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Abstract: One of the main targets of future 5G cellular networks is enlarging the Internet of Things
(IoT) devices’ connectivity while facing the challenging requirements of the available bandwidth,
power and the restricted delay limits. Unmanned aerial vehicles (UAVs) have been recently used as
aerial base stations (BSs) to empower the line of sight (LoS), throughput and coverage of wireless
networks. Moreover, non-orthogonal multiple access (NOMA) has become a bright multiple access
technology. In this paper, NOMA is combined with UAV for establishing a high-capacity IoT uplink
multi-application network, where the resource allocation problem is formulated with the objective of
maximizing the system throughput while minimizing the delay of IoT applications. Moreover, power
allocation was investigated to achieve fairness between users. The results show the superiority of
the proposed algorithm, which achieves 31.8% delay improvement, 99.7% reliability increase and
50.8% fairness enhancement when compared to the maximum channel quality indicator (max CQI)
algorithm in addition to preserving the system sum rate, spectral efficiency and complexity. Con-
sequently, the proposed algorithm can be efficiently used in ultra-reliable low-latency communica-
tion (URLLC).

Keywords: internet of things; non-orthogonal multiple access; resource allocation; ultra reliable low
latency communication; unmanned aerial vehicles; uplink transmission

1. Introduction

Due to their mobility and flexibility, unmanned aerial vehicles (UAVs)—also called
drones—have become popular and have a wide range of applications. These applications
include—though are not confined to—monitoring the environment, fertilizing and dusting
crops, searching for mines, police monitoring, and operations of rescue. UAVs have
received great attention thanks to its lower cost, high mobility, wide coverage and ease
of deployment and flexibility [1]. These applications are not restricted to industrial and
civilian fields only, but can also be extended to military applications [2].

In the near future, UAVs will be highly deployed in many applications in wireless
networks, especially 5G networks, to serve ultra-reliable low-latency communication
(URLLC) [3]. UAVs can present either in a single-UAV or multi-UAV system [4]. UAVs
can be utilized as airborne base stations and flying relays to provide LoS connections to
improve the coverage and power consumption for IoT devices. The recent era will witness
billions of connections of Internet of Things (IoT) devices that will be served simultane-
ously [5]. Smart mobiles, vehicles, home appliances, and sensors are examples of these IoT
devices [6].

The fifth generation (5G) network is intended to provide coverage for high-density
devices with various applications of diverse quality of service (QoS) requirements [7].
Non-orthogonal multiple access (NOMA) is a promising multiple access technology which
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can face the challenging requirements of high throughput and low latency accompanied
with the traffic of IoT devices. The basic concept of NOMA lies in the ability of NOMA
to serve numerous users simultaneously over the same resource block (RB) to increase
the spectrum efficiency [8]. However, due to simultaneous transmission, interference
occurs between users sharing the same RB, so that successive interference cancellation
(SIC) is used to detect the signal [9]. The exploitation of UAVs combined with NOMA is
used to support the required massive connections of IoT devices and also provide long
transmission range for IoT devices with limited transmission power capabilities. UAVs
can easily overpass the IoT nodes, collect the information data and then transmit them
to the data center or the other IoT devices [4]. IoT is accommodating numerous various
applications with extremely precise performance requirements. Delay is one of the essential
key metrics and one of the biggest challenges facing IoT applications [10]. In this paper,
the UAV as a base station was exploited with NOMA to support URLLC IoT network
with devices of different applications; each application has its own traffic parameters and
delay requirements. A resource and power allocation scheme was proposed to manage the
different QoS requirements for each application in uplink networks achieving high spectral
efficiency, fairness and data rate as well as improving the delay and reliability.

The main contributions of this research are listed as follows:

• The uplink NOMA-based transmission system utilizing the UAV as a base station
is modeled. Then, the resource allocation problem is formulated with the aim of
maximizing the sum rate, taking into consideration the different delay requirements
to serve URLLC applications.

