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Abstract: The key point on analyzing the data stream measured by fiber optic distributed acoustic
sensing (DAS) is signal activity detection separating measured signals from environmental noise.
The inability to calculate the threshold for signal activity detection accurately and efficiently without
affecting the measured signals is a bottleneck problem for current methods. In this article, a novel
signal activity detection method with the adaptive-calculated threshold is proposed to solve the
problem. With the analysis of the time-varying random noise’s statistical commonality and the short-
term energy (STE) of real-time data stream, the top range of the total STE distribution of the noise
is found accurately for real-time data stream’s ascending STE, thus the adaptive dividing level of
signals and noise is obtained as the threshold. Experiments are implemented with simulated database
and urban field database with complex noise. The average detection accuracies of the two databases
are 97.34% and 90.94% only consuming 0.0057 s for a data stream of 10 s, which demonstrates the
proposed method is accurate and high efficiency for signal activity detection.

Keywords: distributed acoustic sensing; signal activity detection; adaptive-calculated threshold;
short term energy analysis

1. Introduction

The advanced perception technology is the source of big data, the foundation of
artificial intelligence development, and the key technical support to construct a smart
earth, a smart ocean and a smart city [1]. The sensing capabilities of high sensitivity, long
distance and high space-time accuracy enable DAS as a hot point in sensing technology,
which has been widely applied in long-distance perimeter security [2–4], oil or gas pipeline
invasion [5–7], seismic detection [8–10], natural resource exploration [11,12] and other
applications [13–15]. The pivotal technology for the analysis of the DAS data stream is
to separate the signals and environmental noise accurately and efficiently. It should be
noted that the sampling rate of the data acquisition card used in the DAS system is usually
hundreds of megahertz. Hence, it is urgent to develop a low computational complexity,
fast response, high accuracy and strong robustness signal activity detection for real-time
signal analysis.

With the runtime of several milliseconds, time domain characteristics of zero-crossing
rate (ZCR) and short-term energy (STE) are the most common indicators for signal activity
detection. K. Liu et al. applied the dual-crossing method to part signals and environmental
noise depending on ZCR [16,17]. Due to the principle of counting the number of zero-
crossing values in several fixed time blocks of the data stream, it is more sensitive to
high-frequency signals and loses low-frequency signals. A real-time signal detection based
on an STE crossing level algorithm with an average accuracy of 84.4% was implemented
in [18], and a dual-threshold method combined by STE and ZCR with an average accuracy
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of 76.45% was presented in [19]. Both predefined thresholds are set by the environmental
noise at the initial moment, which leads to inaccurate detection for the varying noise.

The developed signal activity detection methods relying on frequency domain charac-
teristics can better highlight differences between signals and environmental noise. Various
frequency features emerged such as long-term signal variability (LTSV) feature, long-
term spectral flatness measure (LSFM) feature and long-term spectral variability measure
(LSVM), and the average detection accuracy based on the three features could reach more
than 85% with the runtime about 1 second [19–22]. However, the time resolution is limited
to the long window, inducing non-negligible deviations from the actual onset and endpoint
of the signal. Letter [23] put forward a novel detection algorithm based on a high-pass
convolution window finite impulse response filter to remove environmental noise, and
experimental results showed that the proposed detection outperformed the wavelet-based
method. Further, a low-order high-pass filter whose cut-off frequency could rapidly adapt
to environmental noise was designed [24,25], but low-frequency components of signal were
also filtered out inevitably.

