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Abstract: During the last decades, consumer-grade RGB-D (red green blue-depth) cameras have 

gained popularity for several applications in agricultural environments. Interestingly, these cameras 

are used for spatial mapping that can serve for robot localization and navigation. Mapping the en-

vironment for targeted robotic applications in agricultural fields is a particularly challenging task, 

owing to the high spatial and temporal variability, the possible unfavorable light conditions, and 

the unpredictable nature of these environments. The aim of the present study was to investigate the 

use of RGB-D cameras and unmanned ground vehicle (UGV) for autonomously mapping the envi-

ronment of commercial orchards as well as providing information about the tree height and canopy 

volume. The results from the ground-based mapping system were compared with the three-dimen-

sional (3D) orthomosaics acquired by an unmanned aerial vehicle (UAV). Overall, both sensing 

methods led to similar height measurements, while the tree volume was more accurately calculated 

by RGB-D cameras, as the 3D point cloud captured by the ground system was far more detailed. 

Finally, fusion of the two datasets provided the most precise representation of the trees. 
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1. Introduction 

1.1. General Context of RGB-Depth Cameras 

Many tasks such as mapping, localization, navigation, 3D reconstruction of object, or 

scenery, among others, involve computer vision. Computer vision could be described as 

the technology that combines image processing through computational algorithms to ob-

tain certain information from images [1–3] or vision systems utilizing laser scanners [4]. 

Focusing on the former case, a lot of studies have used RGB cameras so as to locate and 

distinguish the targets (e.g., fruits) from other objects by exploiting, for example, the 

shape, the color and the texture, usually combining their images with machine learning 

[3,5,6]. However, RGB cameras can only get two-dimensional (2D) information of the 

scene, while they are susceptible to variable light conditions and occlusions [7]. These 

challenges have been overcome through acquiring depth measurements of higher resolu-

tion, which have the potential to provide more detailed information about the scene. In 

particular, in the last decade, consumer-grade depth cameras have gained advantage over 

other sensors, given their low cost, portability, ease of use and measurement accuracy [8]. 

In brief, an RGB-D camera comprises two parts coupled together to give a dense matrix 

of pixel values; (a) an RGB camera for providing color information and (b) a depth camera 

for providing depth information [9]. Consequently, every pixel constructing the image is 
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composed of color and distance values between a view-point and a certain point in the 

image (RGB-D values). 

1.2. Use of RGB-D Cameras and Related Research in Agriculture 

This type of camera has been applied in a number of areas of interest, such as indoor 

[10–12] and outdoor mapping [13], 3D reconstruction [14,15], motion and gesture recog-

nition [16–18], and object detection [19]. Moreover, there has been an extensive use in ro-

botics field and more specifically in navigation [19] and localization [2]. 

In recent years, stereoscopic vision depth cameras have been widely used in 3D re-

construction of objects and 3D mapping related to indoor environments [12,20]. Indica-

tively, the ZED stereo camera (Stereolabs Inc., San Francisco, CA, USA) has been em-

ployed in various indoor scenarios, namely volume designation of simple cubic and cy-

lindrical objects through image segmentation process [21], crack detection and analysis on 

concrete surfaces using 3D data [22], terrestrial photogrammetry through an aerial map-

ping system [23], as well as the creation of indoor 3D mapping targeting to be used in 

studies for “smart” cities [24]. 

A plethora of researchers have studied the use of depth cameras in agricultural ap-

plications and identified their advantages and disadvantages in outdoor sceneries. An 

evaluation of five different depth cameras of three dissimilar technologies in agricultural 

applications was made by Condotta et al. [25]. According to their results, all cameras pro-

vided effective depth data indoors. Nonetheless, in outdoor environments the cameras 

using structured light and time-of-flight technology proved to be problematic, due to dis-

tortions by the intense lighting conditions. In particular, the aforementioned lighting may 

cause low contrast in the infrared image and lead to gaps in the corresponding depth im-

age [25]. In outdoors applications, the most reliable data were provided by cameras using 