• The proposed scheduler allocates resources jointly in both time domain and frequency
domain based on the IoT devices parameters. Delay limits and priority are used by
time domain; then the buffer status report (BSR) and channel quality indicator (CQI)
control the frequency domain scheduler decision to allocate resources. In addition, a
power allocation scheme is proposed to achieve fairness between the users allocated
the same RB regardless of the different channel conditions.

• Unlike the previous works, the novelty of the presented algorithm lies in its ability to
consider both the strict delay requirements of IoT devices and the system throughput
while ensuring high reliability and fairness, where simulations are performed to
evaluate the proposed scheduling algorithm performance. The results demonstrate
the effectiveness of the proposed algorithm to serve URLLC traffic with restricted
delay limits, due to the significant enhancement in delay, reliability and fairness, in
addition to maximizing the sum data rate and spectral efficiency while achieving the
same system complexity when compared to the maximum channel quality indicator
(max CQI) algorithm.

2. Related Works

This section presents the state-of-the-art in resources scheduling in uplink 5G net-
works, UAV communication, and NOMA-based URLLC systems. Resource allocation and
scheduling techniques in uplink 5G networks have been studied in many research papers
presented in this literature. In [8], the authors proposed two resource allocation algorithms;
the first one is the local rate maximization (LRM) in which the subcarrier is allocated to
the user which gives the maximum rate on the chosen subcarrier. The second approach
is global objective maximization (GOM) in which the allocated subcarrier is that which
achieves maximum increase in the objective function.

A weighted sum rate maximization problem is modeled in [11], then a subcarrier
allocation scheme which is based on iterative water-filling (IWF) algorithm is introduced.
Its main idea is to initially begin with all devices allocated to all subchannels then remove
the subchannel-device pair which gives the worst gain and power; repeatedly doing so
until it meets the constraint that L devices are allocated to each subchannel [11]. The authors
in [12] came up with a many-to-many matching model, where each subchannel forms a
preference list based on the system throughput and each user creates its own preference



Sensors 2022, 22, 1566 3 of 17

list based on the received power. Iterative addition or substitution processes for the users
to the subchannels are performed; for the purpose of enhancing the system performance
until there is no more enhancement [12]. Reference [13] shows a two-sided matching and
swapping technique, where firstly, each device forms its preference list based on channel
gain and data rate, then each subchannel receives requests from the demanding devices
and chooses the L devices with the highest energy efficiency. Then swapping operations
are performed if and only if it is accompanied by an enhancement in energy efficiency [13].
UAV cellular networks were investigated with 5G technologies in [14,15] considering the
channel model but the resource allocation problem was not inspected. In [16], backscatter
communication technology, which is based on reflecting the incident wireless signals for
the purpose of data collection, is investigated. The mobility of UAVs is exploited for
maximizing the energy efficiency while optimizing the backscatter devices allocation and
UAV trajectory [16]. The authors in [17] proposed NOMA scheme with index modulation
to reduce the effect of contention, interference and collision in grant-free access. However,
the system throughput was not considered. The authors in [18] used resource slicing and
presented two user clustering mechanisms to meet the delay constraints of time stringent
applications in uplink NOMA. NOMA technology is used in [19] and the resources are
classified into shared and private. If the transmission and delay requirements of users
cannot be achieved by the shared resources, then the private resources can be used [19].
Unlike the studies, the proposed algorithm is the first to consider the restricted delay limits
of the IoT devices in addition to throughput maximization which makes the proposed
algorithm suitable for URLLC applications.

The following sections in the rest of the paper are organized as follows. In Section 3,
the system model is illustrated for the uplink of IoT devices served by UAV using NOMA
access technique. Section 4 shows the problem formulation with the purpose of delay
minimization and maximizing the network sum rate. Section 5 demonstrates the delay-rate
optimization scheduling algorithm and the fairness optimization power allocation algo-
rithm. Section 6 shows the performance evaluation of the proposed algorithm through the
simulation results. Finally, the conclusion of the presented work is discussed in Section 7.

