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Abstract: This paper proposes a reliable technique for pipeline leak detection using acoustic emission
signals. The acoustic emission signal of a pipeline contains leak-related information. However, the
noise in the signal often obscures the leak-related information, making traditional acoustic emission
features, such as count and peaks, less effective. To obtain leak-related features, first, acoustic images
were obtained from the time series acoustic emission signals using continuous wavelet transform.
The acoustic images (AE images) were the wavelet scalograms that represent the time–frequency
scales of the acoustic emission signal in the form of an image. The acoustic images carried enough
information about the leak, as the leak-related information had a high-energy representation in the
scalogram compared to the noise. To extract leak-related discriminant features from the acoustic
images, they were provided as input into the convolutional autoencoder and convolutional neural
network. The convolutional autoencoder extracts global features, while the convolutional neural
network extracts local features. The local features represent changes in the energy at a finer level,
whereas the global features are the overall characteristics of the acoustic signal in the acoustic image.
The global and local features were merged into a single feature vector. To identify the pipeline leak
state, the feature vector was fed into a shallow artificial neural network. The proposed method
was validated by utilizing a data set obtained from the industrial pipeline testbed. The proposed
algorithm yielded a high classification accuracy in detecting leaks under different leak sizes and fluid
pressures.

Keywords: acoustic emission signals; continuous wavelet transform; deep learning; leak detection

1. Introduction

Pipelines play an important role in the distribution of liquid and gas resources. How-
ever, a leak in a pipeline can lead to severe consequences such as wasted resources, dis-
tribution downtime, risks to community health, and economic losses [1]. To avoid these
consequences, early leak detection is important. Techniques, such as reflectometry in the
time domain, vibration-based techniques, pressure wave techniques, and acoustic emission
(AE) technology, have been proposed in the past for pipeline condition monitoring [2–7].
Due to the fact of their sensitivity to leaks and real-time leak detection response, AE tech-
nologies have received significant attention [8]. A significant amount of research has been
conducted on pipeline leak detection. This research was based on vision, sensors, transient
response, models, and data [9]. Each method of detecting leaks has its drawback, which
prevents their use in leak detection. Some are time-consuming, and the rest are expensive.
To address these issues, artificial intelligence (AI) comes into play. AI is fast, precise, and
effective. AI readily enhances the process of automation in every field of life, aiding humans
in performing tasks more efficiently and effectively. Hence, AI was utilized to detect leaks
in this study.
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In the past decade, researchers have focused on feature extraction and feature recog-
nition models for leak detection in pipelines [10,11]. AE has been used for condition
monitoring in many methods [12]. Elforjani et al. used AE technology for crack initiation
detection [13]. Banjara et al. [14] detected pipeline leaks by utilizing AE waveform features,
support vector machines (SVMs), and relevance vector machines. Rai et al. [15] devel-
oped a pipeline health index based on the Kolmogorov–Smirnov (KS) test and multiscale
analysis. Furthermore, to determine the severity of the leak, a Gaussian mixture model
was used. Kim et al. [16] developed a pipeline leak indicator by utilizing AE waveform
features and a two-sample KS test. The study showed that the proposed leak indicator
outperformed the traditional feature (i.e., mean, variance, and root mean square)-based
leak indicators. Li et al. [17] combined the AE time-domain features with AE frequency
domain features to form a hybrid feature vector. To enhance the accuracy of artificial neural
networks (ANNs) for leak detection, the study selected discriminant features from the
hybrid feature vector using cross-entropy. Xu et al. [18] used time–frequency methods, such
as continuous wavelet transform and empirical mode decomposition (EMD), for pipeline
leak location identification. Xu et al. [19] denoised the AE signal by using variational
mode decomposition (VMD). Furthermore, the Mel frequency cepstral coefficients (MFCCs)
were extracted as a feature from the highly correlated coefficients of VMD. To identify
the condition of the pipeline, the MFCCs were classified using SVM. The leak recognition
model could recognize leaks using AE features; however, the pre-defined threshold for
extracting the AE features can lead to false alarms due to the fact of noise in the AE signal.
Furthermore, extracting AE features from the AE signal requires human expertise and
domain understanding. Using EMD for obtaining the intrinsic modes from the AE signal
leads to extreme interpolation. Furthermore, mode mixing is also a challenge with EMD.

