]T
,

where F = {T, T_SD_CD, T_K_S_SD_CD}. A dataframe is defined as the union of all
users U in FVSu

F . Hence, for each feature F, this operation can be expressed using relational
algebraic notation as follows:

FVSF = ∪U
u=1FVSu

F .

In these data frames, the rows represent the number of users, and the columns repre-
sent the features and the disease state of the users.
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For trinary labelling, we define the mood state for each user as follows:

Su =


0 Normal
1 Mild
2 above Mild

f or all u = 1 . . . U,

5.3. Features for Moods

The EMOTHAW database includes three moods; therefore, the feature vector for each
mood is defined as follows:

FVSM
F ,

where M = {Depression, Anxiety, Stress}. In our detection task, we detected only the
state of one mood at a time.

6. Feature Selection

It is important to select the right features because data models also learn irrelevant
information, which degrades their performance. There are multiple methods to select
features. In this research, we test the accuracy performance measures of PCA, mFCBF and
the PCA–mFCBF pipeline.

6.1. Principal Component Analysis (PCA)

PCA is an orthogonal transformation of the features; it rotates the dimensional axis to
maximise variability. PCA returns coefficients in order of importance—the first coefficient
has the highest variance representation in the entire set. The higher the selected PC, the
higher the representability of the variance of the set of features.

Let us represent the PCA function on the feature vector F and mood M as follows:

PCM
F = PCA

(
FVSM

F

)
The maximum number of PCs calculated by PCA is equal to the number of obser-

vations (in this case, it is equal to the number of users). The selected PCs P of the entire
features F is represented as follows:

F̃VS
M
F =

{
PCM

F

}P

1
.

As stated earlier, although PCA helps minimise features to improve model accuracy, it
has a negative effect on the model’s explainability, which is a drawback.

6.2. Modified Fast Correlation-Based Filtering (mFCBF)

The system front-end calculates many features from a limited number of time signals
captured from the tablet’s sensor. Beside this correlation, certain features contribute more
towards creating an accurate model; mFCBF selects the features that, even when they are
correlated, mostly contribute to the increase in model accuracy.

FCBF selection is based on two steps [16]. In the first step, the selected features are
those whose correlation with the output are higher than the correlation with the threshold
value. The second step takes the features of the first step and selects the features with
a correlation less than the threshold value. Algorithm 1 shows the pseudocode of our
modified version of the function mFCBF [17]. This modified version differs from the
original version in step 5, where the selected feature has high correlation with the output.
The mFCBF algorithm receives a data frame and the thresholds oTh and iTh as inputs.
Here, oTh is used to set the lower correlation threshold of each of the selected features and
the output; the practical value of this parameter should be greater than 0.2. Also, iTh is
used to set the higher correlation value between the features; the practical value of this
parameter should be less than 0.2. By sweeping oTh and iTh for a range of values, we can
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find the right features that maximise the performance of the ML method. This operation
for the features F and mood M is expressed as follows:

F̂VS
M
F (oTh, iTh) = mFCBFoTh,iTh

(
FVSM

F

)
for 0 ≤ iTh ≤ 0.2 and 0.2 ≤ oTh ≤ 1.0.

Note that these equations represent 2D arrays, where one dimension represents the
number of users, and the other dimension represents the number of selected features.

Algorithm 1. The mFCBF algorithm receives the users’ feature matrix (O), minimum correlation
threshold (oTh) and the maximum correlation threshold (iTh) and returns the selected set
of features.

1: Function mFCBF (FVS , oTh, iTh)
2: Calculate corr (O)
3: FVStmp ← Select columns whose correlation with the output is > oTh
4: Calculate corr (FVStmp)
5: FVSoTh, iTh ← Select columns whose correlation with the input is < iTh and with the highest
correlation with the output.
6: Return (FVSoTh, iTh)
7: End function

6.3. PCA-mFCBF Pipeline

In Sections 6.1 and 6.2, we selected features using PCA or mFCBF, respectively. In
this section, we propose to pipeline them by first applying PCA and then applying mFCBF.
The PCA step returns all the PCA coefficients. Then, the selection step is performed using
mFCBF. The intra-feature variability is already minimised; therefore, this step selects the
PC which has a higher correlation with the output.

This PCA–mFCBF pipeline for the features F and mood M is defined as follows:

FVS
M
F (oTh, iTh) = mFCBFoTh,iTh

(
PCM

F

)
.

In Section 10, we will prove that orthogonalising before selection with mFCBF is a
good strategy to greatly increase the accuracy.

Again, the purpose of mFCBF in this pipeline is to select the PCs’ that contribute the
most to increasing the model accuracy. Although it is beneficial to orthogonalise features
using PCA to improve the model’s accuracy, a potential drawback of PCA is its adverse
effect on the model’s explainability.