3. System Model

As shown in Figure 1, a UAV-assisted IoT network is considered where the UAV serves
as an aerial base station, all IoT devices are served by a UAV that covers a cell with radius
Rc. The UAV is located at 3D coordinates (xUAV, yUAV, hUAV); assume that (xUAV = 0,
yUAV = 0, hUAV); i.e., the UAV is at the center of the cell with altitude hUAV; such that
(hmin ≤ hUAV ≤ hmax) where hmin and hmax are the minimum and maximum allowable
heights of the UAV. Assume that there are N ground IoT devices; each device is equipped
with a single antenna. These devices are distributed randomly in the cell covered by the
UAV; each device is located at (xi, yi) where i = {1, 2, . . . , N}. Each IoT device has a packet
arrival rate λi and transmits minimum rate Ri with delay limit Di. Each IoT device has a
transmitted power Pi (Pmin,i ≤ Pi ≤ Pmax,i) where Pmin,i and Pmax,i are the minimum and
maximum transmitted power of IoT device i respectively. Path loss between IoT device i to
the UAV expresses the large-scale fading component which is given by

PLi =
A

1 + ae−b (θi−a)
+ Bi, (1)

A = ηLOS − ηNLOS, (2)

Bi = 20 log10(di) + 20 log10

(
4π fc

c

)
+ ηNLOS, (3)

where fc is the carrier frequency, c is the light speed, ηLOS, ηNLOS, a, b are constants related
to the propagation environment either urban, suburban, dense urban or high-rise urban
environments. Considering air to ground (A2G) communication between the UAV and the
ground IoT devices, thus, each device can have line of sight (LoS) view or non-line of sight
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(NLoS) view with respect to the aerial base station with certain probability. NLoS occurs
when the propagation path is partially or fully obscured by physical obstacles. The LoS
probability or NLoS probability are highly dependent on the device location, environment
and the elevation angle between the device and the UAV, as illustrated in Figure 1. PrLoSi ,
PrNLoSi are the probabilities of IoT device i having LoS link or having non-line of sight
(NLoS) link respectively between the UAV and IoT device, which could be calculated as [20]

PrLoSi =
1

1 + aexp(−b[θi − a])
, (4)

PrNLoSi = 1− PrLoSi (5)

where θi is the elevation angle (measured in “degree”) between IoT device i and the UAV
as illustrated in Figure 1; it can be calculated as

θi =
180
π

sin−1
(

hUAV
di

)
(6)

di is the distance between the IoT device i at (xi, yi) and the UAV located at (xUAV , yUAV ,
hUAV) is

di =

√
(xUAV − xi)

2 + (yUAV − yi)
2 + (hUAV)

2 (7)
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The UAV uses the NOMA access technique to communicate with the IoT devices.
Assume that the total bandwidth allocated to the UAV is B, which is divided equally into
K orthogonal subcarriers. Let bk,i(t) is the subcarriers assignment index, where bk,i(t) = 1
means that subcarrier k is allocated to device i, otherwise bk,i(t) = 0. There are maximum
L IoT devices allowed to be scheduled over a single subcarrier at the same time and each
IoT device gets exactly one subcarrier for simplicity. IoT devices can give preferences for
the resource blocks, and their preferences are considered based on their channel quality
indicator (CQI) [22] which depends on the channel quality between the UAV and IoT
devices. The signal to noise plus interference ratio (SNIR) of IoT device i on subcarrier k is
modeled as

Γk,i(t) =
bk,i(t)pk,i(t)

∣∣gk,i(t)
∣∣2

∑N
f=1, |gk, f (t)|2<|gk,i(t)|2

bk, f (t)pk, f (t)
∣∣∣gk, f (t)

∣∣∣2 + σ2
, (8)
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gk,i(t) is the channel gain between the UAV and IoT device i on subcarrier k. gk,i(t) which
is invariant in one time slot but varies over different time slots, can be modeled as:

gk,i(t) =
√

PLk,ihk,i(t), (9)

where hk,i(t) is the small scale fading of complex Gaussian distribution given by
hk,i(t)∼ CN(0,σ2). URLLC uses short packets to ensure low latency transmission, so Shan-
non capacity, which acts as the upper bound in terms of data rate, can no longer be applied.
Consequently, the user data rate at finite blocklength transmission [23] is given by