Deep learning (DL) methods can solve the problem of leak-related information extrac-
tion and classification [20]. DL algorithms enable feature extraction from the image without
human intervention [21]. The issue of identifying transients due to the fact of unexpected
leaks still hinders perfect leak detection. The DL methods extract features to identify
them, but they are not 100% accurate. Among the DL methods, a CNN is the prominent
technique. CNNs have proved to be vital in leak detection and fault diagnosis [22]. A CNN
can extract leak-related discriminant information from acoustic images and can utilize it
for pipeline state classification [23–27]. For intelligent fault detection, Jiao et al. used a
residual joint adaptation adversarial network [28] and a deep coupled dense convolutional
network [29], which are very interesting and are considered for future research on leak
detection. Convolutional autoencoders (CAEs) can perform image compression and recog-
nition of anomalies after learning representative information from the data provided at the
input [30]. A change in the AE phenomenon increases the energy of the AE signal detected
by the AE sensors in the form of hits. These hits can be overwhelmed by interference
noises [31]. Continuous wavelet transform (CWT) can be used to analyze leak-related
useful hits. CWT takes the time-domain signal and converts it to time–frequency scales [32].
These time–frequency scales result in a scalogram that can capture the hits in the AE signal
over different time–frequency scales in the form of a 3D image.

A leak in the pipeline results in stress waves. AE sensors installed on the pipelines
record these stress waves as they transmit through the pipeline walls. The leak-related
stress waves produce transients in the AE signal known as hits or AE events. Therefore,
traditional AE features, such as rise time, decay time, and counts, can be extracted from
the AE signal by defining a threshold above the level of continuous background noise. As
mentioned earlier, the pre-defined threshold for extracting AE features can lead to false
alarms due to the fact of noise in the AE signal. Furthermore, extracting AE features from
the AE signal and defining a threshold above the level of continuous background noise
requires human expertise and domain understanding. To address this problem, this paper
proposes a new deep learning-based model that extracts the leak-related features from the
AE signal without human intervention. To utilize the leak-related transient in the AE signal,
the proposed method converts the AE signal into AE images. Then, the proposed deep
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learning-based model extracts features from the AE images obtained from an experimental
setup for pipeline leak detection. The identification of the leak against the normal signal is
made based on the extracted features. Here, many convolutional filters of a CNN, which
pass over the input scalograms to pick up the patterns in certain local parts, backed by
kernels, are used to extract half of the feature pool, referred to as “local features” in this
paper. At the same time, the latent space representations in the bottleneck layer of the
trained convolutional autoencoder complete the second half of the feature pool, referred to
as “global features” in this paper. These high-level features are the basis of input data that
help the autoencoder to reconstruct the input scalogram. At the end, the feature pool with
both the global and local features is used to assess the health of the pipeline through an
ANN. The main contributions of this study were:

• The visualization and separation of the leak features from noisy data; the time-domain
AE signals were transformed into AE images using CWT. From these AE images,
leak-related features could be extracted. To surpass the traditional feature extraction
techniques, a novel deep neural framework of CNN–CAE was proposed to extract
the features autonomously. To the best of the author’s knowledge, CNN–CAE-based
leak-related feature extraction has not been presented in the literature so far;

• The feature space obtained from the CNN–CAE was classified into “leak” and “no
leak” states of the pipeline under variable leak and pressure conditions using a
shallow ANN;

• Real-world pipeline data were used for the validation of the proposed method.

The proposed method for leak detection was applied to a metallic steel pipe. Some
studies suggest that leak detection in plastic pipes is challenging [33,34]. In the future, we
will apply the proposed technique to improve leak detection in plastic pipes.

The remaining part of this study is organized as follows: the proposed method is
presented in Section 2. Section 3 describes the pipeline leak experimental setup and data
collection. The results obtained from the proposed method are explained in Section 4.
Section 5 summarizes the conclusions of this study and provides future research direction.

2. Proposed Method

The overall flow of the proposed method is illustrated in Figure 1. The steps involved
in the proposed method are as follows:
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Step 2: AE images are obtained from the AE signal by transforming it using CWT. The
CWT scalograms obtained from the AE signal represent the time-domain AE signal over
different time–frequency scales in a 3D image, referred to as AE images in this paper. The
change in the color intensities in the AE images shows the change in energy over different
time–frequency scales;

Step 3: To extract leak-related discriminant features from the AE images, the images
are provided as inputs to the CAE and CNN to extract global features and local features,
respectively. The local features represent the change in the energy at a finer level, and the
global features are the overall acoustic signal characteristics in the AE image;

Step 4: The global and local features are merged into a single feature vector. The single
feature vector is provided as an input to the ANN for pipeline leak state identification
under different leak sizes and pressures.

