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Abstract: This paper focuses on robustness and sensitivity analysis for sensor fault diagnosis of a
voltage source converter based microgrid model. It uses robust control parameters such as minimum
sensitivity parameter (H−), maximum robustness parameter (H∞), and compromised both (H −
/H∞), being incorporated in the sliding mode observer theory using the game theoretic saddle point
estimation achieved through convex optimization of constrained LMIs. The approach used works
in a way that the mentioned robust control parameters are embedded in Hamilton–Jacobi–Isaacs-
Equation (HJIE) and are also used to determine the inequality version of HJIE, which is, in terms
of the Lyapunov function, faults/disturbances and augmented state/output estimation error as its
variables. The stability analysis is also presented by negative definiteness of the same inequality
version of HJIE, and additionally, it also gives linear matrix inequalities (LMIs), which are optimized
using iterative convex optimization algorithms to give optimal sliding mode observer gains enhanced
with robustness to maximal preset values of disturbances and sensitivity to minimal preset values
of faults. The enhanced sliding mode observer is used to estimate states, faults, and disturbances
using sliding mode observer theory. The optimality of sliding mode observer gains for sensitivity
of the observer to minimal faults and robustness to maximal disturbance is a game theoretic saddle
point estimation achieved through convex optimization of LMIs. The paper includes results for state
estimation errors, faults’ estimation/reconstruction, fault estimation errors, and fault-tolerant-control
performance for current and potential transformer faults. The considered faults and disturbances in
current and potential transformers are sinusoidal nature composite of magnitude/phase/harmonics
at the same time.

Keywords: microgrids; fault-tolerant control (FTC); current/potential transformer (C.T/P.T); sliding
mode observers (SMO); H∞ and H− parameters; Hamilton–Jacobi–Isaacs/Bellman-Equation (HJIE
or HJBE); Lyapunov stability; fault diagnosis/estimation; game theory

1. Introduction

Distributed electric generators forming diverse microgrid structures are required to
function robustly against faults and disturbances for the reliable working of micro power
plants and un-interrupted power delivery to end users. This work focuses on a diagnosis
process that is robust to disturbances and sensitive to faults using sliding mode observers
enhanced with robust control parameters such as (H−), (H∞) and (H− /H∞) for a better
fault reconstruction. The reconstructed faults and unknown inputs/ disturbances can be
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used for correction of faulty sensor current/potential transformers (C.T/P.T) outputs to
enable the control system to act in a fault tolerant way. The work incorporates application
of the Hamilton–Jacobi–Isaacs-Equation (HJIE) along with cost functionals of robust control
parameters and game theoretic estimations to enhance the conventional sliding mode
observer theory.

Hou [1] uses H−/H∞ robust fault detection technique, where the H− index enhances
the sensitivity of residual w.r.t fault and H∞ deals with the robustness of disturbances
effect on the residual. The observer design is an optimization problem where the necessary
conditions for fault detection are embodied in terms of linear matrix inequalities (LMIs),
which are solved by an iterative algorithm. Hammouri [2] provides sufficient conditions for
fault detection, provided for non-linear affine models along with circumstances in which
observers with high gains can be used for residual generation for uniformly observable
systems. Edelmayer [3] uses H∞ constraint through a filter transformed into an LMI
based convex feasibility optimization problem, to suppress the effect of disturbances and
unknown inputs for robust detection of faults and modes of failure in linear time variant
(LTV) systems. Zhang [4] uses a detection filter with a bunch of estimators with different
thresholds for fault isolation in a dynamic non-linear system with uncertainty. The paper
also works on determination of different adaptive thresholds, fault isolation conditions,
and analytical results for time required for fault isolation. Liu [5] works on using H− and
H∞ norms for worst case fault sensitivity and robustness to disturbances, respectively, rep-
resented in the forms of LMIs as bounded real lemma, along with additionally performing
the analysis problem for finite frequency range using weighing filters, which is useful in
strictly proper systems. Maciejowski [6] gives a detailed non-linear reference model for a
crashed aircraft being controlled by model predictive control (MPC) controller and pilot
controls being modeled by another MPC controller at low sampling rate to give such a fault
detection and isolation (FDI) mechanism, which could have avoided the plane crash in 1862.
Yan [7] uses a sliding mode observer based technique for a non-linear air craft system where
the uncertainty being the function of the state variables has a non-linear bound. Liu [8]
works on making the outputs least sensitive to inputs through a H -index in terms of LMIs
added input observability with new conditions necessary and sufficient for fault detection
with worst case sensitivity of faults. Edwards and Tan [9,10] use sliding mode observers
for fault detection and isolation (FDI) of uncertain linear systems, by output error injection
and fault correction through fault detection and estimation while maintaining closed loop
performance. Yan [11] addresses fault estimation for bounded specific classed perturbed
non-linear systems using the output error injection approach in sliding mode observers
(SMOs), where fault can be estimated online to any accuracy and observer parameters are
determined by LMIs, and tested for robotic arm. Wang [12] works on H∞ H∞ and H−H−
index based optimization using LMIs to enhance the detection of faults while attenuating
disturbances and uncertainties along with working on the threshold required for fault
detection. Wang ([13]) uses H− index for sensitivity to worst case fault detection while
minimizing the effect of worst case disturbance using H∞ norm using H − /H∞ observer
based fault detection. The conditions necessary and sufficient for fault detection filters are
solved with iterative LMI algorithms and results are determined for both the finite and
infinite frequency ranges. Wang [14] works on H− and H∞ criteria for fault detection in
linear systems, where fault detection problem is unconstrained using a pole assignment
approach and observer gains are determined by a gradient optimization approach. The
paper considers sensitivity of fault for a finite frequency range. The problem is tested for
air craft vertical landing and take-off faults. Pertew [15] designs a dynamic observer for
Lipchitz non-linear systems, which uses an objective function through LMIs to converge the
residual vector to the fault vector to achieve detection and estimation at the same time. The
problem uses convex optimization of objective function by using the suitable weights to
minimize the effect of fault on estimation error instead of a conventional constant gain struc-
ture. Ding [16] works on fault detection observer scheme where the system is completely
decoupled from unknown inputs with a major focus on minimal order fault detection
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filters along with associated required algorithms for the process. Zhang [17] works on an
observer based fault detection with residual norm based minimization on false alarm rate
(FAR) for given false detection rate (FDR) using a well-established factorization technique.
Khan [18] addresses mainly threshold computation for faults detection, while formulating
a problem as an optimization problem using LMIs for continuous time non-linear systems.
Alwi [19] uses SMO for estimation of sensor faults, which works even beyond the limitation
in terms of the requirement of stability of an open loop system while using other unknown
input linear SMOs. Aliyu [20] uses H2/H∞ mixed and finite dimensional filtering while
conditions are in terms of coupled discrete Hamilton–Jacobi–Isaacs equations. The prob-
lem addresses mainly discrete time nonlinear affine systems while considering both finite
and infinite horizon problems. Slim and Dhahri [21] uses Lyapunov stability LMIs based
determination of gains of SMO by imposing minimization of H -Infinity criteria (ratio of
residual to disturbance), i.e., to minimize the effect of disturbance on reconstruction of
fault, which not only improved fault estimation but also validated the work for unmatched
uncertainties and faults. Li [22] studies the tradeoff for between sensitivity to faults and
robustness to disturbances using H − /H∞ and H∞/H∞ optimization problems using
iterative linear matrix inequalities (ILMIs) based on a factorization technique, for linear
time invariant (LTI) systems in state space form. Shi [23] uses H-Infinity based fault tolerant
control (FTC) for sensor and actuator faults in a wind energy system considering variable
wind speed problems using the concepts of Stochastic Affine models and linear quadratic
regulator (LQR) state feedback control. Raza [24] considers a switched asynchronous
system with disturbances and noises for designing fault detection (FD) filters with mixed
H − /H∞ sensitivity and robustness criteria, along with piece wise Lyapunov function
stability. Conditions in terms of LMIs and average dwell time were also investigated. The
schemes were tested on buck-boost converters for matched and unmatched durations
of switched systems. Ahmad [25] uses a robust fault detection filters (FDF) design with
H∞ criteria for sensitivity to faults while completely isolating the system from unknown
inputs using LMIs for LTI systems. Ning [26] addresses a stochastic system with limited
network resources and used filter mechanism for fault detection. The system operates on
an event-triggered mechanism instead of a lot of data coming from sensors to filter, which
makes the residual generator more sensitive to faults along with disturbance attenuation
compared to conventional FD methods along with saving network resources. These are
considered in detail [27–30] in order to learn the approaches. The book of Yuri and Edwards
on sliding mode control and observers is also considered in detail [31].

1. The major contribution of the paper is to incorporate an estimation of game theoretic
saddle points similar in nature to robust control parameters (H∞, H−), using their
respective cost functionals and inequality version of HJIE in SMO theory, through
Lyapunov theory and convex optimization of consequent LMIs, which also ensures
stability. The concept is applied on VSC-based microgrid model.
In comparison to earlier works, they have used an approach of using robust control
parameters and game theory for ordinary Luenberger Observers, whereas this study
has incorporated the mentioned approach in sliding mode observers having a Luen-
berger gain for output estimation error term along with another switch term gain,
which ensures more robustness along with suitability for switching electronic systems.
Moreover, this work has incorporated game theoretic saddle points through convex
optimization of LMIs, unlike earlier works;

2. The approach works mainly for sensor faults of microgrid and particularly for multiple
faults occurring simultaneously in their sensor current and potential transformers.
The approach works very well for many other types of faults such as square pulse
(intermittent), ramp faults (i.e., incipient nature), constant faults, etc., but the results
are not included in the paper;

3. The inequality version of HJIE (i.e., Hamiltonian as the inequality constraint), which
ensures stability in terms of Lyapunov function (with its negative definiteness) along
with giving constrained LMIs. The stability analysis through a cost functional con-
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strained inequality version of HJIE and hence determination of corresponding LMIs
are convex optimized to determine the respective SMO gain. The gains are determined
for (H−), (H∞) and then compromised of both (H − /H∞) constraints, which are
included as theorems as a major contribution of this work;

4. The fault/disturbance estimation by SMO theory, is used for correction of faulty
sensor outputs to be supplied to the Pr −Qc control block, hence acting additionally
as a fault-tolerant control. This part uses the work of the base paper of the authors of
this study, referred to in [32].

The block diagram of proposed scheme is presented in Figure 1. It comprises a
block containing the Microgrid System Model, along with the PLL Block, injection of
faults/disturbances in sensor outputs, and stable filtering, while also providing augmented
system states and stable filtered outputs. The ’FD Block’ is state/output estimation SMO,
while the FE block performs state/output error estimation SMO. The block tagged ’Reduced
Order Fault Estimation’ performs several calculations along along with computation of
reduced order state error, the block tagged ’Estimated Sensor Fault Computation’ performs
computation of estimated faults/disturbances based on values received from the three
above-mentioned SMO blocks. The ’LMI Optimization’ block in the center performs
computation of m-files based H−, H∞, and H − /H∞ based SMO gains using the convex
optimization of LMIs. The detailed simulink based diagram is presented in Section 5.