stereoscopy. Moreover, depth cameras were applied in agricultural applications for weed 

detection and above ground biomass volume estimation through 3D point clouds recon-

struction [26]. In addition, efficient results in extraction of geometric structural parameters 

of vegetation with depth measurements were determined [27,28]. An effective approach 

of measuring the canopy structure on small plant populations in field conditions was pre-

sented in [29]. Furthermore, Jiang et al. [30] developed an approach to automatically quan-

tify cotton canopy size in field conditions and showed the potential of using multidimen-

sional traits as yield predictors. Additionally, an experiment using four different depth 

sensors in agricultural tasks was conducted by Vit and Shani [31], who estimated the qual-

ity of depth measurements for geometrical size estimation of agricultural objects with 

deep learning techniques. In tree crops, size estimation of mango fruits on trees in outdoor 

environment was made by Wang et al. [32]. 

Some of the RGB-D cameras are joined or can be combined with other sensors that 

allow for position and orientation of the camera to be recorded. Such sensors are, for ex-

ample, inertial measurement units (IMUs) or global positioning system (GPS) sensors that 

provide positioning, velocity, and time information. As a result, depth cameras can be 

used to collect geometrical information about the environment and provide them as an 

input for robot localization and navigation. These added features in depth cameras are 

very useful for autonomous applications in agriculture or for capturing information about 

plants’ phenotype and growth. Studies have also been performed on the use of RGB-D 

cameras along with robotic systems to capture not only color information, but also spatial 

information about the environment. In addition, in [33] a solution was presented for au-

tonomous obstacle avoidance performance of a UAV by using a deep learning-based ob-

ject detection method and image processing with a depth camera. Another research, using 

depth camera mounted on an operational vehicle in an agricultural field, was presented 

in [34] for the reconstruction of the grapevines’ canopy to measure its volume as well as 

detect and count the grapevine bunches. Finally, Sa et al. [35] presented an accurate 3D 

detection method for sweet peppers peduncles in a farm field by using a depth camera on 

a robotic arm and a supervised machine learning approach. 
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1.3. 3D Mapping Procedures 

With 3D mapping, the integration of appearance and shape information from depth 

sensors can be accomplished [36]. Some of the most commonly used tools for 3D mapping 

are the Octomap (University of Freiburg, Freiburg im Breisgau, Germany) [37] and real-

time appearance-based mapping (RTABMap; Sherbrooke, Québec, Canada). In particular, 

these tools are libraries related to the robot operating system (ROS). 

The ROS software [38] for 3D mapping is widely used in robotic applications. More 

specifically, these tools can simultaneously capture and extract in a 3D map the environ-

ment area that a sensor is scanning, with the ability of representing it on a visualization 

tool. Octomap could be described as a probabilistic tool for 3D mapping, which is based 

on Octrees. An Octree is an information storing technique in a tree structure, in which 

there are nodes that each of them has eight “children”. The connection of all these nodes 

merges all the scanned data and generates continuous 3D maps. Apart from that, Octo-

map 3D mapping tool is a process which can efficiently recognize changes in the environ-

ment dynamically [39]. More specifically, the produced virtual environment with Octo-

map is composed of less noise from objects and robot position failures. Octomap meets 

four basic requirements. Firstly, free and occupied space, as it creates full 3D modeling 

and, secondly, it is updatable. Consequently, it is flexible, as the map can be expanded 

dynamically, while it is compact, as the produced map can be stored in memory and disk. 

It is worth mentioning that as compared with other 3D mapping tools, Octomap presents 

low computational load and memory usage. However, Octomap produces maps with 

only the depth data, which means that the points have only position information (x, y, z) 

and not color information (RGB). 

Opposing Octomap, RTABMap creates 3D maps of the scanned environment with 

both color and depth data (RGB-D). A notable advantage of this 3D mapping tool is the 

fact that it provides a complete representation of the environment using the simultaneous 

localization and mapping (SLAM) algorithm. However, a main disadvantage of 

RTABMap is that it may lead to noisy maps, as it is unable to recognize dynamic objects 

[39]. In conclusion, these 3D maps can be stored for further processing and visualized in 

the ROS visualization tool (Rviz). 