Rk,i(t) = log2(1 + Γk,i(t))−
√

Vk,i

m
Q−1(ε) (10)

where, the decoding error probability ε [24] is given by

ε = Q
(

ln 2
√

m
V

(
log2 (1 + Γ)− D

m

))
, (11)

Such that the Q function and V are defined respectively as

Q(x) =
1√
2π

∫ ∞

x
e
−t2

2 dt (12)

Vk,i = 1− (1 + Γk,i)
−2 (13)

where D states the packet size, and m represents the blocklength of the channel.
The sum rate can be calculated as

Rsum =
K

∑
k=1

∑N
i=1 Rk,i(t), (14)

Assume that packet arrival of the IoT device i follows a Poisson process with the
average arrival rate as λi packets per second. The average service rate of the same IoT
device is assumed to be µi packets per second. Both λi and µi are statistically identical and
independent distributed. The queuing system model of the IoT device is shown in Figure 2.
Then, the average delay dav,i, which is based on the M/M/1 queuing model [25], can be
given by the following formula:

dav,i =
Si

Rav,i − Siλi
(15)

where Si and Rav,i are the packet size and the average rate of IoT device i respectively.
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Rav,i can be given as the rate of device i averaged over time as follows:

Rav,i =
1
T

Tslots

∑
t=1

K

∑
k=1

Rk,i(t)bk,i(t), (16)

where Tslots represents the total number of time slots.
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4. Problem Formulation

The main objective is to maximize the sum data rate of all users while achieving
minimum device delay through selecting the assignment index bk,i at every time slot.
Hence, the resource allocation problem is formulated with data rate maximization objective
function as follows:

Max
{bk,i(t)}

K

∑
k=1

∑N
i=1 Rk,i(t) (17)

s.t. C1 :
K

∑
k=1

bk,i(t)Rk,i(t) ≥ Rmin,i (18)

C2 :
K

∑
k=1

bk,i(t)pk,i(t) ≤ Pmax (19)

C3 : bk,i(t) ∈ {0, 1} (20)

C4 :
K

∑
k=1

bk,i(t)pk,i(t) ≥ 0 (21)

C5 :
N

∑
i=1

bk,i(t) ≤ L (22)

C6 : dav,i < Di (23)

C7 : hmin < hUAV < hmax (24)

where Pmax is the maximum available transmission power of the IoT device. C1 is the
minimum required data rate for all users to ensure QoS. C2 means that any IoT device
transmit power cannot exceed Pmax. C3 and C4 are the constraints of the assignment matrix
bk,i and power pk,i. C5 mentions that one subcarrier cannot be allocated to more than L
users at the same time. C6 is the delay constraint, states that the average delay of the device
i (dav,i) should not exceed the delay limit requirement Di. C7 is the UAV height constraint
between the minimum and maximum allowable altitudes.

The optimization problem is non-convex due to the coupled variables bk,i and pk,i in
(20) and (21). Hence, the proposed algorithm uses a linear weighted utility function to
overcome the complexity of the optimization problem (17).

5. Proposed Algorithm

The optimization problem is non-convex due to the coupled variables bk,i and pk,i in
(20) and (21). To find a simplified solution, the proposed scheduler in this section exploits
the convexity property of the sub-problems [27] for the main non-convex problem (17). In
addition, the proposed algorithm makes use of the resource element structure in NOMA
which takes one subcarrier in frequency and one time symbol known as transmission
time interval (TTI) [28], as demonstrated in Figure 3. Hence, the proposed algorithm
operates in two domains, as illustrated in Figure 4. The first is delay minimization to
guarantee the delay requirement of each IoT device which is performed by a time domain
packet scheduler (TDPS). The second domain is rate maximization to increase the spectral
efficiency and maximize the system sum rate which is performed by a frequency domain
packet scheduler (FDPS).
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The optimum height of the UAV should be calculated to solve constraint C7. The
optimal UAV elevation angle θoptimum was derived for each environment in [29] to cover a
circular cell of certain radius in A2G communication independent of the multiple access
technique used. Thus, according to [30]; the values of θoptimum given by (25) for UAV
placement corresponding to each environment either suburban, urban, dense urban or
high-rise urban environments are illustrated in Table 1. Thus, the optimum UAV altitude
hoptimum to cover a cell of radius Rc can be given by