Figure 1. Complete block diagram of the used approach.

Section 1 in this work comprises the introduction, literature review, and the approach
of the study. Section 2 gives a brief explanation of the fault model with a brief description of
the current/potential transformers, microgrid system model, and stable filtering. Section 3
gives preliminaries of the SMO theory for detection and estimation of faults and unknown
inputs (disturbances). Section 4 comprises the proposed work with stability analysis and
determination of robust to disturbance and fault sensitive SMO gains. Section 6 presents the
results and discussions. Section 7 presents the references whereas the Appendix A includes
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the proof for the general Schur complement, Hamilton–Jacobi–Bellman-Equation, and
Matlab-based Optimization Algorithms, supporting lemmas including proofs of inequality
version of HJIE, definitions of Hamiltionian, and an explanation of the Riccati equation and
dq/Park/Clark Transformations.

2. System Modeling
2.1. Mathematical Model of Current/Potential Transformer Faults

The study and its scope is general for many types of sensors and their respective con-
nectivity configurations. However, here the current/voltage transformers of a microgrid
are considered as being faulty and perturbed. It considers faults/disturbances occurring in
C.T/P.T, which arise from saturation, causing increased core magnetization current, and
resulting in a reduced secondary current required for switches and relays. The C.T satura-
tion is caused by a DC offset of fault current on the primary side, prior to the fault remnant
flux and cumulative impedance burden of the secondary side, which results from relay
coils and even wires. The C.T sensor is like a ring on the wire, which measures the current
through magnetic flux and flux density, and hence acts as a current sensor, whereas the P.T
is a 1:1 transformer that is used to measure the voltage. Both the current/voltage sensors
are installed on an inductor-capacitor-inductor (LCL) filter to measure the input/output
currents and voltages. The commonly used technical terms are: Hysteresis, Saturation,
and Eddy Currents, etc. [33–35]. The inaccurate C.T/P.T output will result in inaccurate
space vector pulse width modulation (SVPWM) signals and consequently the faulty voltage
source converter (VSC) currents/voltages, which will then not be able to track the desired
active and reactive powers. The faults occurring in C.T/P.T are of composite nature, inclu-
sive of magnitude, phase, and harmonics where normally previous works have considered
only magnitude faults for the sake of simplicity [36]. The mathematical model of faults and
perturbations is serving the existence of the actual C.T/P.T faults comprising of magnitude,
phase and harmonics existing at the same time. So, the fault is considered mathematically
to be considering magnitude and phase and an additive disturbance being a sinusoidal
with different frequency serves as additive harmonics. In this way, the complete model of
faults are being considered in the system, which are added using a Simulink block to be
added in the faultless VSI current/voltage signals. The fault and disturbance mathematical
model is defined as:

f (t)+ ξ(t) = fo ∗ sin(ω1t + φ1) + ξo ∗ sin(ω2t + φ2) (1)

2.2. Mathematical Model of the Microgrid System

A small signal model of MG is used in this work to determine the workability and
efficiency of a fault-tolerant control scheme. The small signal model of MG is claimed to
be properly simulated, experimentally verified, and able to be used as a block in large
grid networks.

The mathematical model of a voltage source inverter based microgrid basically com-
prises of non-linear equations, whose linearized version at the operating point is used
in this work. The complete microgrid model, as proposed by [37] comprises of inverter
equations, LCL filter, droop control equations, PLL, current controller, voltage controller,
SVPWM, and real and reactive power calculation, which all together form a non-linear
model, and needs to be linearized at the operating point. The LCL filters are placed just after
the VSI, as passive filters to manage the current/voltage spikes. The modeling of stray/line
inductances, capacitances, and resistances are also considered with LCL filters, i.e., the
resistors rc and r f are the parasitic resistances of the inductors, a damping resistor Rd is
connected in series with the filter capacitor, however, the capacitor’s ESR is not considered,
as it can be lumped into Rd. The current and potential transformers are mounted on LCL
filter to read the instantaneous current/voltage readings, which are used to calculate the
instantaneous values of real and reactive (Pr, Qc) powers. The inverter model is considered
an average model in his work, i.e., without any major inaccuracies, we can assume that
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the commanded voltage appears at the input of the filter inductor i.e., V idq∗ = V idq. This
approach neglects only the losses in the IGBT and diodes. The LCL part of the whole system
mathematically modeled with KCL/KVL along with average VSI model, is considered as a
required part of the complete mathematical model to design the SM observer because it is
placed right after VSI, and C.T/P.T are also mounted on them to read the instantaneous
values of input/output currents/voltages. Therefore, if there is no fault in the sensors
(C.T/P.T) of the system, the model and the actual system states/outputs are compromised
and are showing no difference. The Simulink based model is shown in Figure 2.

Remark 1. The considered required part of the MG system is a continuous time LTI system, which
follows the separable principle, i.e., the controller and observer can work in combination with each
other, i.e., the unknown system input/output states required for the control action can be determined
using the observer. The pair (As, Cs) are observable, Cs is full rank output matrix, the matrices
(As, Cs, Es) have no invariant zeros, which is satisfied if outputs are more than inputs, i.e., (p > m).
For the considered microgrid case p = 4 and m = 2. The fault and disturbance distribution matrices
Es = Ds are simply the identity matrices in the considered microgrid application.

Definition 1 (Separation Principle). For the deterministic linear systems, if an observer and a
stable state feedback are designed for a linear time-invariant system, then the combined observer and
feedback are stable.

Therefore, the linearized mathematical model of considered MG from [37] is given
as under. i̇i

i̇o
v̇o

 =

 −r f /L f 0 −1/L f
0 rc/Lc 1/Lc

1/C f − r f Rd/L f −(1/C f − rcRd/Lc) −(Rd/L f + Rd/Lc)

 ii
io
vo

+

1/L f
0

1/L f

vi +

 0
−1/Lc
Rd/Lc

vg (2)

where vi is the input (inverter) voltage, vg is the grid voltage, Lc, L f , C f are the LCL filter
inductances and capacitances, respectively.

The abc-dq0 transformation is defined as a combination of Clark and Park transfor-
mation to convert a three phase voltage/current into effectively a two phase form. Some
explanation of the said transformations are given in Appendix A.

For any signal s(t)

sd
sq
s0

 ,
√

2/3


cos(θ) cos(θ − 2π

3
) cos(θ +

2π

3
)

−sin(θ) −sin(θ − 2π

3
) −sin(θ +

2π

3
)

√
2/2

√
2/2

√
2/2


sa

sb
sc

 (3)

A PLL is required to measure the actual frequency of the system. A dq based PLL was
chosen, where the PLL input is the d-axis component of the voltage measured across the
filter capacitor. Therefore, the phase is locked, such that Vod = 0. The grid side voltage
angle is measured by PLL in our problem, and then according to convention that angle is
used for all abc-dq and vice versa transformations, which is needed in the system.

The system model in Equation (2) in dq transformed form is

As =



−r f
L f

WpLL 0 0 −1
L f

0

wpLL
r f
L f

0 0 0 −1
L f

0 0 −rc
Lc

wpLL
1
Lc

0
0 0 −wpLL

−rc
Lc

0 1
Lc

1
C f
− r f Rd

L f
wpLLRd

−1
C f

+ rc Rd
Lc

−wpLLRd −(wpLL + Rd
L f

+ Rd
Lc
) 0

−wpLLRd
1

C f
− r f Rd

L f
wpLLRd

−1
C f

+ rc Rd
Lc

0 −(wpLL + Rd
L f

+ Rd
Lc
)


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Bs =



1/L f 0
0 1/L f
0 0
0 0

Rd/L f 0
0 Rd/L f


, Bg =



0 0
0 0

−1/Lc 0
0 −1/Lc

Rd/Lc 0
0 Rd/Lc

, Cs =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, Es = Ds


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



xs = [Iid, Iiq, Iod, Ioq, Vod, Voq]
T , u = [Vid, Viq]

T , w = [Vgd, Vgq]
T , f = [ fid

, fiq , fvd , fvq ]
T , ξ = [ξid

, ξiq , ξvd , ξid
]T

The dq axis output voltage and current measurements are used to calculate the instan-
taneous active power (Pr) and reactive power (Qc) generated by the inverter.

Pr = 3/2(Vod Iod + Voq Ioq) (4)

Qc = 3/2(Voq Iod˘−Vod Ioq) (5)

where Vod, Voq, Iod, Ioq are the d and q components of sensor (C.T/P.T) output volt-
ages/currents. Instantaneous powers are then passed through low pass filters with the
corner frequency ωc to obtain the filtered output power.

The general state-space form of the system is:

ẋs = Asxs + Bsu + Bgw (6)

ys = Csxs + Es f + Dsξ (7)

The dimensions of vectors in a general form are xs ∈ <n∗1, xh ∈ <p∗1, u ∈ <m∗1,
w ∈ <m∗1, ys ∈ <p∗1, f ∈ <q∗1, ξ ∈ <q∗1, dimensions of system matrix, actuator matrix,
grid side dynamics matrix, output matrix and stable filter matrix, respectively, are As ∈
<n∗n, Bs ∈ <n∗m, Bg ∈ <n∗m and Cs ∈ <p∗n i.e., [0p∗(n−p), Ip∗p]; whereas dimensions of
fault and disturbance distribution matrices with full row and column rank are Es ∈ <q∗q =
Iq∗q and Ds ∈ <q∗q = Iq∗q respectively, where n ≥ p ≥ q.

Since the norm of generally any vector x is defined by

‖x‖ ,
√

xT x

The boundedness of fault and disturbance magnitudes is shown in terms of norm as:
‖ f‖ ≤ α and ‖ξ‖ < ξo which along with the above-mentioned matrix dimensions are the
design requirements.
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Figure 2. Wired microgrid model.
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2.3. Stable Filtering and Augmented System

Stable Filter lessens (scales down) the magnified effect of faults and disturbances on the
grid system output variables. Such filters are also used to magnify the undetectably small
magnitude faults. In other words, the stable filter, as used in Equation (8), is used to make
the output least dependent on faults along with providing magnification of insignificantly
small faults. Then, since this scaled output state variable with the information of only
faulty sensors is augmented with the system states’ variable, which itself also involves
the output states, but which are unscaled. In this way, the stable filtering also gives the
isolation of faulty sensors, which is required for proper diagnosis process. In some cases, a
stable filter can be simply a positive definite (PD) stable identity matrix with eigen-values
in the left half plane, or a first order filter to suppress the high frequency noise effects in
the output signal for some applications. According to the used approach, the sensor faults
and disturbances appear in the output equation and the actuator faults appear in the state
equation. The faulty output variables of interest are also the part of state variable, which
are replicated on a stable filtered output equation but in the scaled form. So it can also
be stated that the method to detect isolated faulty actuator faults is also extended for the
detection of sensor faults using the SMO Theory. It also helps to replicate the techniques
used earlier in [9] for actuator faults to be used for sensor faults, appearing in the output
equation only.