With a series of features emerging in time and frequency domains, researchers at-
tempted to derive a more suitable detection method by integrating both of these domain
features. As described in [26], since the amplitude of the high-frequency components had a
noticeable jump when the signal occurred in a short time, a short-time Fourier transform
(STFT)-based method was applied to detect the signal with the minimum runtime of 0.145 s.
However, only two signals of climbing the fence and knocking the cable were verified. The
signal was decomposed into intrinsic mode functions (IMFs) to realize detection using the
threshold judged by the first five frames as noisy fragments of the data stream and the ac-
curacy was 87.29% when the signal-to-noise ratio (SNR) was 0 dB [27]. Due to the zooming
property, the wavelet method provides high accuracy for signal analysis, and paper [28]
focused on wavelet transform (WT) to realize signal activity detection and an average
accuracy of 90.1% was obtained with the update threshold of noise at the first ten frames of
the data stream. However as illustrated in [23], this method with the runtime in several
seconds was inefficient for the high computation complexity of wavelet decomposition in
multiple layers.

In general, current methods mainly rely on the predefined threshold set only by the
environmental noise at the beginning of the data stream, which ignore the time-varying
nature of the environmental noise, and there are some methods of adaptive thresholds, but
the accuracies of the thresholds need to be improved. Facing the application requirements
of DAS for accurate and efficient signal activity detection, a novel method with the analysis
of the time-varying random noise’s statistical commonality and the real-time data stream’s
STE is proposed to solve the above problems. Firstly, the principle of simulation data
is illustrated, and the signal activity detection algorithm with the adaptive-calculated
threshold is explained in detail. Secondly, the detection results of the simulation database
with the SNR of 5 to 25 dB are compared with the LSFM and the STFT methods, and
the proposed method has the best average detection accuracy of 97.34%. Finally, field
experiments with complex urban noise are implemented, and the two reference methods
have poor performances, and a detection accuracy of 90.94% only consuming 0.0057 s for a
data stream of 10 s is obtained by the proposed method. The results demonstrate that the
proposed methods meet the application requirements of DAS for signal activity detection.

The paper is arranged as the follows. Section 2 is the principal part, which includes the
principle of the simulation data stream measured by DAS and the signal activity detection
algorithm with the adaptive-calculated threshold. Section 3 verifies the effectiveness of
the proposed method with the simulated database and the actual database compared with
the LSFM and the STFT methods. Section 4 comes to the discussion. Finally, Section 5 is
the conclusion.
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2. Materials and Methods

This section consists of two parts. Firstly, to study signal activity detection with the
adaptive-calculated threshold at different SNR levels, the man-made vibrations of ground
measured by DAS are simulated by the single degree of free system and simulated data
streams with SNR of 5 to 25 dB are obtained. Secondly, the signal activity algorithm
detection with the adaptive-calculate threshold is presented in detail.

2.1. Simulated Data Stream

A simple method summarizing the ground vibrations measured by DAS is presented
referring to the single degree of free system (the motion equation) of the drill in the
percussive system propelled into rocky ground [29]. Based on three aspects, firstly, the most
ground vibrations are caused by sudden loading; secondly, the ground is not elastic, and
the soil damping coefficient is less than 1 [30–33]; thirdly, DAS measures vibration signals
in a single direction. The vibration has two-stage displacements when the source of the
vibration acts on the ground. The displacement by incident loading and the underdamped
motion during unloading are expressed as:

u(t) =

 1− e−2(β/τ)t × [ 1√
α−1

sin( 2
√

α−1
α

β
τ t) + cos( 2

√
α−1
α

β
τ t)](loading)

e−(2/α)(β/τ)t × [( α
2
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α−1
τ
β )
•

u0 × sin( 2
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α−1
α )

β
τ t + 1√

α−1
u0 × sin( 2

√
α−1
α

β
τ t) + u0 × cos( 2

√
α−1
α

β
τ t)](unloading)

(1)

where α equals 4 kmb/(ρcA)2 and β equals kτ/ρcA, and mb, ρ, c, A, k, τ, u0 and u·0 are the
soil mass of loading by incident loading, the density of soil, the wave velocity propagating
in the ground, the cross-section area between ground and vibration source, the elastic
stiffness coefficient of soil, the duration of the sudden loading, the maximum displacement
of ground vibration and the first derivative of maximum displacement, respectively. The
rationality of the simulation data is explained in Appendix A and four kinds of ground
vibrations collected in this article are simulated (digging the ground with a shovel, knocking
the ground with a hammer, breaking up the ground with a pickaxe and walking of a human)
shown in the Figure A1 in Appendix A.