θoptimum = tan−1
(hoptimum

Rc

)
(25)

Table 1. Values of optimal elevation angle of each environment.

Environment θoptimum

Suburban 20.34◦

Urban 42.44◦

Dense urban 54.62◦

High-rise urban 75.52◦

5.1. Time Domain Packet Scheduling (TDPS)

The main function of TDPS is to select a certain number of IoT devices to be scheduled
in the next TTI; this process should guarantee that there are no devices exceed their
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maximum delay limits by minimizing the average delay. Hence, the optimization problem
for time domain scheduling can be formulated using (15) as

min dav,i =
Si

Rav,i − Siλi
, (26)

The device selection criteria in TDPS is based on a weighted delay metric which
is essentially needed to prioritize the devices requests. The metric function is based on
delay [31] to satisfy the delay constraint C6. The UAV uses the information in the BSR to
compute the metric function for each requesting device. This metric aims to order the IoT
devices requests to control the TDPS decision. The metric considers average delay and
buffer status reports [32] as follows:

Mi = αj wi,jdav,i (27)

where αj states the priority of each traffic group, where the TDPS categorizes stations
according to their delay limits into j groups, and wi,j is the traffic weight of user i in traffic
class j, this weight can be calculated as

wi,j =
qi,j

bl
, (28)

where qi,j is the queue size of user i in traffic group j, and bl is the buffer length to avoid
buffer overflow of the IoT device.

After grouping and calculating metric for the IoT devices that send scheduling requests.
The TDPS selects maximum Nmax = KL devices to be scheduled in the next TTI, since there
are L devices can be scheduled over the same resource block according to constraint C5
(22). Consider N_sel to be the number of chosen IoT devices to be scheduled. The rejected
users send scheduling requests in the next TTI.

5.2. Frequency Domain Packet Scheduling (FDPS)

The main purpose of FDPS is allocating resources for IoT devices based on channel
conditions (CQI) to increase spectral efficiency [32]. FDPS allocates resources to the IoT
devices chosen by TDPS. Thus, the optimization problem of FDPS could be formulated as

Max
{bk,l(t)}

K

∑
k=1

∑N_sel
l=1 Rk,l(t) (29)

s.t C1 : ∑K
k=1 bk,l(t)Rk,l(t) ≥ Rmin,l (30)

C3 : bk,l(t) ∈ {0, 1} (31)

C5 :
N_sel

∑
l=1

bk,l(t) ≤ L (32)

In the proposed algorithm in FDPS each of the selected users prioritizes the RBs, where
each IoT device sorts the RBs in descending order of CQI. The CQI value is an indication
for the channel quality of each user on each subchannel. CQI value ranges from 0 to 15. The
higher the value, the better the channel quality and vice versa. The CQI value is determined
according to the estimated value of SINR [33]. Therefore, a preference matrix is formed
containing the CQI values of all users on all RBs such that CQIi,k is the CQI value of user i
on RB k; where the rows correspond to the IoT devices and the columns are related to the
RBs. Each IoT device’s preferences (CQI values) are listed in a row in this matrix; such that
a higher CQI value indicates that the IoT device prefers this RB.
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A weighted preference matrix is then formed which is based on the weighted metrics
(27) computed in TDPS and the preferences determined in FDPS, and can be given by

fobj = Diag(M1xN_sel ) CQIN_sel xK (33)

where M1xN_sel is a row vector of the metrics of the selected devices and CQIN_sel xK is
the preference matrix which contains the CQI values of the selected devices on all RBs.
Hence, the problem in (29) can be easily modified to

Max
{bk,l(t)}

− Diag
(

M1xNsel

)
CQINsel xKbk,l(t) (34)

s.t C3 : bk,l(t) ∈ {0, 1} (35)

C5 :
N_sel

∑
l=1

bk,l(t) ≤ L (36)

The problem in (34) can be solved using binary integer programming which is used to
solve the constrained problem to maximize fobj The algorithm (Algorithm 1) to find the
optimum allocation matrix is listed in detail as shown in the pseudo code.