ẋh = −Ahxh + Ahys (8)

where Ah ∈ <p∗p is the stable filter matrix

ẋh = −Ahxh + AhCsxs + AhEs f + AhDsξ (9)

For the sake of convenience and easy handling in a compact form, the system model,
i.e., the states, are augmented with a stable filtered output. The augmented system is[

ẋs
ẋh

]
=

[
As 0

AhCs −Ah

][
xs
xh

]
+

[
Bs Bg
0 0

][
u
w

]
+

[
0

AhEs

]
f +

[
0

AhDs

]
ξ (10)

ẋc = Acxc + Bcuc + Ec f + Dcξ (11)

yc = Ccxc (12)

where yc ∈ <p∗1

yc =
[
0 I

][xs
xh

]
(13)

where xc =

[
xs
xh

]
, uc =

[
u
w

]
, Ac =

[
As 0

AhCs −Ah

]
, Bc =

[
Bs Bg
0 0

]
, Ec =

[
0

AhEs

]
and

Dc =

[
0

AhDs

]
.

The dimensions of the vectors are xh ∈ <p∗1, xc ∈ <nc∗1, uc ∈ <2m∗1 whereas the
dimensions of augmented system matrices are Ac ∈ <nc∗nc , Bc ∈ <nc∗pc , Cc ∈ <pc∗nc i.e.,
[0pc∗(nc−pc), Ipc∗pc ], AhEs = Eo ∈ <q∗q, AhDs = Do ∈ <q∗q, where Ec ∈ <nc∗qc , Dc ∈ <nc∗qc

are the fault and disturbance distribution matrices, respectively, in the augmented system,

such that Ec = Dc =

[
0n∗p
Ip∗p

]
and for the considered augmented MG system nc = n+ p = 10,

pc = p = 4, qc = q = 4.

Remark 2. As shown by [9] since rank(CcEc) ≤ q, the invariant zeros of (Ac, Ec, Cc) ⊆ λ(As),
so if the open loop system is stable, the system (Ac, Ec, Cc) will be minimum phase. In other words,
if the system has more outputs then inputs, i.e., p ≥ q, then it is expected that the system will not
have any invariant zeros.
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3. Fault Diagnosis Using SMOs (Preliminaries)

The phrase ’fault diagnosis’ in literature refers to three main objectives: namely,
detection, isolation, and estimation of faults in the system [27]. Since the detection of
faults is not sufficient in most of the cases, instead it also requires isolation of the fault
location along with an estimation of faults to manage the corrective mechanism to ensure
protection of the systems. The mentioned objectives are fulfilled using methods that are
categorized into four main classes: signal-based, model-based, parameter estimation-based,
and observer-based approaches of fault diagnosis [28–31].

By concept and application, the observer system gets the same inputs as system i.e.,
(u and w) with the input distribution matrices (Bs, Bg), system distribution applies on the
estimated state and Luenberger gain (Go) applies on stable filtered output estimation error
(eo) term along with switch term gains (Gm and γ) also influencing the eo in a switch mode,
and all in combination try to form the observer to replicate the system properly.

Remark 3 (Role of Luenberger Gain/How SMO is Different from Ordinary Luenberger
Gain Observer). This gain Go is the main controlling matrix parameter used to manipulate the
output estimation error (eo) to manipulate the observer system to replicate the system properly,
in order to give a proper estimation of the states/outputs. The first order SMO filter is different
from ordinary Luenberger observer in a way, as it involves a switch discontinuous term (ψ) that is
multiplied with another gain Gm, which is also related to Luenberger gain in terms of some common
matrices. The switch discontinuous term possesses another constrained internal gain (γ) and both
are multiplied with stable filtered output error term (eo). It helps the estimated states to track the
actual states in a more effective way in a finite time, which is specifically termed as achieving the
sliding mode. In sliding mode, a chattering path is followed (due to the discontinuous term) on the
phase plane plot (i.e., the graph between eo and deo/dt) to approach to zero stable filtered output
estimation error. This is done by considering the SMO in terms of error system, and considering
the error surface to be a sliding surface in this SMO with error surface (variable). The same SMO
is used to estimate/ reconstruct the faults after having achieved the sliding surface, i.e., output
estimation error to be approaching ero in the finite time, which not only ensures the reachability of
error estimator SMO, but also the stability of the fault estimation process in the finite time.

Fault Detection and State Error Estimation with SMO

SMO is used for fault diagnostics, i.e., the detection and isolation of faults by estimation
of states/outputs for the considered case, i.e., MG application. The isolation property in a
literal sense localizes the faulty sensors in the system; however, for the considered case,
isolation and estimation are both performed by the fault estimation SMO. The standard
first order SMO is given as proposed by [9,38,39], according to which the estimated states
of the MG system are

ẋo = Acxo + Bcuc + Goeo + Gmψ (14)

where xo =

[
xs
∗

xh
∗

]
∈ <nc∗1 is the estimated state vector, which is an augmented vector of

estimated system states xs
∗ ∈ <n∗1 and estimated stable filtered output x∗h ∈ <

p∗1. The
matrix Go ∈ <nc∗pc is the SMO Luenberger gain of output error injection term eo ∈ <p∗1,
which ensures that the stability of the term (Ao = Ac − GoCc) and Gm ∈ <nc∗pc is the
SMO gain of discontinuous switching term (ψ), where both Gm,Gm need to be determined.
The proposed form of (ψ) term is (ψ = −γ Poeo

‖Poeo‖ ), where the factor (γ) is appropriately
chosen as a constant gain factor depending on the application under consideration and

the needs to be determined. The gain Gm is proposed to be of the form Gm =

[
−LTT

TT

]
,

where T ∈ <q∗q is an orthogonal matrix that can be determined by QR factorization,
however, the matrices, L and Po are sub parts of a PD Lyapunov matrix P > 0, which

is proposed to be in the form of P =

[
P1 P1L

LT P1 TT PoT + LT P1L

]
> 0, where the matrices
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P ∈ <nc∗nc , P1 ∈ <n∗n, Po ∈ <p∗p, T ∈ <p∗p, L ∈ <n∗p are to be determined [40]. The
Luenberger gain Go is actually also determined from the Lyapunov matrix P, as its working
will be explained in detail in the next section.

The state estimation error is determined by taking the difference of the system states
as determined from the mathematical model in (11) and the estimated states based on SMO
in Equation (14).

ed = e = xo− xc (15)

The estimated output states of the system are given by

yo = Ccxo (16)

whereas the term eo is the output estimation error

eo = yo− yc (17)

The output estimation error being the residual signal, which can be defined in terms
of augmented error term e

eo = r(t) = Cc(xc − xo) = Cce (18)

and

Ac =

[
A11 A12
A21 A22

]
, xo =

[
xs

o

xh
o

]
Since eo is not the actual output error, but rather the (scaled) stable filtered output error,

the empirical suggestion is to use the form of ψ in Equation (18) instead of its normalized
(scaled) version for the MG application.

ψ = −γ ∗ Poeo (19)

Remark 4. As shown in [9], the observer, as mentioned in Equation (14), is completely insensitive
to faults ( f ) exits if:
1- Rank(CcEc) = q;
2- The invariant zeros of the system triple (Ac, Ec, Cc) lie in Left Half Plane (LHP)

Using Equation (15), the state estimation error SMO is

ė = Ace− Ec f − Dcξ − Goeo + Gmψ (20)

Using Equation (18) its takes the form

ė = (Ac − GoCc)e− Ec f − Dcξ + Gmψ (21)

where, Ao = Ac − GoCc ∈ <nc∗nc , e ∈ <nc∗1

The above Equations (20) or (21) are also a standard SMO ([38]), being applied on an
error system for state error estimation, where the error surface is the sliding surface. The
error state is further used for fault estimation. Since the error system is an augmented form
of state and the stable filtered output error, i.e.,[

ės
ėo

]
=

[
A11 A12
A21 A22

][
es
eo

]
−
[

G1
G2

]
eo−

[
0
Eo

]
f −

[
0

Do

]
ξ −

[
LTT

TT

]
ψ (22)

where

e =
[

es
eo

]
; Go =

[
G1
G2

]
; Ec =

[
0
Eo

]
; Gm =

[
LTT

TT

]
The dimensions of vectors and matrices in general form are es ∈ Rn∗1, eo ∈ Rp∗1,

ψ ∈ Rq∗1, f ∈ Rq∗1, ξ ∈ Rq∗1, A11 ∈ Rn∗n, A12 ∈ Rn∗p, A21 ∈ Rp∗n, A11 ∈ Rp∗p, Do ∈ Rq∗q,
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Eo ∈ Rq∗q, Go ∈ Rnc∗p,G1 ∈ $Rn∗p, G2 ∈ Rp∗p, L ∈ Rn∗p, T ∈ Rq∗q whereas for the MG
system considered n = 6, p = 4, q = 4, m = 2, nc = n + p = 10, mc = m = 2, pc = p =
4, qc = q = 4.

The next section is focused on stability analysis of the proposed observers for the MG
system, as well as the following gains of fault detection and fault estimation observers,
which are determined.

4. Stability Analysis and Determination of Robust to Disturbance/Fault Sensitive
SMO Gains

Lemma 1. For general stability analysis of SMOs, using Proposition (1) from [32], if (Go) is the
gain of SMO for output estimation error injection term (eo), Gm the SMO gain of discontinuous

control term (ψ) is proposed to be of the form Gm =

[
−LTT

TT

]
, the constant gain (γ) of (ψ) term is

constrained as (γ ≥ ηo − ‖Eo‖α1) where (η > 0) and P is a positive definite matrix, i.e., (P > 0)
of the form

P =

[
P1 P1L

LT P1 TT PoT + LT P1L

]
> 0,

which satisfies (PAo + AT
o P < 0), then the estimation error e(t) is asymptotically stable.

Remark 5. The Lyapunov matrix (P) is basically manipulating the energy of the error estimation
system, i.e., eTe, as P is used as the scaling matrix in the Lyapunov function. i.e., V = eT Pe, which
requires to be proved positive definite, i.e., the one with Eigen-values in the left half plane ensuring
stability. Similarly, the first derivative needs to be proved to be negative or semi negative definite
according to Lyapunov theory to prove its stability. The equation for dV/dt is mathematically ma-
nipulated to make the inequalities, and the vector algebraic inequality is transformed to LMIs, which
are convex optimized using the MATLAB toolbox to determine the unknown design Lyapunov ma-
trix P (with a higher degree of freedom being in the inequality form of Lyapunov equation fromwhich
it is determined). It is important due to the reason that the gains of SMO (Go and Gm) are deter-
mined from the Lyapunov matrix (P), which ensures the proper state/output/error/fault/disturbance
estimation by achieving the sliding mode required for suitable estimation process. The convex
optimization tools and solvers are mentioned in Appendix A.4.