1.4. 3D Mapping Using Aerial-Based Systems 

With the recent technological developments in the agricultural sector and the rise of 

digital agriculture and artificial intelligence, the use of unmanned aerial systems (UAS) is 

gaining popularity. This is mainly due to the fact that dedicated systems for commercial 

use have been made available to public [40]. Moreover, in contrast with satellite imagery, 

images acquired by UAS tend to demonstrate higher resolutions in both temporal (e.g., 

daily collections) and spatial (e.g., centimeters) level, while being insusceptible to cloud 

cover, thus, rendering them suitable for precision agriculture applications [41]. Further-

more, there is a high level of automatization in the analysis of the acquired images provid-

ing a range of products, such as orthomosaics with high spatial accuracy and 3D point 

clouds from the surveyed areas. An indicative recent study of using UAVs for agricultural 

applications is that of Christiansen et al. [42], where data collected from a LiDAR sensor 

mounted on a UAV were fused with global navigation satellite system (GNSS) and IMU 

data to carry out winter wheat field mapping for point clouds. Additionally, Anagnostis 

et al. [40] used UAS-derived images and deep learning to identify and segment tree can-

opies of orchards under diverse conditions. In addition, Gašparović et al. [43] combined 

classification algorithms with UAV images to map weeds in oat fields. Remarkably, RGB 

images from UAVs in conjunction with convolutional neural networks (CNNs) are con-

stantly gaining ground [44–46], as highlighted in the recent literature review of Benos et 

al. [3]. 
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1.5. Aim of the Present Study 

All the above methods presented have certain drawbacks or do not consider RGB-D 

cameras. The aim of the present study was to investigate the use of RGB-D camera and 

UGV platform to autonomously map the environment of commercial orchards, map the 

location of trees and provide assessments of the tree size in terms of height and canopy 

volume by exporting and analyzing 3D point clouds. The results from the ground-based 

mapping system were compared with 3D orthomosaics acquired via an UAS. Finally, the 

fusion of the two datasets was performed as a means of reaching to a more accurate rep-

resentation. 

2. Materials and Methods 

A ZED 2 depth camera, consisting of a stereo 2K camera with two color sensors (RGB) 

was used for the 3D reconstruction of orchard trees. The specific sensor has a horizontal 

field of view of 110° and can stream at a rate from 15 to 100 FPS, depending on the reso-

lution. The camera’s connectivity is compatible to Universal Serial Bus (USB) 2.0. The 

baseline of 12 cm (distance between the left and right RGB sensor) manages a range of 

depth perception between 0.2 and 20 m. The most important characteristics of the ZED 

camera are summarized in Table 1. 

Table 1. Main characteristics of ZED camera used in the study. 

Sensor RGB 

Lens f/1.8 aperture 

Depth range 0.2–20 m 

Field of view (horizontal, vertical, diagonal) 110° (H), 70° (V), 120° (D) 

Single image and depth resolution (pixels) 

 Resolution (pixels) Frame rate (Frames per second) 

HD2K 2208 × 1242 15 FPS 

HD1080 1920 × 1080 30/15 FPS 

HD720 1280 × 720 60/30/15 FPS 

VGA 672 × 376 100/60/30/15 FPS 

Complementary sensors Accelerometer, Gyroscope, Barometer, Magnetometer, Temperature sensor 

The ZED 2 camera was connected to a NVIDIA Jetson TX2 development kit (NVIDIA 

Corporation, CA, U.S.A.), with Ubuntu GNU/Linux 18.04 (Canonical Ltd., London, UK) 

operating system. In this system, the ROS melodic distro was installed to access ROS tools, 

supporting the ZED 2 camera features. The Jetson TX2 processor was consisted of 8GB of 

RAM, 32GB Flash Storage, 2 Denver 64-bit CPUs, and Quad-Core A57 Complex. For the 

maximum speed and robustness of the system ensuring the best possible results, all GPU 

cores were set in full performance. The 3D reconstruction of trees was performed using 

the spatial mapping module of Stereolabs Software Development Kit (SDK) tool and 

RTABMap package of ROS. The SDK tool provides drivers for the camera, and several 

sample functions in Python programming language that were used for the measurements. 