In the actual data collection work, the environmental noise is inevitably measured by
DAS, and the real-time data stream can be expressed as:

x(t) =
{

u(t) + v(t) u(t) 6= 0
v(t) u(t) = 0

(2)

where x(t), u(t) and v(t) are the data stream, ground vibration and the additive noise (the
simulated noise includes white noise, pink noise and Brownian noise to mimic random
noise measured by DAS dominated by low-frequency components).

2.2. Algorithm of Signal Activity Detection with the Adaptive-Calculated Threshold

Figure 1 illustrates the flow chart of the proposed signal activity detection with the
adaptive-calculated threshold and the calculation results of every step. This algorithm
mainly consists of the following steps:

Step 1: Analyze the STE of a certain amount of noise. Firstly, calculate the STE of noise
(Enoise = [E1, E2, E3, . . . , En]). Secondly, sort the STE in ascending order (E′noise = [E1

′, E2
′,

E3
′, . . . , Em

′]). Finally, calculate the first derivatives of the sort (
·

E′noise = [
·

E1
′,
·

E2
′,
·

E3
′, . . .

·
, Em

′]);
Step 2: Find the maximum first derivative of the first half U-shape for noise. Find the

first value larger than the maximum and calculate the ratio of the first derivatives whose
indexes are from 1 to the index of the first value to all first derivatives.

Step 3: Analyze the STE of the real-time data stream as step 1. The STE of the
data stream is Esignal = [E1, E2, E3, . . . , En]. The STE is sorted in ascending order as

E′signal = [E1
′, E2

′, E3
′, . . . , Em

′]. The first derivatives are
·

E′signal = [
·

E1
′,
·

E2
′,
·

E3
′, . . .

·
, Em

′].
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Step 4: Find the first value larger than the maximum first derivative of the first half
U-shape for real-time data stream and calculate the quotient of index of the first value and
the ratio obtained in step 2. The STE corresponding to the rounded quotient (the nearest
integer) is determined as the threshold and the STE of the data stream larger than the
threshold is judged as the signal.

The core of the method is based on the statistical commonality of random noise. The
distribution of the first derivatives of the noise’s ascending STE is U-shaped, and the
statistical ratio (named Ratio1) of the first derivatives less than or equal to the maximum
first derivative of the first half U-shape to all first derivatives is constant for any intensity
noise. The first value larger than the maximum first derivative of the first half U-shape can
be found. The statistical ratio (named Ratio2) of the first derivatives whose indexes are
from 1 to the index of the first value to all first derivatives is constant for any intensity noise,
where their proofs will be presented in Section 3. For the first derivatives of any real-time
data stream’s ascending STE, the first value larger than the maximum first derivative of the
first half U-shape belongs to the data stream’s noise because the STE of signal is larger than
the STE of noise when SNR is larger than 0. Since the Ratio2 is constant for any intensity
noise, the rounded quotient of the index of the first value and the constant Ratio2 is thus
the top range of the total STE distribution of the data stream’s noise, which is the dividing
point of the noise’s STE in the data stream’s ascending STE (the all U-shape distribution of
the first derivatives of noise’s ascending STE is obtained for the first derivatives of real-time
data’s ascending STE), and the STE corresponding to the index of the dividing point is the
adaptive dividing level for signals and noise for every data stream at any SNR level shown
in Figure 1.

3. Results
3.1. Results of Signal Activity Detection of the Simulated Database

This part explains the signal activity detection results of the simulated database in
detail. The performance of the proposed method is compared with two representative
detection methods: the LSFM [21] and the STFT methods [26]. The parameters of the three
methods are shown in Table 1. A median filter is utilized to smooth the sequence obtained
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by the LSFM method, the STFT method and the proposed method and the smooth width
is 10.

Table 1. The parameters of the three kinds of signal activity detection methods.