Now we have to analyze the system using the criteria of robustness to disturbance H∞,
the criteria of sensitivity to faults H−, and the compromised criteria H − /H∞ for fault
diagnosis and tolerance analysis. The theory depends more on Game Theoretic estimation
being utilized in Hamilton–Jacobi–Isaacs-Equation (HJIE) and to convert the equalities to
inequalities for better handling and more design freedom.

4.1. H∞ Robustness Analysis

Lemma 2. According to Problem 3.1 in [27], for the system defined in Equation (11), the maximum
robustness attenuation problem

H∞ = sup[ f=0,ξ 6=0]
‖rK‖2,[0,t]

‖ξ‖2,[0,t]
≤ α (23)

is satisfied, if the cost functional

Ho(Go, ξ) =
∫
(rK

TrK − α2ξTξ)dt; ( f or) f = 0 (24)

is smaller than or equal to zero for any possible disturbance, where (α) is (H∞) parameter and
residual signal (rK = Kr(t) = KCce) in this case is state estimation error. The problem is now
viewed/explained as two player zero sum differential game with the above defined cost functional
in Equation (24), where the maximizing player tries to maximize the functional through ξ and the
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minimizing player minimizes the functional through (Go, Gm). Then, using the concepts of dynamic
game theory, the cost function in Equation (24) gives the pair of strategies (G∗o , ξ∗), providing a
saddle-point solution

Ho(Go, ξ∗) ≤ Ho(G∗o , ξ∗) ≤ Ho(G∗o , ξ) (25)

Definition 2 (Saddle Point). In mathematics, a minimax point or saddle point is a point on the
surface of the graph of a function where the slopes (derivatives) in the orthogonal directions are all
zero (a critical point), but which is not a local extremum of the function. The saddle point of the
problem is taken in terms of cost functionals.

Its mathematical details are shifted in the Appendix A.

Lemma 3. Considering the cost functional of disturbance attenuation problem from Equation (24),
constraining (Ho(Go, ξ) < 0) and using the definition, for any general state x∗

dV1(x∗, t)
dt

=
∂V1(x∗, t)

∂t
+

∂V1(x∗, t)
∂x∗

∂x∗

∂t

The inequality version of HJI equation , as mentioned in Equation (A4) in Lemma A1 of Appendix A.5, is

−∂V1(x∗(t), t)
∂t

≤ ∂V1(x∗, t)
∂x∗

ẋ∗ + rK
TrK − α2ξTξ (26)

Remark 6. The derivation for H∞ constrained inequality version of HJIE is given in Lemma A3
in Appendix A.5. The problem can be studied in detail in [27–29].

Remark 7. Considering Appendix A.5, using the HJIE in Equations (A4) and (A7), the Hamil-
tonians in Equations (A5) and (A7) and the disturbance attenuation/fault sensitivity constraints
in Equations (24) and (35), the analytical solution for gain Go will be dependent on states that are
undesired (theoretically by Luenberger linear observer theory). However, the inequality version of
HJIE will give more freedom in choosing the Lyapunov function V1(e, t) and hence more freedom in
the design of the sliding mode observer gain Go being state independent.

Remark 8. Approach of Using HJIE, H∞, H− and Game Theory in This Study:
The approach used here is to design the observers for linear/non-linear systems based on

game theoretic saddle point estimation. The H∞ and H− parameters deal with the extreme cases
in a way that they provide robustness to worst case disturbances and sensitivity to minimum
faults. These parameters in inequality form are similar in nature to the saddle point of the game
theory, as described by Equations (25) and (36). The H∞ and H− constraints are also part of the
Hamiltonians (in Equations (A5) and (A7) in Appendix A.5) along with the Lyapunov (energy)
function. According to the approach used by [27], the Hamiltonian and its derivative w.r.t faults
( f )/disturbances (ξ)/SMO gain (Go) following the H∞ and H− constraints can let us determine
the optimal values of faults/disturbances, i.e., ( f ∗, ξ∗, Go), by its minimization. However, this work
instead uses the approach that the H∞ constraint in inequality form, inspired by the saddle point, is
manipulated to form the inequality version of HJIE, which has the Hamiltonian incorporated in it
as well.

The resulting HJIE consists of the faults/disturbances, Lyapunov function, and out-
put estimation error (eo) as variables. The inequality version of this HJIE not only en-
sures Lyapunov stability but also gives the LMIs, which are convex and optimized using
the MATLAB toolbox to find the optimized SMO gains, which are used to estimate the
states/outputs/state errors.

The game theoretic saddle point’s approach for incorporating the H∞ and H− norms
also has the application for the considered faulty and perturbed systems due to the rea-
son that faults and disturbances are unknown. In this case the worst case fault and
disturbance values are used for observer/filter designs for robust residual generation
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and fault/disturbance estimations. The SMO in reduced order is used to reconstruct
faults/disturbances, while following the constraints of fault-detection-sensitivity and re-
jecting the effects of disturbances through the observer gains. The proof for HJIE and some
more details are given in the appendix in Appendix A.3.

Theorem 1. If V1 defines the positive definite Lyapunov function which satisfies the HJIE in
Equation (26) constrained with disturbance attenuation problem defined in Equation (24), then the
Lyapunov function in vector form gives

LMI LRD =

(Ac − GoCc)Q + Q(Ac − GoCc) + CT
a FCa −3QEc −QDc

−ET
c Q 0 0

−DT
c Q 0 −α2 I

 ≤ 0

which is a convex optimized iteratively to give a robust set value of the worst case disturbance SMO
gain defined by Go = Q−1CT

c F′−1.

Proof. Considering the general HJIE in Equation (26) with the cost functional in Equa-
tion (24) to ensure maximum robustness to a worst case disturbance

∂V1(e(t), t)
∂t

+
∂V1(e(t), t)

∂e
ė + rK

TrK − α2ξTξ ≤ 0

Since (V1 = eTQe) and (
∂V1(e, t)

∂t
= V̇1(e, t) = ˙eTQe + eTQė)

Using the above given H∞ constrained HJIE equation

˙eTQe + eTQė + (2 ˙eT)Qe− α2ξTξ + eTCT
c KTKCce ≤ 0 (27)

where KTK = F′ =
[

0
F

]
and the matrix F ∈ Rp∗p as the sub part of matrix K

˙eTQe + 3eTQė− α2ξTξ + eTCT
c F′Cce ≤ 0 (28)

Substituting equations for ė

eT(Ac − GoCc)
TQe + 3eTQ(Ac − GoCc)e− f TET

c Pe− ξT DT
c Qe + ψGT

n Qe

− 3eTQEc f − 3eTQDcξ + 3eTQGnψ + eTCT
c F′Cce− α2ξTξ ≤ 0 (29)

The inequality in vector form gives:

[
eT f T ξT

](Ac − GoCc)Q + Q(Ac − GoCc) + CT
c F′Cc 3QEc −QDc

−ET
c Q 0 0

−DT
c Q 0 −α2 I

e
f
ξ

 ≤ 0

(30)
The LMI obtained from the vector Lyapunov equation is

LRD =

(Ac − GoCc)Q + P(Ac − GoCc) + CT
c F′Cc 3QEc −QDc

−ET
c Q 0 0

−DT
c Q 0 −α2 I

 ≤ 0 (31)

As according to the cost functional in Equation (24) f = 0, dropping the disturbance
terms gives the LMI[

(Ac − GoCc)Q + Q(Ac − GoCc) + CT
c F′Cc −QDc

−DT
c Q −α2 I

]
≤ 0 (32)

Remark 9. The LMIs obtained using the above process are processed further with an algebraic
Riccati equation according to Theorem (2) in [32] to avoid optimization infeasibility issues with
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(H∞) criterion LMIs, specific to the system. The definition and a brief mathematical explanation of
the Riccati equation is given in Definition A1 in Appendix A.6

The modified LMI is thus given by

LRDO =

[
AcQ + QAc − 3YCc −QDc

−DT
c Q −3α2 I

]
≤ 0 (33)

where Y = QGo
The LMI is solved by iterative convex optimization to determine the robust to disturbance

sliding mode observer gains. The tools and solvers used are mentioned in Appendix A.4

4.2. H−Minimum Fault Sensitivity Analysis

Lemma 4. According to Problem 3.2 in [27], for the system defined in Equation (11), the maximum
sensitivity to minimum fault problem

in f[ξ=0, f 6=0]
‖rK‖2,[0,t]

‖ f‖2,[0,t]
≥ β2 (34)

is satisfied, if the cost functional

Ho(Go, f ) =
∫
(rK

TrK − β f T f )dt; (ξ = 0) (35)

is greater than or equal to zero for each possible fault. This can be viewed as a two player zero-sum
differential game with the cost functional. The minimizing player tries to minimize the functional
through f and the maximizing player maximizes the functional through Go. Then, using the concepts
of dynamic game theory, the cost functional in Equation (35) gives the pair of strategies (H∗, f ∗),
providing a saddle-point solution, i.e.,

Ho(Go, f ∗) ≤ Ho(G∗o , f ∗) ≤ Ho(G∗o , f ) (36)

Its mathematical detail is also shifted in the appendix .

Lemma 5. Considering the cost functional of fault sensitivity problem from Equation (35), con-
straining (Ho(Go, f ) < 0) and using the definition, for any general state x∗

dV2(x∗, t)
dt

=
∂V2(x∗, t)

∂t
+

∂V2(x∗, t)
∂x∗

∂x∗

∂t

The inequality version of the HJIE Equation in (37) is

−∂V2(e(t), t)
∂t

≤ ∂V2(e(t), t)
∂e

ė + rK
TrK − β2 f T f (37)

Remark 10. The mathematical proof for the H− constrained inequality version of HJIE is given in
Lemma A4 in Appendix A.5. The problem can be studied in detail in [27–29].