Due to the camera’s technology basic advantage of providing efficient results also in 

sunlight environments, this sensor is considered as an ideal solution for a robotic system 

operating outdoors. Moreover, the small size and compact structure of the camera makes 

it quite helpful to be used along with a robotic platform for applications such as mapping, 

object detection, etc. The sensing system was mounted on a Thorvald (SAGA Robotics SA, 

Oslo, Norway), which is an autonomous all terrain UGV (Figure 1) [47]. 
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Figure 1. Setup of the ground-based scanning system mounted on Thorvald unmanned ground ve-

hicle. 

The Thorvald robotic vehicle was also equipped with a high accuracy GPS (RTK) as 

a means of providing the position of the robot and sequentially the position of the camera 

providing the ability to georeference the point cloud produced by scanning the orchard. 

Moreover, the scanning system was powered by the Thorvald’s battery. The setup was 

navigated in the field, capturing RGB-D images, collecting the necessary data to construct 

the 3D point cloud of the orchard. 

The camera was located on a tripod attached on the Thorvald vehicle at about 1.5 m 

above the ground level facing sideways towards the trees canopy in horizontal position. 

In addition, the ZED camera was oriented towards the direction of the tree of interest, and 

it was manually adjusted as for the viewing angle and the height according to each tree. 

This adjustment was necessary due to variations in geometry characteristics of the canopy, 

volume and height of every individual tree. 

The RGB-D-based scanning system setup was used in real field conditions to scan 

and construct the 3D representation of a commercial walnut orchard, located in Thessaly 

region, in Greece. The field measurements were conducted on sample trees of different 

height, volume and shape, on a sunny day during September 2020. The robot-camera sys-

tem was used for in-field navigation, capturing RGB and depth data by steering a circle 

around each tree, at a distance of 2 m from the canopy, for about one minute. According 

to the acquisition rate, this procedure produced 3500 frames per sample tree. The camera 

readings were acquired at a high frame rate, namely 50–60 frames per second, providing 

sufficient overlapping among the frames for better 3D reconstruction of the model, as the 

SDK tool (Stereolabs) used for the 3D point cloud generation, merges the additional points 

of the scene and creates a more complete point cloud. The overlapped areas allow for 3D 

model construction by estimating the relative position of the camera for each frame. Sev-

eral parameters of the sensor were adjusted through the SDK tool, such as brightness, 

saturation and contrast. Furthermore, according to the camera’s application programming 

interface (API) documentation, several parameters were set to fit in the field conditions. 

Specifically, the resolution of the camera was set to 1280 × 720 pixels (720p), and the point 

cloud mapping resolution was set to 2 cm. Additionally, the depth data range was set 

between 0.4- and 5-m distance from the camera position to create point cloud with high 

dense geometry and high resolution. Every point cloud of each tree was stored for further 

processing and saved in an object (OBJ) or polygon (PLY) file format, which is compatible 

with various point cloud and image processing software, such as Meshlab [48] and Cloud-

Compare [49]. 
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The ROS framework was utilized by the robotic platform to navigate in the field, 

while supporting data acquisition through the integrated “rosbag” tool. The system was 

recording simultaneously the RGB-D data from the ZED camera and the accurate position 

of the robotic vehicle utilizing the RTK-GNSS. The ZED camera uses its internal IMU to 

set the location and direction of the camera in relative coordinates. Therefore, it provides 

the RGB-D information in relative geodetic system. Combining the two datasets, the rela-

tive coordinates are referenced to the global coordinate system (GPS) “translated” into 

UTM coordinates (Figure 2). The “ros tf” library was utilized for this task. 

  
(a) (b) 

Figure 2. Location and orientation of the RGB-D camera in the relative coordinate system using the 

IMU (a) and georeferencing of the vehicle and the RGB-D to UTM coordinate system (b). 