The above steps are performed using CWT, CAE, CNN, and ANN, which are described
in greater detail below.

2.1. Continuous Wavelet Transform-Based Acoustic Emission Images

A CWT transforms a time-domain complex signal into the time–frequency domain
with the help of the source wavelet function. The source or mother wavelet is usually a
short time-based signal such as a vibrating signal having cycles [20]. The mother wavelet is
the basis for decomposition, and a complex signal is decomposed into coefficients localized
with translation and scale parameters.

When applied to a real-valued pipeline AE signal, CWT results in a 2D transformation
matrix. Each row in the transformed matrix represents one scale of the AE signal obtained
from the pipeline, while the columns represent the translation or the pipeline AE signal
size. Thus, these 2D transformation matrices can be represented in the form of an image
called an AE scalogram. The color intensities of the scalogram show the maximum and
minimum energy spreads of the wavelet in time and frequency according to the change in
the pipeline’s working condition.

In this study, a CWT with source wavelet Morse (symmetry parameter = 3) was
applied to the pipeline AE signals and AE images are obtained. For complete details about
Morse wavelet, readers are advised to refer to [35]. The AE images clearly show different
energy regions with changing pipeline conditions as can be seen from Figure 2. As depicted
in Figure 2a, when the pipeline condition changed from normal to a leak of 0.3 mm at
a pressure of 2 bar, high-energy components appeared in the AE images at a different
time and frequency as compared to Figure 2b. These high-energy components in the AE
images at the pipeline leak conditions were due to the AE events occurring because of the
leak-related stress waves. Similarly, Figure 2c shows high-energy components in the AE
images that occurred due to the change in the pipeline condition from normal to a leak
of 0.5 mm at a pressure of 5 bar as compared to Figure 2d. The high-energy components
that appeared in the AE images at different times and frequencies was due to the AE hits
generated by the leak in the pipeline. To extract the novel set of discriminant features from
the AE images, the power of CNN and CAE were utilized in this study.
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2.2. Global Feature Extraction Using CAE
2.2.1. Autoencoder Background

An autoencoder consists of three layers: the input, hidden, and output layers. Together,
the input and hidden layers form the encoder, while the same hidden layer combines with
the output layer to make the decoder part of the autoencoder. The main purpose of the
encoder network is to learn the hidden representation from the input data, whereas the
decoder uses these representations to reconstruct the input data.

The encoder part of the autoencoder can be formalized using Equation (1):

h = a(w1x + b1), (1)

The encoder part receives the input x and transforms it into latent representations,
h, by mathematical operations in hidden layers. The weight matrix and bias vector of
the bottleneck (hidden layer) are represented by W1 and b1, respectively, where a is the
nonlinear activation function.

The encoder part of the autoencoder can be formalized using Equation (2):

X = a(w2h + b2), (2)

where X is the reconstructed data, h is the input of the autoencoder, and W2 and b2 are the
weight and bias vectors, respectively.

While training the autoencoder, the reconstruction error between the input and output
was minimized with the help of a loss function such as mean squared error. To achieve
the minimum reconstruction error, the learned representation, known as latent coding,
should be discriminative and of better quality. Considering the discriminative quality
associated with the latent coding, in this study the autoencoder learned that latent coding
were considered global features for pipeline leak state identification.
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2.2.2. Convolutional Autoencoder Background

The global features from the scalograms of the AE signals were extracted using a
convolutional autoencoder. The CAE used the inherent property of compression in the
autoencoder to extract certain useful features from which the image can be reconstructed.
The CAE obtained the scalogram as an input. The encoder portion of the CAE consisted
of a package of the convolutional layer followed by the pooling layer and, finally, a fully
connected layer. The decoder portion of the CAE had a fully connected layer with a
transposed set of convolutional layers that deconvolved the features of latent space [36].
The encoder part was used for our prime purpose, that is, features extraction, while the
decoder part was needed to train the algorithm properly. Consequently, better features
were learned in the shape of latent coding. Eventually, these features were transformed to
reconstruct the image. The architecture of the CAE used in this study is given in Table 1.

Table 1. CAE architecture.