Theorem 2. If V2 defines the positive definite Lyapunov function that satisfies the HJIE in Equa-
tion (37) constrained with the maximum sensitivity of the minimum set fault problem defined in
Equation (35), then the Lyapunov function in vector form gives LMI

LSF =

−(Ac − GoCc)P− P(Ac − GoCc)− CT
c F′Cc 3PEc PDc

ET
c P β2 I 0

DT
c P 0 0

 ≤ 0

which in a reduced form is a convex optimized iteratively to give a sensitive set value of minimum
case fault SMO gain defined by Go = P−1CT

c F′−1
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Proof. Considering the general HJIE in Equation (37) with the cost functional in Equa-
tion (35) to ensure maximum sensitivity to minimum case fault

−∂V2(e(t), t)
∂t

≤ ∂V2(e(t), t)
∂e

ė + rK
TrK − β2 f T f

Since (V2 = eT Pe) and (
∂V2(e, t)

∂t
= V̇2(e, t) = ˙eT Pe + eT Pė)

Using the above given H− constrained HJIE equation

˙eT Pe + eT Pė ≤ (2 ˙eT)Pe− β2 f T f + eTCT
c KTKCce (38)

˙eT Pe + 3eT Pė + eTCT
c F′Cce− β2 f T f ≥ 0 (39)

− ˙eT Pe− 3eT Pė− eTCT
c F′Cce + β2 f T f ≤ 0 (40)

Substituting equations for ė

3eT(Ac − GoCc)Pe + 3eT P(Ac − GoCc)e− f TET
c Pe− ξT DT

c Pe + ψGT
n Pe−

3eT PEc f − 3eT PDcξ + 3eT PGnψ + eTCT
c F′Cce− β2 f T f ≤ 0 (41)

The inequality in vector form gives

[
eT f T ξT

]−(Ac − GoCc)P− P(Ac − GoCc)− CT
c F′Cc 3PEc PDc

ET
c P β2 I 0

DT
c P 0 0

e
f
ξ

 ≤ 0 (42)

The LMI obtained from the vector Lyapunov equation is

LSF =

−(Ac − GoCc)P− P(Ac − GoCc)− CT
c F′Cc 3PEc PDc

ET
c P β2 I 0

DT
c P 0 0

 ≤ 0 (43)

According to the cost functional in Equation (35) ξ = 0, then dropping the disturbance
terms makes the LMI optimized

LSFO =

[
−(Ac − GoCc)P− P(Ac − GoCc)− CT

c F′Cc PEc
ET

c P β2 I

]
≤ 0 (44)

The LMI is solved by iterative convex optimization to determine the fault sensitive
sliding mode observer gains.

4.3. Theorem 3: H − /H∞ Criteria Based on HJIE for Observer Design

If V1 = eT Pe and V2 = eTQe define the positive definite Lyapunov functions that
satisfy the HJIEs in Equations (26) and (37) constrained with disturbance attenuation and
minimum sensitivity problems defined in Equations (24) and (35), respectively, then the
Lyapunov functions in vector form gives LMIs

LSF =

−(Ac − GoCc)P− P(Ac − GoCc)− CT
c F′Cc 3PEc PDc

ET
c P β2 I 0

DT
c P 0 0

 ≤ 0

and LRD =

(Ac − GoCc)Q + Q(Ac − GoCc) + CT
c F′Cc 3QEc −QDc

−ET
c Q 0 0

−DT
c Q 0 α2 I

 ≤ 0 which in a

modified and reduced form are a convex optimized iteratively as a mixed problem to give
a compromised form of SMO gains Go and Gm, which possesses robustness to worst case
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disturbance along with sensitivity to minimum fault at the same time. The Luenberger gain
Go is defined by Go = P−1CT

c F′−1 in Theorem 1.

Proof. Considering the general HJIEs in Equations (26) and (37) with cost functions in
Equations (24) and (35) to ensure maximum robustness to worst case disturbance and
sensitivity to minimum fault at the same time

Let, if the Lyapunov functions in terms of positive definite matrices, (P > 0) and
(Q > 0) be V1 = eT Pe and V2 = eTQe.

Using the H− constrained HJIE inequality version (37) and vector form from Equa-
tion (43)

−3eT(Ac−GoCc)Pe− 3eT P(Ac−GoCc)e+ f TET
c Pe+ ξT DT

c Pe−ψGT
n Pe− 3eT PEc f −

3eT PDcξ − 3eT PGnψ− eTCT
c F′Cce + β2 f T f ≤ 0

[
eT f T ξT

]−(Ac − GoCc)P− P(Ac − GoCc)− CT
c F′Cc 3PEc PDc

ET
c P β2 I 0

DT
c P 0 0

e
f
ξ

 ≤ 0

Using the H∞ constrained HJIE inequality version (26) and vector form from Equa-
tion (31)

eT(Ac−GoCc)TQe+ 3eTQ(Ac−GoCc)e− f TET
c Pe− ξT DT

c Qe+ψGT
n Qe+ 3eT PEc f −

3eT PDcξ + 3eT PGnψ + eTCT
c F′Cce− α2ξTξ ≤ 0

[
eT f T ξT

](Ac − GoCc)Q + Q(Ac − GoCc) + CT
c F′Cc −3QEc −QDc

−ET
c Q 0 0

−DT
c Q 0 −α2 I

e
f
ξ

 ≤ 0

the LMIs obtained for the mixed H − /H∞ problem are the same as given by Equations
(44) and (33)

LSF =

−(Ac − GoCc)P− P(Ac − GoCc)− CT
c F′Cc 3PEc PDc

ET
c P β2 I 0

DT
c P 0 0

 ≤ 0

LRD =

(Ac − GoCc)Q + Q(Ac − GoCc) + CT
c F′Cc −3QEc −QDc

−ET
c Q 0 0

−DT
c Q 0 −α2 I

 ≤ 0

The LMIs to be optimized in reduced and modified forms are given in Equations (33)
and (44) to give gains of SMOs following the mixed constraint, i.e., are sensitive to faults
and robust to disturbance at the same time.

Remark 11. According to Algorithm 5.1.1 in [29] for the mixed problem with H − /H∞ con-
straint, both inequalities are taken either greater than zero or less than zero with signs of terms being
reversed for one of the constraints according to the HJIE equation, so that LMI optimization stays
possible along with a condition on Lyapunov matrices as P = Q.

Remark 12. The algorithm used for optimization is in [29], which mainly imposes the condition
on Lyapunov matrices P=Q.

Lemma 6. Using Theorem 3 in [32] if the state estimation error system (22) is transformed by
transformation matrix

TL =

[
In−p L

0 T

]
(45)

to induce reduced order sliding motion on estimation SMO, the design Lyapunov matrix is con-
strained as (PoT(A22 − G2) + (AT

22 − GT
2 )T

T Po < 0) and if reduced order sliding motion is
governed by σ(eo) = {eo : Ceo = 0}, such that the fault and disturbance magnitude is bounded,
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i.e., (‖ f‖ < fo) and (‖ξ‖ ≤ ξo) and the gain factor (γ) for output error injection term is bounded
by (γ ≥ ‖TĀ21‖‖es‖− ‖TEo‖αo −‖TDo‖ξo + η), then it will be ensured that the fault detection
and estimation SMOs utilized for MG system are completely stable in terms of Lyapunov criteria
and ensure finite time reachability of sliding motion. The finite time of reachability to sliding surface
is given by

TR ≤
√

eoT Poeo

λmin(P−1
o )

(46)

Lemma 7. Using Corollary 1 in [32], considering the MG system in Equation (11) and the observer
system in Equation (14), if the LMI optimization matrix described in Theorems 1 or 2 is solved to
determine SMO gains, the error system in Equation (22) after being transformed by matrix in Equa-
tion (45) gives reduced order error system„ and if the stability of observers is ensured by constant gain
of output injection term γ, which is constrained to satisfy
(γ ≥ ‖TĀ21‖‖es‖ − ‖TEo‖α− ‖TDo‖ξo + η), where β is a scaling constant, then the sensor
fault ( f ∗) and disturbance (ξ∗) can be estimated as

f ∗ = S f E−1
o T−1ψeq (47)

ξ∗ = f − f ∗ − E−1
o T−1 A21es (48)

where S f is a fault scaling constant.

Remark 13. Lemmas 6 and 7 are based on the base paper by the same authors [32].

Comment 1: The FTC approach is a requirement of simulation, and hence it is part of
the paper along with diagnosis analysis, but its not the part of this investigation. Therefore,
it is also used in a similar way as in [32]. The simulation result is included in the results.

5. FTC Approach/Working

The estimated faults by using SMOs are added/subtracted from the faulty sensor
readings and the corrected values are fed to the PI based control block, which is also
working for the common microgrid problems, i.e., balancing the voltage and frequency sags.
However, this work does not contribute to the control block, except to provide corrections
in faulty sensor readings by using robust and fault sensitive faults/ disturbances estimators.
The accurate fault estimation/reconstruction will provide the correction closest to the actual
one, which is added/subtracted to the faulty sensor readings to get the actual one. So, the
fault tolerance surely depends upon accurate fault estimation and least fault estimation
error in the results and discussion section. The estimated fault is subtracted from the faulty
sensors’ output vector.

Yc = Ys − E ∗ f ∗ (49)

where f ∗ is the estimated fault and Yu is the vector of faulty sensor outputs, and Yc is
the corrected sensor outputs vector. The complete working of the system and proposed
solution is shown in the Simulink-based detailed block diagram in Figure 3.
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Figure 3. Simulink-based detailed block diagram of the used approach.
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Remark 14. The above equation shows that the working and effectiveness of fault tolerance depends
on accurate fault estimation. The accurateness of fault estimation can be observed in the fault
estimation errors with fault estimation performed with various constrained SMOs. The fault
estimation error graphs for voltage/currents are given in figures in the results and discussions
section.

Remark 15. The contribution of this work is not to consider the voltage and frequency sags/droops
occurring in the islanded/grid-connected microgrid, but instead we have considered the faults of
C.T/P.T, which are rectified using the SMOs for fault detection and estimation. The estimated faults
are given as corrections of the faulty sensor readings, and in this way the software based sensor
serves as a replacement sensor and the corrected readings are used by the control block to serve as a
controller for voltage-frequency sags as well.

The procedure for complete observer based FTC approach as given by Figure 3 is
explained in Algorithm 1.