Algorithm 1. Joint Delay-Rate Optimization Scheduler

Input: T, K, N, λ, Pmin & Pmax, j, L
Output: {s}bk,i

1: Initialize: Nmax = L * K
2: Step 1: chooses the Nmax devices with the highest metrics in TDPS.
3: Arrange IoT devices in j groups according to the application type.
4: For Ts = 1 to Ts = T do
5: R = IoT devices send scheduling requests
6: If R =< Nmax go to Label
7: else, do
8: For i = 1 to i = R do
9: Compute the weight of device i (27):

Mi = αi wi,jdav,i
10: End for
11: Arrange IoT devices of each group in descending order of the weight (Mi)
12: Choose the N_max nodes which have the maximum weight to be scheduled in this TTI.
13: Label:

Choose the R nodes to be scheduled in this TTI.
14: End If
15: N_sel = the selected nodes to be scheduled
16: Step 2: assign each IoT device a resource block
17: For i = 1 to i = N_sel do
18: Form the preference matrix for each device i to all available RBs based on the CQI value.
19: Form the objective function which is the weighted preference matrix fobj.
20: Initialize k̂ = 1, correspondingly set fmax = fobj.

21: if a solution k̀ε
{

kεK
∣∣∣ fobj

〉
fmax

}
can be found: update k̂ = k̀, and fmax = fobj.

22: End for
23: Delay of the scheduled nodes is cleared, but that of waiting nodes is incremented.
24: Rejected nodes send scheduling requests in the next TTI.
25: End For

In the Joint Delay-Rate Optimization Scheduler, the UAV receives scheduling requests
in every TTI. In TDPS, the UAV classifies the requests to groups according to the application.
Then, the metric function is computed for all requesting devices using (27). The scheduler
selects N_sel devices with the highest metrics. Then, in FDPS, the RBs allocated to each IoT
device are chosen with the objective to maximize the weighted preference matrix in (33).
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5.3. Power Allocation Algorithm

The Uplink power allocation scheme is used to ensure fair data rates between users
sharing the same RB [34]. Consider two users share the same RB, if gk,n > gk, f then according
to (8) the SNIR of near and far users respectively are given as

Γk,n(t) =
pk,n(t)

∣∣gk,n(t)
∣∣2

pk, f (t)
∣∣∣gk, f (t)

∣∣∣2 + σ2
(37)

Γk, f (t) =
pk, f (t)

∣∣∣gk, f (t)
∣∣∣2

σ2 , (38)

Assuming that the UAV will decode the signal of the nearest user first then decode the
signal of the far user using SIC. To achieve fair data rates for both users, then,

pk,n(t)
∣∣gk,n(t)

∣∣2
pk, f (t)

∣∣∣gk, f (t)
∣∣∣2 + σ2

pk, f (t)
∣∣∣gk, f (t)

∣∣∣2
σ2 , (39)

Let
∣∣gk,n(t)

∣∣2 = gN as the gain of the near user and
∣∣∣gk, f (t)

∣∣∣2 = gF as the gain of the
far user. Thus, the power allocation coefficients aN and aF of the near and the far users
respectively can be derived as

aN PmaxgN

aFPgF + σ2 =
aFPmaxgF

σ2 , (40)

Let ρ = Pmax/σ2, then divide both sides by σ2

aNρgN
aFρgF + 1

=
aFρgF

1
, (41)

g2
F ρ2a2

F +(gF + gN )ρaF − ρgN = 0 (42)

aF =
−(gN + gF)±

√
(gN + gF)

2 + 4ρg2
FgN

2g2
F ρ

(43)

where 0 < aN < 0.5 because aF > aN and aN + aF = 1.