Method Window Function Data Stream
Length (s)

Window Length
(ms)

Overlap Length
(ms) Smooth Width

LSFM Rectangular window 10 40 36 10
STFT Rectangular window 10 20 16 10

Proposed method Rectangular window 10 4 0 10

3.1.1. Simulated Database Description

Three kinds of data streams with a total length of 150 min at five SNR levels (5 dB,
10 dB, 15 dB, 20 dB and 25 dB) compose the simulation database. In a data stream, every
simulated vibration signal mentioned in Section 2 appears at one second and a kind of
additive noise (white noise, pink noise and Brownian noise) with an SNR level is distributed
between the interval of the signals. The total number of simulated signals with a time
length of 0.1556 s and a maximum amplitude of 0.29 rad is 9000.

3.1.2. Calculation of the Threshold

The three methods have different threshold calculations. There is noise with the
same SNR level at the beginning (time length is 10 s) for every simulated data stream
at an SNR level. The thresholds of the LSFM and the STFT methods are calculated by
the recommendations of the related literature with the known noise. For the proposed
method, firstly, 1000 noise streams with a length of 10 s at 5 to 25 dB SNR are analyzed
for a kind of noise, and the maximum first derivatives of the first half U-shape of three
kinds of noise’s ascending STE are found and the Ratio1 mentioned in Section 2 is constant
shown in Figure 2a (99.83%, 99.60% and 98.52% for white noise, pink noise and Brownian
noise, respectively). The first value larger than the maximum first derivative also can be
found and the first derivatives whose indexes are from 1 to the index of the first value
are illustrated in Figure 2b, and the Ratio2 mentioned in Section 2 is constant (99.37%,
98.00% and 90.97% for white noise, pink noise and Brownian noise, respectively) shown
in Figure 2c. Then, for every data stream with different noise, the threshold is updated
by the first value larger than the maximum first derivative of the first half U-shape of the
data stream’s ascending STE and is determined by the STE corresponding to the rounded
quotient of the index of the first value and the different constant Ratio2.

3.1.3. Performance Evaluation

A set of statistical measures are computed to qualify the quality of the three methods.
At first, by totaling the number of detected signals versus the correct positions (referring to
a total amount of true signals presenting in the data frame), classify the properly detected
signals (true positive), missed signals (false negative) and mistake detected signals (false
positive). Then, these indicators are obtained: accuracy (ACC, the ratio of true-positive
detections against to all detected and not detected signals); false-discovery rate (FDR, the
ratio of false-positive detections to the whole detected signals); false-negative rate (FNR, the
ratio of false-negative detections to the sum of false-negative detections and true positive
detections); and the F1-score (the harmonic of 1-FNR and 1-FDR) [34].
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As shown in Figure 3, the proposed method is compared with the LSFM and the STFT
methods in terms of ACC, FDR, FNR and F1-score with three kinds of noise at 5 to 25 dB
SNR. The proposed method outperforms the three methods (ACC:97.34%, FDR:1.25%,
FNR:0.24% and F1-score: 98.6% on average for three kinds of noise at 5 to 25 dB SNR).
The STFT method is superior to the other reference (ACC:94.17%, FDR:5.72%, FNR:0.12%
and the F1-score: 96.97% on average for three kinds of noise at 5 to 25 dB SNR) due to the
slight reduction in the flatness of the data stream’s Fourier spectrum when signals occur,
calculated by the LSFM method. The proposed method based on the statistical commonality
of random noise is superior to the better reference with known noise because the threshold
of the proposed method updated by the first value larger than the maximum first derivative
of the first half U-shape of real-time data stream’s ascending STE and determined by the
STE corresponding to the rounded quotient of the index of the first value and the constant
Ratio2 is more accurate. Three methods have unperfect statistical indicators at 5 dB SNR,
especially when the signal is completely submerged by Brownian noise at 5 dB SNR, but
the proposed method is still optimal for average statistical indicators.