Algorithm 1. Algorithm of the Procedure.
Inputs: u, w, f , ξ
Outputs: Matrix P, Gains (Go, Gm), xs, ys, xo, yo, e, eo, γ, Ψeq, es, f ∗, ξ∗

while (For the given Time of simulation/process)
START:

1: d-q-0 transform the linearized system model Equation (2) by Equation (3);
2: Take converter/grid voltages (u, w) from Simulink hard wired microgrid model

in Figure 2;
3: Generate the faults and disturbances to be added (representing) sensor/C.T/P.T

faults;
4: Give voltages (u, w) as inputs to the Simulink-based mathematical model of a

microgrid, in Equation (6);
5: Add faults/disturbances ( f , ξ) to the output equation of the system represented

by Equation (7);
6: Pass the faulty system output in Equation (6) from a stable filter defined in

Equations (8) and (9) to reduce the magnified effect of faults and disturbances;
7: Augment the system states with stable filtered output, as done in Equations (10)

and (11);
8: Pass the augmented system state from state/output estimator SMO in

Equation (14);
9: Determine the augmented (state/stable filtered output) estimation error by

taking the difference between system and observer states/outputs as defined in
Equation (15);

10: Use H− constraint mentioned in Equation (35) (β parameter is worst case/
minimal fault in Equation (34)) in HJIE in Equation (37) (to fulfill the saddle point
requirement);

<H∞ constraint in parallel is given by Equation (23), the worst case disturbance
upper bound in Equation (24), and the respective HJIE in Equation (26)>;

11: Determine the constrained LMIs from the above equation in vector form as
defined in (44) for H− and Equation (32) for H∞;

12: Convex feasibility and optimize the constrained LMI given in Equation (44) (for
H− constraint) and Equation (32) (for H∞ constraint) using the function ‘feasp’ in the
Appendix A.4 to find the optimal gain G∗o as defined in the Theorem 1 statement, and
switch term gain G∗m, as defined in Lemma 1; <Gains are determined from Lyapunov P
or Q matrices , using Lemma (1) and given in detail in [32] >;
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13: Use the same SMO gains in state/output estimator SMO in step 8;
14: Determine the state estimation error as determined in Equation (15);
15: Give stable filtered output estimation error part of the total error vector (e), i.e.,

(eo) in Equations (17) and (18) to state/output estimator SMO in step 8 and the state
error estimator SMO in Equations (20) and (21) to attain the sliding mode;

16: If (the sliding mode is attained in Equations (20) or (21)),
Feed the state estimation error to the reduced order state estimation error, explained in
Lemma 7 (details in [32]);

17: Determine the gains (γ (defined in Lemma 7), Ψeq, reduced order state error es))
(details in [32]);

18: Compute the estimated fault as done in Equation (47) and the disturbance as in
Equation (48);

19: Use the estimated faults and correct the faulty sensor readings by adding/
subtracting from it, as done in Equation (49).

20: Feed the corrected sensor output values to PI and Droop based
current/voltage/real power/complex power control as shown in the detailed Simulink
based block diagram with details in the FTC section of [32];

21: Repeat Step 10 onward for the H∞ constraint in (24) and the compromised
H − /H∞ constraints.
END (of while loop)

6. Results and Discussions

The simulations are performed for state/output estimation error, fault estimation/
reconstruction, fault estimation error, and fault tolerant control (FTC) performance. The
behavior of the system and results for all simulations are consistent and technically no
statistical analysis is required for a deterministic system and simulation platform.

The Simulink-based detailed three phased inverter model is considered in the simula-
tion. The DC voltage and grid voltage are both working at 600 V. PLL block and all abc-dq
transformations are referencing the phase of grid voltage phase; SVPWM uses a frequency
of 10,000 Hz and a sampling time of 0.0001; however, the default internal settings takes
the samples at 0.0002 s. The greater sampling times cause discontinuities, which can be
reduced to improve the accuracy at the cost of increased response time and lesser ability of
online working. Since the continuous time simulations halt or move at very low speeds,
which are not viable for real time online performance, Fixed Step solvers are therefore used
for simulation in Simulink (Matlab) with single task handling to avoid complexities with
very minor compromise on accuracy.

Regarding some other simulation constants, for the considered time of simulation,
as an estimate using the minimum/maximum values of faults, disturbances and stable
filtered output error, the H∞ constant α = 3.76× 10−9 and H− constant β = 4.44× 10−19.

The value of η is a small positive constant considered η = 10 to ensure the constraint
in inequality used in Lemma A1, whereas the upper bounds for current and voltage is
considered up to fo = 10A/100V for I/V, respectively; whereas the upper bounds of ξo are
3A/10V for I/V.

The grid parameters are given in Table 1.
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Table 1. Microgrid system parameters.

Parameter Value Parameter Value Parameter Value

Vdc 600 V Vg 600 V θgrid 60◦

L f 1 4.20 mH L f 2 4.20 mH L f 3 4.20 mH

Lc1 0.50 mH Lc2 0.50 mH Lc3 0.50 mH

C f 1 15 µF C f 2 15 µF C f 3 15 µF

Rd1 2.025 Ω Rd2 2.025 Ω Rd3 2.025 Ω

r f 1 0.50 Ω r f 2 0.50 Ω r f 3 0.50 Ω

r f 1 0.09 Ω r f 2 0.09 Ω r f 3 0.09 Ω

ωc 50.26 rad/s ωn 377 rad/s ωPLL 377 rad/s

Voqn 85 V m, n 1/1000 ωc,PLL 7853.98 rad/s

A detailed Simulink-based simulation diagram is given in Figure 3. From the top right,
the block named ‘Microgrid System’ is the wired microgrid system, as shown in Figure 2 in
Section 2. The inverter and grid input voltages are given to the system by this block. The
second block, named the ’Voltage Frequency Control’ block, manages the voltage/frequency
sags of corrected voltage/current signals. The third block, named ’Fault/Disturbance
Injection in sensor Outputs’, injects the faults and disturbances according to the fault model
in Equation (1) in a block named ’Simulink Based System Model’ (which is mentioned in
Equations (6) and (7)) as well as in a block named ’Augmented System Model and Stable
Filtering’ (as done in Equations (10) or (11)). The faulty system outputs are given to the
blocks named ’FD Block/State and Output Estimation SMO’ (defined by Equation (14))
and ’Error (State/Output) Estimation SMO’ (as defined in (18)). These outputs are given
to the block named ‘Reduced Order state Error’, which computes value of γ gain, values
of switched signal in normal and sliding mode (i.e., ψ, ψeq), and reduced order state
estimation error (es) (which are the parameters required by the equations mentioned in
Lemma 7), while these computed values are also given back to ’FD Block’ and ’Error
Estimation SMO’ particularly required by switch gain term of SMOs. these values are then
provided to block named ’Estimated Faults/Disturbances Computation’ to compute the
faults/disturbances (unknown inputs). The last block, named ‘Data Acquisition’, performs
data acquisition of all required data to be logged or provided to m-files required for plotting
the required results. The gains are not updated on the run time since that requires GPU
based systems. However, the system can easily incorporate the run time computation of
gains. The SMOs and other blocks are using the optimized constant gains computed by
matlab m-files using LMIs’ convex optimization tool box commands.

Figure 4 shows reconstruction of voltage fault compared using SMO with gains
optimized with fault sensitivity parameter (H−), robustness to disturbance parameter
(H∞), and a mixed (H − /H∞). The voltage fault reconstruction using (H−) and (H −
/H∞ are similar and nearly accurate, whereas that with (H∞) is though to be accurate but
lagged with a phase of π radian. The constant multiple S f used in Equation (47) for voltage
fault reconstruction for (H∞), (H−) and (H − /H∞) are 4× 103, 0.5× 1014 and 7× 1011,
respectively. The multiples are required to compensate for the stable filtering scaling effect
in output error term eo and are in direct relation with multiple of Luenberger gain Go used
in SMO.

Figure 5 shows reconstruction of the current fault compared using SMO with gains
optimized with fault sensitivity parameter (H−), robustness to disturbance parameter
(H∞), and a mixed (H − /H∞). The current fault reconstruction using (H−) is nearly
accurate, while using (H − /H∞ is relatively accurate in one half cycle and inaccurate in
another half cycle, whereas the result with (H −∞) is though to be accurate but lagged
with a phase of π radian, which can be corrected using the phase compensation of π radian.
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The constant multiple S f used in Equation (51) for current fault reconstruction for (H∞),
(H−) and (H − /H∞) are 2.5× 103, 1 + 0.43× 1014 and 1 + 3× 1011, respectively.

Figure 4. Reconstructed voltage fault (dq) with feasibility optimized (H−) and H− /H∞ SMO gains.

Figure 5. Reconstructed current fault (dq) with feasibility optimized H− and H − /H∞ SMO gains.

Figure 6 shows voltage fault estimation errors compared using SMO with gains opti-
mized with fault sensitivity parameter (H−), robustness to disturbance parameter (H∞),
and a mixed (H − /H∞). The error is harmonic sinusoidal variation, which approaches
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the peak value of nearly 20 V for a very small instance of time using (H−) and (H − /H∞,
being quite similar, whereas that with (H∞) is nearly a pure sinusoidal variation of 60 Hz
that approaches the peak value of 175 V due to phase lag of the π radian.

Figure 7 shows current fault estimation errors compared using SMO with gains op-
timized with fault sensitivity parameter (H−) and robustness to disturbance parameter
(H∞). However, for /H∞ and mixed (H − /H∞) parameters, the peaks approach 20 A
and 11 A, respectively, which is relatively higher and impractical. The error for could be
reduced to minimal if phase compensation of π radian is used in the estimated faults.

Figure 8 shows state estimation errors compared using SMO with gains optimized
with robustness to disturbance parameter (H∞). The state estimation error is a sinusoidal
variation with line frequency with the peak magnitudes of Vodq and Iodq being 0.006 V and
0.00015 A, respectively.

Figure 6. Voltage fault estimation error with feasibility optimized H− and H − /H∞ SMO gains.

Figure 7. Current fault estimation error with feasibility optimized H− and H − /H∞ SMO gains.
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Figure 8. State estimation errors with trace optimized H∞ SMO gains.

Figure 9 shows state estimation errors compared using SMO with gains optimized
with robustness to disturbance parameter (H−). The state estimation error is sinusoidal
variation with line frequency with the peak magnitudes of Vodq and Iodq being 8V and
0.14A, respectively.

Figure 10 shows state estimation errors compared using SMO with gains optimized
with robustness to disturbance parameter (H − /H∞). The state estimation error is a
sinusoidal variation with line frequency with the peak magnitudes of Vodq and Iodq being
0.1− 0.4V and 0.025A, respectively.

Figure 11 shows the FTC performance for the d-component of sensor output current
(Id) compared using SMO with gains optimized with fault sensitivity parameter (H−),
robustness to disturbance parameter (H∞) and a mixed (H− /H∞) with non-faulty actual
Iq. The results with (H−) are best among the other two, the mixed problem (H − /H∞)
also stays relatively closer, whereas the results with (H∞) are more faulty.

Figure 12 shows FTC performance for q-component of sensor output current (Iq) com-
pared using SMO with gains optimized with fault sensitivity parameter (H−), robustness
to disturbance parameter (H∞), and a mixed (H − /H∞) with non-faulty actual Id. The
results with (H−) are best among the other two, the mixed problem (H− /H∞) also stays
relatively closer, whereas the results with (H∞) are more faulty.



Sensors 2022, 22, 1597 26 of 38

Figure 9. State estimation errors with feasibility optimized H− SMO gains.

Figure 10. State estimation errors with feasibility optimized H − /H∞ gains.
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Figure 11. FTC for Ioq compared with feasibility optimized H− and H − /H∞ SMO gains.

Figure 12. FTC for Ioq compared with feasibility optimized H− and H − /H∞ SMO gains.

Figure 13 shows the FTC performance for d-component of sensor output voltage
(Vd) compared using SMO with gains optimized with fault sensitivity parameter (H−),
robustness to disturbance parameter (H∞) and a mixed (H− /H∞) with non-faulty actual
Vq. The results with all three are comparable and non very differentiating w.r.t each other.
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Figure 13. FTC for Vod compared with feasibility optimized H− and H − /H∞ SMO gains.