7. Front-End Hyperparameters

Spectral-domain features (SDF) and cepstral-domain features (CDF) are functions of
parameters, such as filterbank bandwidth ( f bbw), bandwidth of the filters in the filterbank
( f bw), filterbank initial frequency (i f ) and overlap of the filters in the filterbank (ov). How-
ever, FS depends on the feature-output-correlation threshold (oTh) and the intra-feature
correlation threshold (iTh). All these parameters depend on the next set of parameters:
f bbw, f bw, i f , ov, oTh, iTh. Therefore, we must tune these parameters to optimise the
model’s accuracy.

The range of values for each of the parameters are defined as follows:
iThrange = [0.2− 1], and oThrange = [0− 0.20]. For similar signals on the Parkinson’s
disease database [17], we set f bbwrange = 30 Hz f bwrange = 1 Hz, i frange = 0.5 Hz and
ovrange = 0%. The discrete versions of iThrange and oThrange are iThs

range = [0.2, 0.30, . . . , 1.0]
and oThs

range = [0, 0.02, 0.04, 0.06, . . . , 0.18, 0.20].
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8. ML Modelling to Maximise the Detection Task’s Accuracy

Let us define MLM,MLm
F as the ML model for mood M = {Depression, Anxiety, Stress},

ML model in MLm = {SVM, autoML}, and feature in F = {T, T_SD_CD, T_K_S_SD_CD}.
Therefore, the optimisation of the ML model that maximises accuracy for the ML method MLm,
features F and mood M is defined as follows:

MLM,MLm
F = max

iThs
range ,oThs

range
MLm

(
FVSM

F

)
When PCA is used as the FS method, this optimisation can be represented as follows:

M̃L
M,MLm
F = max

iThs
range ,oThs

range
MLm

(
F̃VS

M
T (oTh, iTh)

)
.

When mFCBF is used as the FS method, this optimisation can be represented as follows:

M̂L
M,MLm
F = max

iThs
range ,oThs

range
MLm

(
F̂VS

M
F (oTh, iTh)

)
.

When the PCA–mFCBF pipeline is used as an FS method, this optimisation can be
represented as follows:

ML
M,MLm
F = max

iThs
range ,oThs

range
MLm

(
FVS

M
F (oTh, iTh)

)
where M = {Depression, Anxiety, Stress} is the mood; MLm = {SVM, autoML} is the
ML model; and F = {φ, T, T_SD_CD, T_K_S_SD_CD} is the feature set used. The empty
set notation φ is used when no FS method is used.

For the randomness of the augmentation method, we trained and tested the model for
different user sets and random sequences, and we selected the maximum accuracy.

9. AutoML

AutoML, also known as augmented ML, is a methodology that aims to automate the
data science pipeline for classification and regression. The AutoML pipeline includes data
pre-processing (cleaning, imputing and quality checking), feature engineering (transforma-
tion and selection), model selection, evaluation and hyper-parameter optimisation.

There are different platforms for implementing AutoML; each platform has a different
maturation and state of evolution for continuous improvement. Recently, certain AutoML
systems have started to support more focused tasks, such as time-series forecasting. A few
of the well-known automated machine platforms are H2O [28,29], PyCaret [30,31], auto-
sklearn [32,33], the tree-based pipeline optimisation tool (TPOT) [34–36] and MLBox [37].

H2O includes automatic training and tuning of many models within a user-specified
time limit. Stacked ensembles are automatically trained on collections of individual models
to produce highly predictive ensemble models.

PyCaret is an end-to-end ML and model management tool that speeds up the experi-
ment cycle exponentially and increases productivity.

The auto-sklearn architecture is an AutoML toolkit and a drop-in replacement for the
scikit-learn estimator; it includes algorithm selection and hyper-parameter tuning. It uses
Bayesian optimisation, meta-learning and ensemble construction.

TPOT uses genetic programming to determine the best performing ML pipelines, and
it is built on top of scikit-learn [38]. It supports feature pre-processing, feature construction
and selection, model selection and hyper-parameter optimisation.

MLBox supports fast reading, distributed data processing, FS, leak detection, cleaning,
formatting, accurate hyper-parameter optimisation in high-dimensional space and ML
algorithms, such as deep learning, stacking, light gradient boosting machine and XGBoost.
An important feature is that it includes prediction with the interpretation of models.
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AutoML packages are not perfect, and there are packages with different levels of
automation. For example, feature engineering is a task in this pipeline for which AutoML
has some features, but a lot more work is required to develop and automate this task,
especially for sensor data analysis.