The fusion of the two coordinate systems provided the ability to accurately georefer-

ence the spatial data captured by the camera which, after processing, produced the georef-

erenced 3D point cloud of the orchard corresponding to reality. 

After the point cloud extraction, the height and volume of each tree was computed 

using CloudCompare and its internal tools. During this process, the point cloud is gener-

alized to a surface elevation model and consequently the volume is calculated on the basis 

of the difference between a fixed ground elevation and the surface model. For the given 

case, the ground level was set as the lowest point for each tree point cloud. In other words, 

this technique is similar to draping fabric over the tree and computing the volume under 

the fabric. The resolution for the volume measurement was set equal to 2 cm. Furthermore, 

the density of points was calculated. The workflow of the data analysis followed in the 

study is briefly presented in Figure 3. 
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Figure 3. Flow chart of the procedure for the 3D point cloud construction using data from ZED 2 

camera and its comparison with the UAV derived point cloud. 

In addition to the ground-based scanning system, the orchard’s structure was also 

mapped from above using a UAV. The flight occurred during the same period with the 

ground-based measurements to ensure the comparability between the two-point cloud 

producing methods. The UAV was a quadcopter (Phantom 4, DJI Technology Co., Ltd., 

Shenzhen, China) equipped with high accuracy GNSS (real-time kinematic—RTK) and 

high-resolution RGB camera (5472 × 3648 resolution, at a 3:2 aspect ratio). The use of RTK 

GNSS was necessary in order to accurately geotag the acquired aerial images, while the 

flight plans were parametrized accordingly (UAV flight height, speed, number of cap-

tured images, side overlap, and forward overlap ratio) to produce high accuracy, below 

centimeter pixel size, orthomosaics. The produced orthomosaic can accurately provide the 

top view of the tree canopies in 2 dimensions and, thus, it was utilized as the ground truth 

for measuring the canopies’ surface. The 2D point cloud acquired by the ZED camera was 

compared with the orthomosaic. 

For the purpose of comparing the measurements derived from the ground-based sys-

tems against those of aerial-based systems, simple linear regression analysis was utilized 

taking also into account the 95% confidence interval. 

3. Results and Discussion 

In order to estimate the true position of an object (a tree within the orchard in this 

case), the first step was to create a 3D model of the object in relative coordinates with the 

position of the camera as the axis origin and then set it in real-world coordinates by align-

ing this model to a known point (based on the camera position). This georeferenced point 
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cloud aimed to be compared with a 3D point cloud produced from a UAV. Moreover, the 

georeferenced point cloud was imported in quantum geographic information system (Q 

GIS) to check the converted point cloud with a 2D georeferenced raster image of the same 

area. Reprojecting the point cloud in a real-world coordinate system provided the possi-

bility to be used in various future simulation agricultural applications and robot tasks, 

such as object detection, spraying, or harvesting [50]. 

The representation of the orchard in two dimensions provided a general idea of the 

top view of the trees within the orchard, hence, providing the ability to estimate the can-

opy surface. This information can be valuable for estimating the age and the yield poten-

tial of each tree. In our study, the 2D representation also served as the first stage for the 

comparison of the two data acquisition methods. In Figure 4, the top view of the georef-

erenced point cloud acquired by the ground-based measuring system is projected over-

layed on the detailed georeferenced orthomosaic constructed from the UAV-derived aer-

ial images. The orchard, at the time of measuring, consisted of trees of different canopy 

size, color, and stage (fully developed, partly defoliated, or defoliated). Despite of the het-

erogeneity of the trees within the orchard, the results from the two methods were similar. 

This was also confirmed by the results of the regression between the two (Figure 5). 

 

Figure 4. The projection of the point cloud (top view) of the orchard in 2D, mapped with the two 

methods used in the study; the ground-based system using depth camera mounted on Thorvald 

UGV and the orthomosaic exported from aerial images acquired using UAV. 
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Figure 5. Comparison between the canopy size estimated by the ground-based and the aerial-based 

systems used in the study; the colored area shows the lower and upper confidence (95%) limits. 