Figure 14 shows the FTC performance for the q-component of sensor output voltage
(Vq) compared using SMO with gains optimized with fault sensitivity parameter (H−),
robustness to disturbance parameter (H∞), and a mixed (H−/H∞) with non-faulty actual
Vq. The results with all three are comparable and not very differentiating w.r.t each other.

Figure 14. FTC for Voq compared with feasibility optimized H− and H − /H∞ SMO gains.
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7. Conclusions

1. This paper has considered the VSI-based microgrid model as an application to apply
the enhanced (in robustness or sensitivity to fault) sliding-mode observer for fault
diagnosis and fault-tolerant control.

2. The saturation faults of current/potential transformers (which are mounted in the
passage of LCL filters are specifically considered, along with the general applicability
of the approach for a good range of sensor/actuator faults;

3. H∞ and H− parameters of robust control similar in nature to the game theoretic
saddle points are used to derive the inequality version of HJIE, which is in terms
of the Lyapunov function, faults, or disturbances, and the output error estimation
vector as variables. The HJIE in inequality form not only proves the stability of
observers but also gives the LMIs, which are convex optimized, to find the (H∞ and
H−) constrained SMO gains providing the optimal/sub-optimal values of SMO gains
(G∗o , G∗m, f ∗, ξ∗), as mentioned in the pair of saddle points, i.e., (Go∗, f ∗) and (G∗, ξ∗).
The sliding-mode observer using the above gains in terms of the error vector is used
to estimate the faults and disturbances;

4. The main results computed are estimations of current/volatge faults of sensors
(C.T/P.T), current/volatge fault estimation errors, and fault tolerance performance by
the control block , which is provided by the corrections performed according to the
faults estimated by SMOs, which are (i) robust to disturbance, (ii) sensitive to faults,
and (iii) compromised of both.
Moreover, all of the above mentioned results are given and compared for SMOs
with the above three constraints. The gain optimization is accordingly done in Theo-
rems 1–3, which is the main contribution of this research along with the applicability
to composite faults (phase, magnitude, harmonics) occurring in sensors (C.T/P.T)
mounted on LCL filters on the inverter outputs;

5. The future works are intended to enhance the work for several microgrids operating
in parallel, by using the applied fault tolerant control schemes in the distributed
control paradigm, while managing the optimized power flow control between them.
Moreover, the deep learning techniques can be opted as a future work in this domain.
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Nomenclature

Acronyms and some variable symbols

Robust Sliding Mode Observer RSMO Positive Definite PD
Fault Diagnostics FD Fault Estimation FE
Voltage Source Converter VSC Microgrid MG
Current Transformer C.T Potential Transformer P.T
Inductor Capacitor Inductor LCL Phase Locked Loop PLL
Iterative Linear Matrix Inequalities ILMI Distributed Generators DGs
Proportional Integral Differentiator PID Fault-Diagnostics-Isolation FDI
Linear Quadratic Gaussian LQG Linear Quadratic Regulator LQR
Linear Parameter Varying LPV Fault-Tolerant Control FTC
Model Predictive Control MPC Linear Time Varying LTV
False Alarm Ratio FAR False Detection Ratio FDR
Bi-linear Matrix Inequality BMI Non-linear Matrix Inequality NMI
Space Vector Pulse Width Modulation SVPWM Photo-Voltaic PV
Hamilton–Jacobi–Isaacs-Equation HJIE Linear Time Varying LTI
Sliding Mode Control SMC Infemum/Supremum inf/sup
Discontinuous SMO Term ψ Discontinuous term gain γ

H -Infinity Coefficient α Fault f
Fault upper bound f o Disturbance upper bound ξo
H - Coefficient β Input Vector u
Estimated fault Scaling factor S f H -Infinity Norm H∞
Grid Voltage Vector w Augmented Input Vector uc
Sensor Outputs Vector ys Augmented Estimation Vector xo
Stable Filtered Output Vector xh Sate Estimation Vector xs
SMO Luenberger Gain Go SMO Gain of switched ψ term Gm
Residual Signal r Scaled Residual Signal rK
Lyapunov Functions V1, V2 Robust Control Cost Function Ho
Output Estimation Error eo State Estimation Error es
Hamiltonian Hn Sliding Mode Reachability Time TR
H - Norm H− H Infinity Norm H∞

Appendix A.

Appendix A.1. The Schur Lemma

(i) The Schur complement formula is used in transforming nonlinear inequalities of
convex type into LMI. This says that for the LMI[

Q(x) S(x)
S(x)T R(x)

]
< 0

where Q(x) = Q(x)T , R(x) = R(x)T and S(x) depends affinely on x. Then, it is equivalent
to: R(x) < 0, Q(x)− S(x)R(x)−1S(x)T < 0.

Appendix A.2. Schur Complement

The Schur complement is a technique often used to convert NMIs and BMIs to LMIs.
By taking the Schur complement, we get the LMIs, which can be optimized by powerful
techniques within the above defined constraints.

S ,

[
A− BD−1C−1 A− BD−1C−1BD−1

−D−1CA− BD−1C−1 D−1 + D−1CA− BD−1C−1BD−1

]
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Appendix A.3. Proof for Hamilton–Jacobi–Bellman Equation/Motivation for Using the
HJBE Equation

Almost any problem that can be solved using optimal control theory can also be solved
by analyzing the appropriate Bellman equation. However, the ‘Bellman equation’ usually
refers to the dynamic programming equation associated with discrete-time optimization
problems. In continuous-time optimization problems, the analogous equation is a partial
differential equation that is usually called the Hamilton–Jacobi–Bellman equation. In
optimal control theory, the Hamilton–Jacobi–Bellman (HJB) equation gives a necessary and
sufficient condition for the optimality of a control with respect to a loss function. It is, in
general, a nonlinear partial differential equation in the value function, which means its
solution is the value function itself. Once the solution is known, it can be used to obtain
optimal control by taking the maximizer/minimizer of the Hamiltonian involved in the
HJB equation. A major drawback is that the HJB equation admits classical solutions only
for a sufficiently smooth value function, which is not guaranteed in most situations.

For any plant
ẋ = f (x, u, t)

Performance Index

J(x(to), to) = φ(x(T), T) +
∫

L(x, u, t)dt

Determine a continuous state feedback optimal control u∗ on a given interval [to, T]
that minimizes J and drives a given initial state x(to) to a final state that satisfies ψ(x(T), T) =
0. Let t be the current time and x = x(t)

J(x, t) = φ(x(T), T) +
∫

τ

T
L(x, u, t)dτ

= φ(x(T), T) +
∫

t+∆t

T
L(x, u, t)dτ +

∫
τ

t+∆t
L(x, u, t)dτ

= J(x + ∆x, t + ∆t) +
∫

τ

t+∆t
L(x, u, t)dτ

Using the first order approximation; ∆x ' f (x, u, t)∆t
Bellmann Principle of Optimality (on which DP is based)
An optimal policy has the property that no matter what is the previous decision, i.e.,

what controls have been, the remaining decisions must constitute an optimal policy with
regard to the state resulting from these previous decisions.

To find the J∗(x, t), let us assume that optimal cost from (t + ∆t) to T, i.e., J(x + ∆x, t +
∆t) is known for possible x + ∆x). Moreover optimal control has also been determined on
this interval. Thus, it remains to find the control on the interval [t, t + ∆t] This is called the
principle of optimality for continuous time systems Let us do Taylor expansion of second
term on the right

J∗(x, t) = minu(τ)[t≤τ≤t+∆t]
[
∫

t

t+∆t
L(x, u, τ)dτ + (

∂J∗

∂x
)T∆x + (

∂J∗

∂t
)∆t]

In this J∗(x, t) and
∂J∗

∂t
J∗(x, t)∆t are independent of u(τ) and ∆τ can be taken out,

and also using the above defined first order approximation

J∗(x, t) = J∗(x, t) +
∂J∗

∂t
J∗(x, t)∆t + [

∫
t

t+∆t
L(x, u, t)dτ +

∂J∗(x, t)
∂t

T
f (x, u, t)∆t]
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Taking a first order approximation for the first integral, i.e.,∫
t

t+∆t
L(x, u, t)dτ = ∆t.L[(t + α∆t)x(t + α∆t)u(t + α∆t)]

= ∆t.L

(in short)
∂J∗

∂t
J∗∆t = minu(τ)[L.∆t +

∂J∗(x, t)
∂t

T
f (x, u, t)∆t]

Letting ∆t→ 0 gives

∂J∗

∂t
= minu(τ)(L + (

∂J∗

∂t
)T f )

In fact, V(x, t) , J∗(x, u, t)

∂V(x, t)
∂t

= minu(t)[L +
∂V(x, t)

∂t

T
f (x, u, t)] (A1)

−∂V(x, t)
∂t

= Hopt

∂V(x, t)
∂t

+ Hopt = 0 (A2)

This is called the Hamilton–Jacobi–Bellman equation

where

Hopt == min(u∈Ω)[L + (
∂V
∂t

)
T

f (A3)

Appendix A.4. LMIs and Solvers

LMIs are matrix inequalities that are linear or affine in a set of matrix variables. They
are essentially convex constraints and therefore many optimization problems with convex
objective functions and LMI constraints can easily be solved efficiently using existing
software. This method has been very popular among control engineers in recent years. This
is because a wide variety of control problems can be formulated as LMI problems. Mainly,
we define the LMI problem and the related problems, such as the feasibility problem (FEAS),
minimization of a linear objective under LMI constraints (MINCX), and the generalized
eigenvalue minimization problem (GEVP). These solvers solve the given LMIs iteratively
to approach the maximum possible sub-optimal solution.