AutoML H2O

For data modelling, we used AutoML H2O [28,29], which is a platform that can
be used for automating the ML workflow. The automation includes the training and
tuning of many models within a user-specified time limit. It also includes hyper-parameter
optimisation, which uses a Bayesian approach. Table 6 shows a few of these models, such
as variations of trees, random forests, Naïve Bayes, linear models, additive models, deep
learning and support vector machines (SVMs). In addition, H2O also includes a model that
is an ensemble of all models and is a model for each family of methods. The ensembled
models are mostly the ones with better accuracy results.

Table 6. List of Machine Learning Models.

Classification Algorithms

Deep neural network (DNN)

Distributed random forest (DRF)

Extremely randomised trees (ERT)

Generalised linear model (GLM)

Gradient boosting machine (GBM)

Naïve Bayes classifier (NBC)

Rulefit (RF)

Stacked ensembles (SE)

XGBoost (XGB)

Support vector machine (SVM)

10. Experiments and Results

H2O [28,29] is an AutoML package intended to automate the ML pipeline starting
from data manipulation to ML parameter optimisation. Table 7 shows the configuration
setting that we used for H2O. In this configuration, we limited the maximum expected
training time to 200 s to avoid a long processing time. The number of models was set to 15
as a trade-off between the accuracy performance and processing time. We excluded the
gradient boosting machine (GBM) modelling because its database did not converge with
our database. The number of folds was set to two because when this was increased, the
accuracy of the results did not improve, but the process time did. Finally, the stop metric
was set to log loss because this was a classification task.

Table 7. Parameters used when running H2O.

Parameter Value

max_runtime_secs 200
max_models 15

exclude_algos GBM
seed 1

nfolds 2
stopping_metric logloss

LPO was used for testing. PLO is a variation of leave-one-out; however, instead
of leaving one element out, the data model in LPO was tested with a percentage of the
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registers in the database, and we trained with the rest. In our experiments, we repeated this
training–testing cycle until we circulated all the possibilities, and we averaged the accuracy
values of all tests. In our experiments, we always left out 10%.

Augmentation was controlled by the percentage of augmentation and the amplitude
of the Gaussian random noise applied to the original signal. In this research, we first
augmented the data such that all the mood states had the same number of observations.
Then, we augmented all the mood states by 80% using the Gaussian noise with 0 and 1 as
the mean and variance values, respectively. The Gaussian random noise amplitude was
multiplied by 0.2.

Table 8 shows the accuracy results for the binary detection moods for the tempo-
ral feature F = TF, for the ML models MLm = {SVM, aML} and the moods M =
{Depression, Anxiety, Stress}. In this table, we can observe that the accuracy results with
AutoML are much higher than the results obtained using SVM [16]. This can be explained
because AutoML simultaneously evaluates more than 15 classification algorithms.

Table 8. Binary accuracy results for temporal features TF using SVM [16] and AutoML.

M MLM,SVM
T [16] MLM,aML

T

Depression 71.47 80.70
Anxiety 58.53 71.93
Stress 61.24 66.67

Table 9 shows the accuracy results for the features F = T_SD_CD for the ML models
MLm = {SVM, aML} and for the moods M = {Depression, Anxiety, Stress}. The second
and third columns show the accuracy results obtained when PCA is used as the FS method.
We can see that accuracy results with AutoML are much higher than the results obtained
with SVM.

Table 9. Binary accuracy results for PCA, mFCBF and PCA-mFCBF feature selection methods using
SVM and autoML.

M M̃L
M,SVM
T_SD_CD M̃L

M,aML
T_SD_CD

M̂L
M,SVM
T_SD_CD
[16]

M̂L
M,aML
T_SD_CD ML

M,SVM
T_SD_CD ML

M,aML
T_SD_CD

Depression 74.01 79.82 74.01 88.60 87.40 92.10
Anxiety 62.20 71.05 72.44 81.58 83.46 85.96
Stress 57.48 68.42 70.07 81.58 85.03 88.59

The fourth and fifth columns of Table 9 show the accuracy results obtained when
mFCBF is used as the FS method. Clearly, the accuracy results with AutoML are much
higher than the results obtained with SVM. Also, the accuracy results obtained when
using mFCBF as the FS method (in the fourth and fifth columns) are much higher than the
accuracy results obtained with PCA (in the second and third columns).

Finally, sixth and seventh columns of Table 9 show the accuracy results when the
PCA–mFCBF pipeline is applied as the FS method. The accuracy results with AutoML are
much higher than the results obtained with SVM. Also, the accuracy results when using
the PCA–mFCBF pipeline as the FS method (in the sixth and seventh columns) are much
higher than the accuracy results obtained using PCA (in the second and third columns) or
mFCBF (in the fourth and fifth columns).