6. Simulation Results

In this section, simulation is introduced to evaluate the proposed algorithm perfor-
mance. Consider a single UAV covering a cell of radius Rc = 1 km; assuming a suburban
environment. An aerial UAV is centered and placed at the optimum height of the cell
according to the values in Table 1. Consider IoT devices (N = 300) randomly deployed in
the cell, IoT devices are supporting different applications, assuming there are 4 groups
of IoT devices each has its unique traffic parameters. The maximum transmit power of
each IoT device is 27 dBm and the minimum transmit power is 20 dBm. Unless stated, it is
assumed that the system total available bandwidth B = 1.4 MHz consisting of 6 RBs. The
noise power density σ2 =−174 dBm/Hz. The main simulation parameters are summarized
in Table 2.

To verify the efficiency of the proposed scheduler; the proposed algorithm is compared
with the maximum CQI scheduling algorithm. According to [35], the best CQI algorithm
shows its superiority in the achieved sum rate and spectral efficiency. The idea of the best
CQI is based on scheduling the N_sel nodes which have the maximum CQI regardless of
any other parameters.
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Table 2. Simulation parameters.

Symbol Description Value

a Environment Constant 4.88
b Environment Constant 0.43

ηLOS Line of sight Environment Constant 0.1
ηNLOS Non-Line of sight Environment Constant 21

θoptimum Optimal elevation angle 20.34◦

σ2 Noise power density −174
U Number of UAVs 1

Pmin IoT device minimum power 100 mW–20 dBm
Pmax IoT device maximum power 500 mW–27 dBm
Rc Radius of the cell 1 km

TTI Time slot 1 ms
Simulation time 1 s

Dlimit Maximum delay limit {10, 20, 30, 40} ms
λ Arrival rate per group {100, 250, 600, 400} (packets/s)
N Total number of devices 300
D Packet size 100 bits
m Channel blocklength 100 symbols

Figure 5 shows the percentage of IoT devices that exceeds the delay limit, and as
clearly seen the proposed algorithm outperforms the maximum CQI and the gap increases
with the time, until it reaches a certain point at which the percentage of devices exceeding
the delay limit saturates in both algorithms. This is due to its receiving large requests and
scheduling N_sel nodes only in each TTI while rejecting the rest of nodes. The percentage
of devices exceeding the delay tolerance saturates in the proposed algorithm to nearly 30%
but around 44% in maximum CQI. The proposed algorithm gives priority to the nodes of
the maximum buffer and least delay tolerance, resulting in 31.8% delay improvement.
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To evaluate the fairness of the proposed algorithm; the formula of Jain’s fairness index
in [8] is used, which is given by

Jain’s fairness index =

(
∑K

k=1 Rk

)2

K ∑K
k=1 R2

k

(44)
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where Rk represents the rate of user k and K is the total number of users. The fairness
index values are confined between 0 and 1 such that the maximum value is achieved when
the users have equal data rates. As obviously seen in Figure 6, the proposed algorithm
is significantly fairer than the best CQI, since scheduling is performed sequentially from
all groups, in addition to the fair power allocation algorithm used unlike the best CQI;
resulting in 50.8% fairness enhancement at 300 users.
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In Figure 7, the relationship between the transmitted power of the IoT devices and
the sum rate is shown. As expected, the sum rate of the maximum CQI is greater than the
proposed algorithm by only 1.6%; therefore, they still have a very close performance. By
increasing the IoT device’s maximum power, the sum rate is nearly the same and does not
change; this is due to the slight increase in the device’s maximum power that it does not
affect the sum rate.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 6. Fairness index versus number of users. 

In Figure 7, the relationship between the transmitted power of the IoT devices and 
the sum rate is shown. As expected, the sum rate of the maximum CQI is greater than the 
proposed algorithm by only 1.6%; therefore, they still have a very close performance. By 
increasing the IoT device’s maximum power, the sum rate is nearly the same and does not 
change; this is due to the slight increase in the device’s maximum power that it does not 
affect the sum rate. 