The LMI solvers used are :
(i) FEASP (Feasibility Optimization) [tmin, x f eas] = f easp(lmisys, options, target)
computes a solution xfeas (if any) of the system of LMIs described by lmisys. The

vector xfeas is a particular value of the decision variables for which all LMIs are satisfied.
For the given LMI system
NT L(x)N ≤ MT R(x)M
xfeas is computed by solving the auxiliary convex program,
Minimize t subject to

NT L(x)N˘MT R(x)M ≤ t ∗ I
The global minimum of this program is the scalar value tmin returned as first output

argument by feasp. The LMI constraints are feasible if tmin ≤ 0 and strictly feasible if
tmin < 0. If the problem is feasible but not strictly feasible, tmin is positive and very small.
Some post-analysis may then be required to decide whether xfeas is close enough to be
feasible. The optional argument target sets a target value for tmin. The optimization code
terminates as soon as a value of t below this target is reached. The default value is target
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= 0. Solver for LMI feasibility problems L(x) < R(x) This solver minimizes t subject to
L(x) < R(x) + t ∗ I The best value of t should be negative for feasibility

(ii) Minimization of a Linear Objective w.r.t LMI Constraint
The minimization of linear objective (Trace) optimization subjected to LMI constraint

used in this work is used to compute the H -infinity constrained SMO gains. In Matlab
syntaxt, it uses:

[copt, xopt] = mincx(lmisys, c, options, xinit, target)
solves the convex program
minimize cTx subject to NT L(x)N ≤ MT R(x)M

Appendix A.5. Supporting Lemmas

Lemma A1. According to Theorem 3.1 in [27], considering the augmented system in Equation (11),
if V is a continuously differentiable function that satisfies the general HJI equation, as given in
Equation (A1), is

−∂V
∂t

= minu(t)(Ho +
∂V
∂x

) f (x, u, t)

where u(t) is the general input signal Using the cost functional Ho from Equation (24) in the above
equation mentioned in (A1) (in Appendix A.5) and using the partial derivative property and

dV(x∗, t)
dt

=
∂V(x∗, t)

∂t
+

∂V(x∗, t)
∂x∗

∂x∗

∂t

The HJI equation in this case becomes

⇒ −∂

∂t
V(x, t) = in f[Go ]sup[ξ][

−∂V(x∗, t)
∂x∗

ẋ∗ + rK
TrK − αξTξ] (A4)

then, by using the concepts of dynamic game theory, the cost functional in Equation (20) gives the
pair of strategies (G∗o , ξ∗) providing a saddle-point solution

Ho(Go, ξ∗) ≤ Ho(G∗o , ξ∗) ≤ Ho(G∗o , ξ)

and furthermore, properly choosing the saddle-point value of the game

Ho(G∗o , ξ∗) = V(e(∗), ∗)

which ensures Ho(G∗o , ξ∗)V(e(∗), ∗) = ∗, and guarantees that Go solves the disturbance attenua-
tion problem (20)

Further, considering the Hamiltonian

Hn(Go, ξ) = Ve ė + rK
TrK − ξTξ (A5)

and using the derivative ∂Hn(Go , f )
∂ f |ξ=0 = 0, G∗o can be determined and using ∂Hn(G∗o ,ξ)

∂Go
|Go=0 = 0,

the critical value of ξ∗ can be determined, but this approach is not used in this study.

Remark A1. Considering the Lemmas A1, A2 in Appendix A.5, using the HJIE in Equations (A4)
and (A5), the Hamiltonians in Equations (A5) and ((A7)) and disturbance attenuation/fault sensi-
tivity constraints in Equations (24) and (35), the analytical solution for gain Go will be dependent
on states, which is undesired (theoretically by Luenberger linear observer theory). However, the
inequality version of HJIE will give more freedom in choosing the Lyapunov function V(e, t) and
hence more freedom in the design of the sliding mode observer gain Go being state independent.
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Lemma A2. According to Theorem 3.2 in [27], considering the augmented system in Equation (11),
if V is a continuously differentiable function which satisfies the general HJI Equation (A1) in
mentioned in Appendix A.5.

−∂V
∂t

= min[u](Ho +
∂V
∂x

) f (x, u, t)

Using the cost functional from Equation (35) in Equation (37) and using the partial derivative
property

dV(x∗, t)
dt

=
∂V(x∗, t)

∂t
+

∂V(x∗, t)
∂x∗

∂x∗

∂t
HJI in this case becomes

⇒ −∂

∂t
V(x, t) = max[Go ]min[ f ][

−∂

∂x∗
V(x∗, t)ẋ∗ + rK

TrK − β f T f ] (A6)

then, using the concepts of dynamic game theory, the cost functional in Equation (35) gives
the pair of strategies (H∗, f ∗) providing a saddle-point solution, i.e.,

Ho(Go, f ∗) ≤ Ho(G∗o , f ∗) ≤ Ho(G∗o , f )

Furthermore, the saddle-point value of the game is

Ho(G∗o , f ∗) = V(e(∗), ∗)

This ensures Ho(G∗o , f ∗) ≥ V(e(∗), ∗) = 0, which guarantees that Go solves the minimum
fault sensitivity problem in (35) Considering the Hamiltonian

Hn(Go, f ) = Ve ė + rK
TrK − f T f (A7)

and using the derivative ∂Hn(Go , f )
∂ f | f=0 = 0, G∗o is determined, and using ∂H(G∗o , f )

∂Go
|Go=0 = 0 the

critical value of f ∗ is determined.

Lemma A3 (Inequality Version of HJIE with H∞ Constraint).∫
0

t
rTrdt− α2

∫
0

t
ξTξdt ≥ 0

∫
0

t
rTrdt− α2

∫
0

t
ξTξdt + V(x∗, t) ≥ 0

∫
0

t
rTrdt− α2

∫
0

t
ξTξdt +

∫
0

t d
dt

V(x∗, t) ≥ 0

Since
dV(x∗, t)

dt
=

∂V(x∗, t)
∂t

+
∂V(x∗, t)

∂x∗
∂x∗

∂t
The inequality version of the above equation is :

∂V(x∗(t), t)
∂t

≤ −∂V(x∗, t)
∂x∗

ẋ∗ + rTr− α2ξTξ

The disturbance attenuation problem is satisfied if:

(in f )[Go ]sup[ξ 6=0]H(Go, ξ) ≤ 0

Since (G∗o , ξ∗) provides the saddle point

H(Go, ξ) ≤ H(G∗o , ξ∗) ≤ H(G∗o , ξ)
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H((G∗o , ξ∗) = V(x∗, 0)

This will mean that (G∗o , ξ) ≤ V(x∗, 0) = 0, which guarantees that G∗o will solve disturbance
attenuation problem

The SMO system will be dissipative if

α2‖ξ2‖2 + ‖r2‖2

if there exists a positive definite function Y which satisfies ∂Y
∂t + ∂Y

∂e ė− ξTξ + rTr ≤ 0 and from the
definition of dissipativity, it follows that

‖r2‖2 < α2‖ξ2‖2

Remark A2. The problem can be studied in detail from [27–29]

Lemma A4 (Inequality Version of HJIE with H− Constraint). V(x∗(t1), t1) with
V(x∗(0), 0) = 0; the following inequality holds∫

0

t
rTrdt− β2

∫
0

t
f T f dt ≥ 0

∫
0

t
rTrdt− β2

∫
0

t
f T f dt + V(x∗(t), t) ≥ 0

∫
0

t
rTrdt− β2

∫
0

t
f T f dt +

∫
0

t d
dt

V(x∗(t), t) ≥ 0

Since
dV(x∗, t)

dt
=

∂V(x∗, t)
∂t

+
∂V(x∗, t)

∂x∗
∂V(x∗)

∂t
So the inequality version of this equation is:

−∂V(x∗(t), t)
∂t

≤ ∂V(x∗, t)
∂x∗

ẋ∗ + rTr− β2ξTξ

H(Go, f ∗) ≤ H(G∗o , f ∗) ≤ H(G∗o , f )

Since (G∗o , f ∗) provides saddle point

H(Go, f ∗) ≤ H(G∗o , f ∗) ≤ H(G∗o , f )

H((G∗o , f ∗) = V(x∗, 0)

This will mean that (G∗o , f ) ≤ V(x∗, 0) = 0, which guarantees that G∗o will solve the
disturbance attenuation problem

Remark A3. The problem can be studied in detail in [27–29]

Appendix A.6. Definitions

Definition A1 (Riccati and Lyapunov Equation). The constrained vector algebraic equation,
such as Riccati equations and the other similar ones arising from the LQR and LQG problems,
(having their roots in optimal control) are often transformed into inequality versions. The inequality
version is utilized to achieve better control on design parameter matrices and the factors, which are
optimized using the convex optimization tools. It gets to determine unknown parameters including
the SMO gains, and then ensures the stability as well. The Schur complement helps the constrained
matrix inequalities and corresponding algebraic forms to be inconvertible. Solving such equations is
a vital step in designing such controllers and state estimators. For generally system matrices (A,B)



Sensors 2022, 22, 1597 36 of 38

and symmetric (parametric and Lyapunov) matrices (P,Q,R), the convex algebraic Riccati equation
is given by:

AT P + PA + PBR−1BT P + Q < 0, P > 0, R > 0

where the term PBR−1BT P is an additional quadratic term in basic Lyapunov equation, and is
convex in nature. Its inequality version gives more design freedom to find the unknown parameter
matrices in it to ensure the stability and other required constraints. The determined unknown
parameters, including the SM observer gains, would then ensure the stability as well. The Schur
complement helps the constrained matrix inequalities and corresponding algebraic forms to be
convertible to LMIs.

Definition A2 (Hamiltonian). The Hamiltonian function gives a correct description of physical
reality to make the connection between energy and rates of change. The Hamiltonian has dimensions
of energy and represents the time evolution dynamics directly. So, it can be predicted what state the
system will evolve into after an infinitesimal interval of time elapses. The Hamiltonian of the control
theory from [27,29] is used, which here comprises a sum of energy of the output error estimation,
fault or disturbance signal and product of Lyapunov function with rate of change of error vector,
where Lyapunov matrix scaled energy of complete estimation error vector.

Appendix A.7. Clark, Park, and abc-dq0 Transformation

The abc-dq0 transformation is a combination of Park and Clark transformations and
it is used to convert the three-phase voltages and currents to two-phase ones, to give a
simplified system without loss of any information of the system, providing easy handling,
transformations, and control of the system being of lesser dimensions.

If

Kc =
√

2/3

 1 −1/2 −1/2√
3/2

√
3/2 −

√
3/2

1/
√

2 1/
√

2 1/
√

2


The Clark transformation converts the ABC vector frame-to-frame. The transformation

isolates a part of the ABC-reference vector that is common to all three parts of vector. It is
right handed, power invariant, and uniformly scaled. It is defined by:

√
2/3

 1 −1/2 −1/2√
3/2

√
3/2 −

√
3/2

1/
√

2 1/
√

2 1/
√

2

A
B
C

 =

α
β
γ


If

kp =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1


The Park transformation rotates the reference frame of the vector at an arbitrary fre-

quency. It shifts the frequency spectrum of the reference signal such that the arbitrary
frequency serves as dc frequency, and the old dc appears as a negative of the arbitrary
frequency. It is defined by:  cosθ sinθ 0

−sinθ cosθ 0
0 0 1

α
β
γ

 =

d
q
0


The abc-dq0 transformation is defined by:

√
2/3

 cosθ cos(θ − 2π/3) cos(θ + 2π/3)
−sinθ −sin(θ − 2π/3) −sin(θ + 2π/3)√

2/2
√

2/2
√

2/2

A
B
C

 =

d
q
0


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where the combined form of Clark and Park transformation is given by the matrix:

KcKp =
√

2/3

 cosθ cos(θ − 2π/3) cos(θ + 2π/3)
−sinθ −sin(θ − 2π/3) −sin(θ + 2π/3)√

2/2
√

2/2
√

2/2


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