Layers Filters Kernel Size Output Activation

Conv/MaxPool 8 3 × 3/2 × 2 128 × 128 × 8/64 × 64 × 8 ReLU/-

Conv/MaxPool 8 3 × 3/2 × 2 64 × 64 × 8/32 × 32 × 8 ReLU/-

Conv/MaxPool 8 3 × 3/2 × 2 32 × 32 × 8/16 × 16 × 8 ReLU/-

Conv/MaxPool 8 3 × 3/2 × 2 16 × 16 × 8/8 × 8 × 8 ReLU/-

Flatten 512 - 512 ReLU/-

Reshape - - 8 × 8 × 8

4 covT 8 3 × 3 128 × 128 × 8 ReLU

Conv 3 3 × 3 128 × 128 × 3 ReLU

As can be seen from Table 1, the architecture of the encoder was similar to that of the
CNN presented in Table 2. With the help of convolution layers, the encoder convolved
the input and took the maximum value through max pooling. The process repeated four
times, and eventually the input was compressed to latent coding. In the decoder, the
four transposed convolution layers (convT) upsampled the latent coding based on the
stride value and then performed the convolution operation. The value of the stride for
reconstruction was kept at 2 with padding equal to 0.

Table 2. CNN architecture.

Layers Filters Kernel Size Output Activation

Conv/MaxPool 8 3 × 3/2 × 2 128 × 128 × 8/64 × 64 × 8 ReLU/-

Conv/MaxPool 8 3 × 3/2 × 2 64 × 64 × 8/32 × 32 × 8 ReLU/-

Conv/MaxPool 8 3 × 3/2 × 2 32 × 32 × 8/16 × 16 × 8 ReLU/-

Conv/MaxPool 8 3 × 3/2 × 2 16 × 16 × 8/8 × 8 × 8 ReLU/-

Flatten 512 - 512

output 4 - 4 SoftMax

Equation (3) mathematically represents the convT:

Xm = am(Lmsm−1 + bm), (3)

Here, Xm is the output; Lm is the convolutional matrix corresponding to layer m, which
undergoes convolution and summation operations, transformed into vectors sm−1.
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For the reconstruction of the input, the convolutional matrix, Lm, needs to pass the
transposed convolution [37]. The reconstruction process does not yield the same input but
gives an output of the same dimensions. Equation (4) represents the deconvolution layer:

Ym = am((Lm)Txm + bm), (4)

Here, the output of the transposed convolution layer is denoted by Ym having the
same dimensions as Sm−1.

2.3. Local Feature Extraction Using CNN

The local features from the AE images were extracted using a CNN. The CNN consisted
of convolutional and pooling layers that were utilized to extract the important features
from the input. A fully connected layer follows the convolution and pooling layers, which
perform the flattening of features and, finally, an output layer.

In the convolutional layer, several filters were used to convolve the input AE images.
The AE images were 3D images; thus, the convolution process took place for each channel
of the input image individually. The convolution process at each layer resulted in a feature
map with the help of an activation function. The operation of the convolutional layer is
expressed mathematically in Equation (5):

xm
c = am(

m−1

∑
k=1

Wm
k,c ∗ xm−1

k + bm
c ), (5)

In Equation (5), m is the number of convolutional layers, (*) depicts the 2D convolu-
tional operation of channel k = 1, . . . , Km−1, at the input of the convolutional layer xm−1

k ,
wm

k,c represents the weights of the Cth filter in layer m, and a is a nonlinear activation
function. am(.) is used to obtain the feature map. ReLU is used as a nonlinear activation
function in this operation.

In this study, max pooling was adopted for the pooling operation. The main purpose
of the pooling layer was to extract useful information considering the reduction in time
and memory complexity. Equation (6) shows the general expression of the feature maps
obtained using the pooling layer:

xm
c = βm

c down(xm−1
k ) + bm

c , (6)

Here, down(.) stands for the downsampling process, xm
c is the pooling layer’s out-

put, xm−1
c is the output of the last layer and input of the current layer, and βm

c shows
multiplicative bias, while bm

c is the additive bias.
A feature map was obtained after the data were passed through the set of convolutional

and pooling layers. The feature map was further flattened by xm = vec(xm−1). The flattened
feature map was passed to the fully connected layer. In a fully connected layer, the features
were weighted. In this study, the fully connected layer was the output layer of the CNN.
Equation (7) shows the mathematical representation of the fully connected layer:

Xm = am(Wmxm−1 + bm), (7)