 
Figure 7. Sum rate versus the power of the IoT devices. 

Figure 8 shows a comparison between the proposed algorithm and the best CQI in 
the achieved sum rate versus the number of users at different bandwidths; in case of 6, 10 
and 25 resource blocks. They achieved nearly the same performance, which proves the 
superiority of the proposed algorithm. As the number of users increases, the sum rate 
increases to a certain saturation point after which the sum rate is almost constant due to 

Figure 7. Sum rate versus the power of the IoT devices.



Sensors 2022, 22, 1566 13 of 17

Figure 8 shows a comparison between the proposed algorithm and the best CQI in
the achieved sum rate versus the number of users at different bandwidths; in case of 6, 10
and 25 resource blocks. They achieved nearly the same performance, which proves the
superiority of the proposed algorithm. As the number of users increases, the sum rate
increases to a certain saturation point after which the sum rate is almost constant due to
scheduling the maximum number of users Nmax in every TTI achieving almost the same
sum rate. It can be noticed that the sum rate in case of 25 RBs outperforms that in case of
6 RBs and 10 RBs, while it is the least in the case of 6 RBs. It is observed that the saturation
point is shifted to the right as the number of RBs increases, meaning that as the number of
RBs increases, the sum rate saturates at larger number of users.
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Figure 9 shows the achieved sum rate versus the bandwidth (number of RBs) with
maximum 2 users allocated to the resource block. The spectral efficiency of the proposed
algorithm is almost closer to that of the maximum CQI, which verifies the efficiency of the
proposed algorithm in terms of spectral efficiency.

The results obtained in Figures 7–9, show the excellence of the proposed algorithm in
terms of spectral efficiency and sum rate. This is because the proposed algorithm cannot
exceed the best CQI which represents the upper bound in throughput and spectral efficiency.
However, the proposed algorithm records a very close performance.

Figure 10 shows the spectral efficiency versus the maximum power of the IoT devices
comparing the performance of both the proposed resource allocation algorithm and the
best CQI once using the proposed power allocation and once using distance-based power
allocation. As can be clearly seen, the proposed power allocation outperforms the dis-
tance=based power allocation. Moreover, as expected, the maximum CQI is superior in
terms of spectral efficiency which is on average 41.2 bps/Hz followed by the proposed
algorithm which achieves very close performance, nearly 40.5 bps/Hz and about 1.69%
decrease only.

To evaluate the reliability of the algorithms, the relationship between the packet size
and probability of decoding error is shown in Figure 11. As expected, as the packet size
increases, the probability of error increases in both algorithms. However, the probability of
error ε in the proposed algorithm is significantly lower than that of the max CQI, where at
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packet size = 1000 bits, ε is about 8.5× 10−11 and 4.2× 10−8 in the proposed algorithm and
the max CQI respectively, resulting in nearly 99.7% performance improvement.
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The computational complexity of both the proposed algorithm and the best CQI is
O(KN) which means that they have linear complexity in the number of users and number
of RBs. However, in [36], resource allocation for uplink multi carrier NOMA is developed
using graph theory with complexity O

(
KN3). The shortest processing time (SPT) strategy

is presented in [37] for uplink NOMA with complexity O
(

N2). Thus, the proposed
algorithm has a worthy complexity improvement.

7. Conclusions

In this paper, an uplink NOMA resource allocation algorithm is proposed for a UAV-
IoT-based communication network serving a large number of IoT devices of different
applications. The optimization problem is formulated under constraints with the objective
to maximize the data rate and minimize the delay. The scheduler works in time domain to
optimize the delay, and in frequency domain to optimize the data rate. The power allocation
is used to ensure fair data rates between users allocated the same RB. The simulation results
show that the proposed algorithm significantly enhances the system fairness, delay and
reliability, in addition to achieving a spectral efficiency and sum rate that are nearly closer
to the system upper bound.
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