Figure 4 gives the onset detection errors (difference between detection onset and actual
onset) and the endpoint detection errors (difference between detection endpoint and actual
endpoint) at 5 to 25 dB SNR for three kinds of noise. The average length of signal is 0.1556 s.
For the proposed method, the detected onset is behind the actual onset of 0.0032 s and the
detected endpoint is ahead of the actual endpoint of 0.0457s on average for three kinds of
noise. With the SNR level increasing, onset and endpoint detection errors of the proposed
method go down. For the LSFM and the STFT methods, with the SNR level increasing,
onset detection errors increase and endpoint detection errors decease for both methods
based on long-window length leading to an earlier detected onset. Detected onsets are
ahead of the actual onsets of 0.0187 s and 0.0129 s, while detected endpoints are ahead of the
actual endpoints of 0.0463 s and 0.0427 s for the LSFM and the STFT methods on average
for three kinds of noise, respectively. At a low SNR level, part of signal is submerged by
noise, and the calculated endpoints of the proposed method (based on the time domain),
the LSFM method (based on the frequency domain) and the STFT method (based on the
time-frequency domain) are earlier. The proposed method has minimal onset detection
error, and three methods have approximately equal endpoint detection errors.
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3.2. Results of Signal Activity Detection of the Actual Database
3.2.1. DAS System and Actual Database Description

The PGC algorithm-based DAS system is illustrated in detail in Figure 5 [35]. The
coherent optical source is a narrow linewidth (3 KHz) laser with 20 mW continuous
output at 1550.12 nm, which is pulse modulated by an AOM with the width of 30 ns and
the repetition rate of 10 KHz. Then the pulsed lights are amplified by EDFA to get an
appropriate peak power and an FBG is utilized to filter out the ASE noise. The pulse lights
are propagating along the fiber and generate the coherent back Rayleigh scattered light
carting sensing information which could interfere at the output of MI. The output of PD
with 50 M of bandwidth is sampled by DAQ with a 200 MS/s sampling rate. The temporal
sampling rate of the system is 5000 Hz and the frequency range is 50 to 2500 Hz, and its
spatial resolution is 10 m.
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Figure 5. The structure of the DAS system based on the PGC algorithm (AOM: acousto-optic
modulator; ISO: isolator; EDFA: erbium-doped optical fiber amplifier; FBG: fiber Bragg grating;
OC: optical coupler; DAQ: data acquisition card; FRM: faraday rotation mirror; PZT: piezoelectric
ceramic transducer; PD: photo detector; PC: personal computer).

In order to evaluate the proposed method, a field experiment in a Beijing urban
environment with complex noise is arranged, shown in Figure 6. The DAS system is placed
in the nearest laboratory, and the sensing fiber with a length of 103 m is buried 20–40 cm
under the ground. The background noise in the left position (20 m from the starting of the
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buried fiber) is the superposition of air-conditioning noise and the complex urban noise
and the background noise in the right position (20 m from the ending of the buried fiber) is
the working noise of cryogenic liquid nitrogen tank superimposed with the complex urban
noise. Four kinds of vibration signals with the bandwidth ranging from 50 to 2500 Hz
are collected in every position as signal activity detection targets according to the time
sequence which are digging the ground with a shovel, knocking the ground with a hammer,
breaking up the ground with a pickaxe and walking of human. The signal acquisition time
is from 7:00 p.m. to 10:20 p.m., the acquisition time of every signal is 25 min and the total
number of four kinds of signals is 1920, 3254, 1838 and 3340, in that order.
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3.2.2. Calculation of Threshold