Here, xm is the output of the fully connected layer, a is the activation function, and Wm
and bm are the weight and bias, respectively. The output of the fully connected layer of the
CNN were considered as the local features in this study. The architecture of the CNN used
in this paper is presented in Table 2. The local features obtained from the CNN and the
global features obtained from the CAE were merged to form a discriminant feature pool.
The discriminant feature pool consisted of 1024 features. Figure 3 illustrates the process of
global and local feature extraction.
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2.4. Pipeline Leak State Identification Using ANN

The ANN classifies the input features into their respective classes. The ANN has three
layers: the input layer, hidden layer, and output layer. The input layer takes the features
as an input for the ANN. The hidden layer linearly transforms the input features using
matrix multiplication operators. The output layer performs the segregation task using an
activation function. This study considered the SoftMax function as an activation function
in the output layer.

Based on the input features, the ANN decides the pipeline’s condition. Here, we used
a cross-categorical entropy loss function to classify the data. In this study, the ANN was
used for classification; for this reason, the activation function was not applied to the input
and hidden layers. The ANN can be represented using Equation (8):

Xm = Wmxm−1 + bm, (8)

Here, Xm is the output of the mth layer, xm−1 is the output, and Wm and bm are the
weight and bias vector of the mth layer. Table 3 represents the architecture of the ANN
used in this study.

Table 3. ANN architecture.

Layers Nodes Activation Dropout Rate

Input 1024 - 0.2

Hidden 512 - 0.2

Output 2 SoftMax -

3. Experimental Setup

The experimental setup schematic and photos are provided in Figure 4a,b. The
experimental setup consisted of a water pipeline made of stainless steel with an outer
diameter of 114 mm and a thickness of 6 mm. The AE R15I-AST sensors, manufactured by
Mistras Group, Inc. (New Jersey, United States) were attached to the pipeline using glue
and tape. The AE signals were acquired from the pipeline at a sampling frequency of 1
MHz. To record the AE sensor data, an NI-9223 National Instruments data acquisition setup
and a personal computer were used. A valve was installed on the pipeline to simulate the
leak. To ensure safety, the pipeline leak valve was connected to a hose for transporting the
fluid into a container, as the experiment was conducted inside the industry. The position of
the valve is shown in Figure 4b. Initially, the valve was kept closed, and the pipeline was
operated at normal conditions by turning on the pump. During this phase, the pressure
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(P1) was kept at 7 bar and data were recorded for 2 min. Then, a leak the size of 0.3 mm was
simulated in the pipeline by opening the valve, and data were recorded for 2 min. After
obtaining the data at 7 bar pressure, the valve was closed again and data were collected
from the pipeline at 13 bar pressure (P2) for 2 min. Afterward, a leak the size of 0.5 mm
was introduced into the pipeline by opening the valve (P3), and data were recorded for
2 min. Figure 5 shows the AE signals obtained from the pipeline under normal and leak
conditions. Figure 6 shows the flow rate recorded during this experiment. For each pressure
condition, 240 samples were collected. Of the 240 samples, 120 samples were collected
under normal pipeline conditions, and the remaining 120 samples were conducted under
pipeline leak conditions.
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Figure 5. AE signals: (a) normal conditions (pressure = 7 bar); (b) leak condition (leak size = 0.3 mm,
pressure = 7 bar); (c) normal conditions (pressure = 13 bar); (d) leak condition (leak size = 0.5 mm,
pressure = 13 bar).
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Figure 6. The water flow rate recorded during the experiment.

4. Results and Discussion

To evaluate the performance of the proposed method, a proper testing and training
data configuration is important. In this paper, leak sizes of 0.3 and 0.5 mm were created in
the pipeline, and data were obtained at pressures of 7 and 13 bar. For each pressure, a total
of 240 samples were obtained from the pipeline. Thus, the data set contained 480 samples
for both leak sizes, out of which 240 samples were normal samples and the remaining
samples were leak samples. Seventy percent of the samples were selected randomly for
training purposes, and the remaining 30% of the samples were used for testing the model.
To ensure the repeatability of the results, the experiments were performed ten times on
each data set.