Figure 8 shows the selected feature for each task after applying the PCA–mFCBF
pipeline. These features are a mixture of the original PCs and are not necessarily the first
ones, which are normally selected when PCA is used for FS. This mixture of PCs is because
the first step in mFCBF selects the PCs which have a high correlation with the output. Then,
the PCs with low correlation are selected.
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Figure 8. Selected features for (a) stress, (b) anxiety and (c) depression.

Table 10 shows the accuracy for the features F = {T_SD_CD, T_K_S_SD_CD} for
the ML model MLa = autoML and for the moods M = {Depression, Anxiety, Stress}. The
second and third columns are the accuracy results when PCA is used as the FS method. The
accuracy results with AutoML, when concatenating the kinematic and statistical features,
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improved 1.75%, 4.38% and 7.9%, for depression, anxiety and stress, respectively. We
can see that the accuracy results are higher when the kinematic and statistical features
are concatenated.

Table 10. Binary accuracy results with and without adding kinematic and statistical features, PCA-
mFBCF pipeline for features selection and using autoML.

M M̃L
M,aML
T_SD_CD M̃L

M,aML
T_K_S_SD_CD M̂L

M,aML
T_SD_CD M̂L

M,aML
T_K_S_SD_CD ML

M,aML
T_SD_CD ML

M,aML
T_K_S_SD_CD

Depression 79.82 81.57 88.60 92.98 92.10 100.00
Anxiety 71.05 75.43 81.58 88.60 85.96 100.00
Stress 68.42 71.92 81.58 89.47 88.59 100.00

The fourth and fifth columns of Table 10 show the accuracy results when mFCBF
is used as the FS method. The accuracy results with AutoML, when concatenating the
kinematic and statistical features, improved 4.38%, 7.02% and 14.04% for depression,
anxiety and stress, respectively. Again, the accuracy of the results is higher when the
kinematic and statistical features are concatenated. The accuracy of the results when using
mFCBF as the FS method (in the fourth and fifth columns) is much higher than the accuracy
of the results that are obtained with PCA (in the second and third columns).

The sixth and seventh columns of Table 10 show the accuracy of the results when the
PCA–mFCBF pipeline is used as the FS method. The accuracy results with AutoML, when
concatenating the kinematic and statistical features, improved 3.5%, 7.89% and 11.41% for
depression, anxiety and stress, respectively.

Clearly, the accuracy of the results when using the PCA–mFCBF pipeline as the FS
method (in the sixth and seventh columns) is much higher than the accuracy of the results
obtained when using PCA (in the second and third columns) or mFCBF (in the fourth and
fifth columns).

Table 11 shows the accuracy of the results for the trinary classification for the features
F = T_K_S_SD_CD for the ML model MLa = autoML and for the moods
M = {Depression, Anxiety, Stress}. The second columns is the accuracy of the results
when PCA is used as the FS method. The accuracy of the results is higher for the PCA–
mFCBF pipeline; the second-best accuracy is obtained with mFCBF; and the third-best
accuracy is obtained when using PCA. The accuracy is the worst when no selection feature
is used. Therefore, the behavioural biometrics with the trinary classification is identical to
the behavioural biometrics with the binary classification.

Table 11. Trinary accuracy results for PCA, mFCBF and PCA–mFCBF pipeline for the FS methods
and by using AutoML.

M MLM,aML
T_K_S_SD_CD M̃L

M,aML
T_K_S_SD_CD M̂L

M,aML
T_K_S_SD_CD ML

M,aML
T_K_S_SD_CD

Depression 74.56 77.19 81.57 82.45
Anxiety 50.87 57.89 71.92 72.80
Stress 47.36 54.38 65.78 74.56

11. Conclusions

In this study, we propose the merging of the temporal, kinematic, statistical, spectral-
and cepstral-domain features to detect the mood state. We found that adding the kinematic
and statistical features improved the results.

We also proposed to use PCA–mFCBF for FS. PCA is used for orthogonalising features
before applying mFCBF to select the features. When using the PCA–mFCBF pipeline, we
found that the experimental results were substantially superior to the results obtained
when only PCA or mFCBF was used.

The best performance was obtained when adding the kinematic and statistical features
pipelined with PCA–mFCBF. The second-best performance was that of the AutoML H2O
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platform for data modelling. This makes sense because AutoML H2O [28,29] includes the
Bayesian hyper-parameter optimisation and model assessment.

The experiment results proved that this pipeline strategy for FS and PCA–mFCBF sub-
stantially increases the accuracy results and even reaches 100% in the binary classification
of our task.

We also classified data into three categories and developed a few experiments using
all the described features. Then, we used PCA–FCBF as the FS method and modelled using
the AutoML H2O platform. The accuracy results for trinary detection were 82.45%, 72.8%
and 74.56% for depression, anxiety and stress, respectively. Also, we found that the results
for the trinary detection were not as impressive as the results obtained for binary detection.
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