For the representation of the collected data in the three-dimensional world, the 3D 

point clouds were produced and converted to digital asset exchange (DAE) format, as to 

estimate the tree dimensional parameters, namely the height and canopy volume. Given 

that the datasets were georeferenced using high accuracy GNSS, the height of the captured 

trees could be accurately calculated (Figure 6). Furthermore, the robot-camera setup pre-

sented accurate results of the volume measurements of the trees confirming that the RGB-

D cameras can serve as useful tools for agricultural applications, such as fertilizing and 

spraying, being part of decision support tools for variable rate applications according to 

the characteristics of each tree. 

  

(a) (b) 

Figure 6. The side view of the georeferenced 3D point cloud of a sample tree captured by the 

ground-based system using the ZED camera (a) and by the UAV aerial-based system (b), used to 

estimate the tree height. 
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It is worth mentioning that the ZED camera, with the setup and adjustments used in 

the study, could not accurately detect the end details of the trees, such as thin branches, 

individual leaves, or nuts, as it could not provide extremely dense point clouds that are 

required for such tasks. Increasing the acquisition rate and the camera resolution and 

scanning more than one circles around each tree would enrich the point clouds producing 

very detailed point clouds. However, this would not be practical in agricultural applica-

tions, since it would be time consuming and hardware requirements for proper data ac-

quisition and processing would significantly increase. In our system setup, despite the 

limitations, the constructed point cloud provided a model of the trees within the orchard 

very close to reality. This result is in agreement with the conclusions presented in [51], 

where the use of low-cost 3D sensors provided reliable results for plant phenotyping and 

can be applied in automated procedures for agricultural applications. 

Comparing the two capturing systems, the ZED camera provided a good represen-

tation of the trees, capturing details of the trunk, the lower, and mid canopy. Moreover, 

the center of the top canopy had some gaps due to the position and the viewing angle of 

the camera (Figure 6a). Conversely, the point cloud derived from the orthomosaic pro-

duced by the UAV aerial images provided a good representation of the top of the canopy, 

but had poor performance in the representation of the middle and lower canopy and the 

tree’s trunk (Figure 6b). This was expected, since by definition the UAVs can capture the 

top view of the objects, being unable to penetrate inside and under the canopy. However, 

some points of the lower canopy, the trunk, and the ground were captured making feasi-

ble the accurate estimation of the tree height, calculated by subtracting the ground surface 

elevation from the top of the canopy elevation. This fact led to similar height measure-

ments from both measuring methods (Figure 7a). 

  

(a) (b) 

Figure 7. Comparison between the trees dimension measurements; trees height (a) and trees volume 

(b), derived by using the two sensing methods; the UAV aerial-based system and the UGV-ZED 

depth camera ground-based system; the colored areas show the lower and upper confidence (95%) 

limits. 

From a practical point of view, a significant drawback of using the ZED camera 

ground-based system was the time needed to navigate within the orchard and capture the 

given number of trees. On the other hand, the aerial images derived from the UAV plat-

form could be acquired within a short flight. 

In terms of tree volume measurements, the results from both methods showed simi-

lar trend; however, the UAV-derived tree volume was constantly lower by about 7.4 m3 

while the slope of the relationship was 1.26 (Figure 7b). This is attributed to the fact that 
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the UAVs can capture the upper part of the canopy, thus missing a significant part of the 

tree volume in the mid and lower canopy as seen in Figure 8b. However, these parts were 

captured in detail by the ZED camera. The latter managed to capture in detail almost the 

whole canopy, missing only a part of the middle top. As a consequence, the fusion of the 

two point clouds into a unified one constructed a more complete 3D model (Figures 8c 

and 9). 

   
(a) (b) (c) 

Figure 8. Point clouds of a sample tree derived by the UGV-ZED depth camera ground-based sys-

tem (a), the UAV based aerial system (b), and the fusion of the two point clouds (c). 