For the actual database, 1000 noise streams with a length of 10 s are collected in the left
and right positions. The thresholds of the LSFM and the STFT methods are initialized and
updated by the recommendations of the related literature with the noise. For the proposed
method, firstly, the noise streams are analyzed for every position, and the maximum first
derivative of the first half U-shape of noise’s ascending STE is found and the statistical ratio
(named Ratio1) of the first derivatives less than or equal to the maximum first derivative to
all first derivatives is constant shown in Figure 7a (99.56% and 99.73% for the noise of two
positions). The first value larger than the maximum first derivative also can be found, and
the first derivatives whose indexes are from 1 to the index of the first value are illustrated
in Figure 7b. The statistical ratio (named Ratio2) of the first derivatives whose indexes are
from 1 to the index of the first value to all first derivatives is constant (94.00% and 94.68%
for noise of two positions) and is shown in Figure 7c. Then, the threshold is updated by
the first value larger than the maximum first derivative of the first half U-shape of the
data stream’s ascending STE and is determined by the STE corresponding to the rounded
quotient of the index of the first value and the constant ratio (94.00% and 94.68%) for every
position data stream.

3.2.3. Performance Evaluation

Figure 8 shows the statistical indicators of three methods for the four signals. It is clear
that the proposed method provides the best performance among the three methods for
the complex urban noise (ACC: 90.94%, FDR: 5.34%, FNR: 3.88% and F1-score: 95.37% on
average of four signals). For the LSFM method, a slight reduction in the flatness of the data
stream’s Fourier spectrum is calculated when signals occur due to the urban noise changes
significantly within 10 s and the FDR and the FNR indicators are high. The STFT method is
better than the LSFM method. For the actual data, the initial threshold chosen by the STFT
method is based on the varying environmental noise at the beginning of data stream and
the threshold is updated by statistics of signal amplitude, which leads to poor statistical
indicators. The proposed method is compared with the better reference for the four signals.
It can be observed that on average, the proposed method is superior to the better reference
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in terms of the ACC (46.31%), FDR (6.16%), FNR (48.59%) and F1-score (34.36%) due to the
accurate adaptability of the threshold calculated by statistical commonality of the complex
urban noise, and the bottleneck problem for current methods of calculating the threshold
separating signals and environmental noise accurately without affecting the integrity of
signal is solved.
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Figure 9 gives an example of the manual determination of the onset and the endpoint
of the actual signal with the wavelet synchrosqueezed transform (WSST) method, which
are chosen as the actual onset and the actual endpoint of actual signal [34], and the error
calculations of the onset and endpoint are the same as the simulated data stream. Due to
the limitation of the number of correct detections by the LSFM method, 100 samples are
collected to calculate the errors of the onset and endpoint for a kind of signal shown in
Figure 10. The average time length of the four signals is 0.2087 s. For the LSFM and the
STFT methods, for high accuracy, the initial thresholds have to choose the maximum of
the beginning noise. Two methods yield more significant errors, especially for the LSFM
method which has the maximum error. For the STFT method, the detected onset is behind
of the actual onset of 0.0223 s and the detected endpoint is ahead of the actual endpoint of
0.0357 s on average for four kinds of signals. Compared to the better reference, the onset
and endpoint detected by the proposed method are 0.013 s and 0.0231 s closer to the actual
points, respectively, which demonstrates the superiority of the method.

Three approaches are implemented through the software scripts executed by MATLAB®

R2020a in a PC with a CPU Intel Core i9-10980XE @ 3.0 GHz(manufacturer of Intel, made
in Portland, OR, USA) and 32 GB RAM. A total of 1200 data streams with a time length of
10 s are calculated and the average consumption time of the proposed method (including
threshold calculation and signal activity detection) for every data stream is 0.0057 s, shown
in Figure 11. The average consumption times of the STFT method (computation complexity
generated by short-time Fourier transform) and the LSFM method (computation complexity
generated by dividing the geometric mean of the power spectrum by the arithmetic mean
of the power spectrum) are 0.0224 s and 0.09343 s, respectively, which can prove that the
proposed method is very highly efficient.
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Figure 9. The manual determination of the onsets and the endpoints of four kinds of actual signals
with the wavelet synchrosqueezed transform method and the comparation of detection onset and
endpoint errors obtained by proposed method, the LSFM method and the STFT method: (a,b) digging
the ground with a shovel; (c,d) knocking the ground with a hammer; (e,f) breaking up the ground
with a pickaxe; (g,h) walking of human.
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4. Discussion