  
(a) (b) 

Figure 9. The 3D projection of the point clouds exported with the two methods used in the study; 

the ground-based system using depth camera mounted on Thorvald UGV ((a), white dots) and the 

orthomosaic exported from aerial images acquired using UAV ((b), colored dots). 

The constructed point clouds can provide a useful input, by consequently converting 

them to meshes and importing in Gazebo simulation environment. The resulted virtual 

orchard environment may be used for testing of the robot navigation and localization. 

This testing will be carried out for estimation of the robot performance, in tasks such as 

autonomous navigation and obstacle avoidance before being evaluated in real field con-

ditions. The visualization model in the Gazebo simulation environment can provide an 

adequate representation of the real orchard field and the possibility to make quality tests 

in a virtual world. In robotic applications, basic stage of the whole implementation is the 

algorithm testing part, which is performed in a virtual world before established in the real 

world. The use of simulation environments in various tasks and different environments, 

as to evaluate the robots’ performance, could be a quite costly and time effective proce-

dure during the stage of testing and development of an application. As a result, using 

simulation environments in robotic applications, could optimize the robot behavior before 

the actual tests in the field [52]. 
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4. Conclusions 

In this study, the use of RGB-D camera to map the environment of commercial or-

chards was assessed and compared with 3D orthomosaics acquired using an UAS. The 

study verified that depth cameras, using stereoscopic vision to calculate the depth values, 

can provide accurate results in outdoor environments. The system, indeed, showed prom-

ising results, as it was capable to work under direct sunlight conditions capturing a high 

number of points with efficient resolution. 

The produced point clouds provided efficient results for the structural parameters of 

the trees, as their shape and volume were adequately described. In some sample trees, 

lack of information of the inside and top of the tree canopy was observed. This limitation 

of the system was due to the initial settings of the camera’s parameters and/or due to the 

finite number of frames captured from each tree, set to the maximum of the hardware’s 

capabilities. Changes in these parameters or increasing of the image frames could possibly 

improve the 3D model reconstruction, though increasing significantly the processing 

time, hardware requirements, and, consequently, storage. Furthermore, scanning each 

tree more than once would significantly increase the point clouds’ density and accuracy, 

but this would affect the time required for the in-field scanning. 

Overall, the UAV point cloud provided an accurate representation of the top view of 

the tree canopies. The orthomosaic, acquired by the RTK GNSS enabled UAS, was utilized 

as the ground truth for the 2D representation of the surface of the top view of the tree 

canopies. The 2D point cloud acquired by the ZED camera was successfully compared 

with the orthomosaic proving that the latter sensor can be an alternative providing accu-

rate results. On the other hand, the point cloud from the ZED camera captured in much 

detail the structural characteristics of the trees all around, but had lack of information of 

the top canopy structure. Fusion of the two datasets led to construction of a more complete 

3D model with increased accuracy providing a better representation of the tree structure. 

Focusing on the cost, aerial imaging is affordable, easier to operate and can cover larger 

areas as compared to on-ground systems. The RGB-D system on the other hand, may be 

facilitated with conventional agricultural machinery, capturing data while performing in-

field operations, thus, minimizing the operational costs. Nevertheless, this study seeks to 

pave the ground to future applications following the trends of smart-autonomous farming 

leading towards Agriculture 4.0. 

Finally, the 3D point clouds can be imported in Gazebo simulation environment to 

provide the virtual environment of the orchard to be used for efficient programming eval-

uation and demonstration of the robotic platform’s behavior and interaction in the or-

chard. Future developments include the automatization of the analysis procedure to pro-

vide the results in real time as the system navigates in the orchard. This will enhance sit-

uation awareness for safe and undisturbed navigation of the robotic platform in complex 

environments for the sake of avoiding possible injuries or damages [53]. In a broader per-

spective, further research is required towards improving the speed and accuracy of the 

existing cameras and image processing systems as well as decreasing the overall complex-

ity [7,54–56]. Furthermore, fusion of data acquired by a group of unmanned vehicles could 

allow for better accuracy in a timely manner. 
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