At a low SNR level, part of the signal is inevitably submerged by noise, and the
detection endpoints of the proposed method (based on time domain), the LSFM method
(based on frequency domain) and the STFT method (based on time-frequency domain)
have approximately equal errors, which are earlier than the actual endpoint. Figure 12
shows the detection endpoint error of the proposed method for a simulated signal with the
maximum amplitude of 0.29 rad and the duration of 0.1556 s at 1 to 4 dB SNR in detail. At
1 dB, 2 dB, 3 dB and 4 dB SNR, the durations of unsubmerged signal are 0.0722 s, 0.0843 s,
0.0902 s and 0.1022 s, respectively, and the detected endpoints are ahead of actual endpoint
of the unsubmerged signal of 0.002 s, 0.002 s, 0.008 s and 0.008 s, respectively. For all
detection methods, if the features of the signal are submerged by noise, the signal will not
be effectively detected [19]. The method of signal feature extraction which can characterize
the signal more prominent at low SNR may be a way to solve the problem that is my next
research work.
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5. Conclusions

In this work, a novel signal activity detection method is proposed with the adaptive-
calculated threshold based on the statistical commonality of random noise, which is the
distribution of the first derivatives of noise’s short-term energy (STE) in ascending order is
U-shaped and the statistical ratio of the first derivatives whose indexes are from 1 to the
index of the first value (the first value larger than the maximum first derivative of the first
half of the U-shape of random noise’s ascending STE is named the first value) is constant
for any intensity of noise. The threshold is the adaptive dividing level of signals and noise
that is updated by the first value and the constant ratio. Experiments with simulated and
urban field databases are implemented. For the simulated database, the proposed method
has optimal statistical indicators of signal activity detection (ACC: 97.34%, FDR: 1.25%,
FNR: 0.24%, and F1-score: 98.6% on average for white noise, pink noise and Brownian noise
at 5 to 25 dB SNR). For the simulated signal with a time length of 0.1556 s and a maximum
amplitude of 0.29 rad, the proposed method has the minimum average detected onset error
(0.0032 s) and the average detected endpoint error is approximately equal to the reference
methods for three kinds of noise at 5 to 25 dB SNR. For field database with complex urban
noise, the proposed method yields the good statistical indicators of signal activity detection
(ACC: 90.94%, FDR: 5.34%, FNR: 3.88% and F1-score: 95.37% on average of the four kinds
of signals), while the STFT and the LSFM methods have poor statistical indicators. For
the four kinds of signals with the average time length of 0.2087 s, the proposed method
also has the minimum average detected onset error (0.0093 s) and the minimum average
detected endpoint error (0.0126 s). The consumption time of the proposed method is only
0.0057 s for a data stream with a length of 10 s. It is proven that the proposed method is
accurate, efficient for signal activity detection of the data stream measured by DAS, which
can be applied to signal-detection-related applications.

Our future work will focus on how to realize the signal activity detection of the data
stream measured by DAS at low SNR level accurately and efficiently.
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Appendix A

This part mainly explains the rationality of the simulation data applied to signal
activity detection. Four kinds of ground vibrations collected in this article are simulated
(digging the ground with a shovel, knocking the ground with a hammer, breaking up the
ground with a pickaxe and walking of a human). Every vibration is divided into two
parts with the maximum displacement as the dividing point shown in Figure A1. The first
part is the displacement caused by incident loading and the second part is underdamped
motion during unloading. The parameters of the first part are calculated by fitting the
actual displacement with the polynomial of loading state in (1) with 95% R-Squared, and
the parameters of the second part are computed by the polynomial of unloading state in
(1) with the method of measuring the frequency and damping coefficient for an engineering
system [36]. By comparing with the actual displacements of the four kinds of actual
vibrations, although there is a bit mismatch between the calculated motion and the actual
vibrations in the middle, it is suitable for signal activity detection.
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