Proposed Method: Performance and Comparison

For feature extraction, the proposed method used a combined deep neural network,
CNN–CAE, which extracted both global and local features from the AE images. The global
features were trends and generalized features in all the scalograms, while the local features
explored the leak information from the scalograms. The local and global features were
merged into a single feature vector. Finally, the feature vector was provided to the ANN
for pipeline condition identification. The metrics used for comparing the proposed method
against the reference method were accuracy, precision, recall, and F1 score. These metrics
were calculated using Equations (9)–(12), respectively:

Recall =

A
∑
α

nα ×
(

TPα
TPα+FNα

)
N

, (9)

Precision =

A
∑
α

nα ×
(

TPα
TPα+FPα

)
N

, (10)

F1 =
1
N

A

∑
α

nα × 2 ×
A

∑
α

(
Recallα × Precisioα

Recallα + Precisioα

)
. (11)

Accuracy =

A
∑
α

TPα

N
, (12)

Here, TPa, FPa, and FNa represent true-positive, false-positive, and false-negative
results obtained from the features representing class a; na shows all the samples from class
a; A depicts the total number of classes. N stands for the total number of data samples in
the testing sets.

Masoumeh Rahimi et al. [26] used a deep learning-based approach for leak detection.
The data used for the study was acquired using a hydrophone from a plastic tank leak. The
study compared time-domain, frequency-domain, and time–frequency domain signal pre-
processing techniques, all followed by a CNN. After the signal pre-processing in multiple
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domains, the pre-processed signals of each domain were provided to the CNN for feature
extraction and classification. The study showed that FFT-CNN performed best for leak
detection. To make the comparison fair, we applied the steps provided in [26] to our pipeline
data set and results were obtained. All three signal pre-processing techniques covered
the features of the frequency domain or time domain but no time–frequency domain
features. However, the proposed method used CWT, a time–frequency domain analysis
that efficiently utilizes the change in the signal due to the presence of a leak; moreover, in
the proposed technique, the AE images of CWTs were computed, which presented better-
visualized features for the CNN. AE signals are noisy, non-stationary, and complex. Hence,
to identify the leak-related information in changing operating conditions, discriminant
features needed to be extracted. For feature extraction, the proposed method utilized a
combined deep neural network, CNN–CAE, which extracted both global and local features
from the AE images. The global features were trends and generalized features in all the
scalograms, while the local features explored the leak information from the scalograms.
The global and local features convey vital information about the leak and normal condition,
even if the leak size and pressure value are changed, which is why this study used the
combined neural network, CNN–CAE, for feature extraction instead of passing the raw
images to traditional DL models. Although DL methods extract features, the noise in
signals affect the performance of models, which is obvious from the comparisons. On the
other hand, the referenced method only used a CNN to extract features and classify the data
based on those features. For proving that the proposed model was superior, we compared
it with two other methods: one deep learning and one machine learning method. The deep
learning method was CWT-LSTM. This method takes the CWT scalogram images of the
input data and feeds it to the LSTM for feature processing and classification. The machine
learning method was CWT-SVM, in the same way as CWT-LSTM. It also processed the
signal through CWT and computed scalograms that were fed to the SVM for identification
of the leak state. Both methods gave good results but did not surpass the proposed
method. The proposed method outperformed the referenced methods in leak detection
because of its promising signal processing and finer-level feature extraction. Figures 7 and 8
present the confusion matrices obtained from the proposed and referenced methods. The
proposed model addresses the issue of leak detection at high accuracy compared to all of
the referenced methods. Moreover, the proposed model was stable, because it delivered
the same performance throughout the 10 experiments in this study.
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Figure 8. Confusion matrices of the (a) proposed method; (b) FFT-CNN; (c) CWT-LSTM; (d) CWT-
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The results obtained from the proposed method and the referenced methods are
shown in Table 4 for both data sets (0.3 mm leak size, 7 bar fluid pressure; 0.5 mm leak
size, 13 bar fluid pressure). The proposed method outperformed the referenced methods
with an accuracy of 98.4%, a precision of 96.8%, recall of 97%, and an F1 score of 97.6%
for the 0.3 mm and 7 bar pressure data set. Similarly, for the 0.5 mm and 13 bar pressure
data set, the proposed method outperformed the reference methods with an accuracy of
96.6%, precision of 95%, recall of 95.2%, and F1 score of 95.3%. These results are explained
as follows.

Table 4. Results obtained from the proposed and reference methods.

Metric
Leak Size 0.3 mm, Pressure 7 bar

Proposed FFT-CNN CWT-LSTM CWT-SVM

Accuracy 98.4% 96.67% 90.1% 90.33%

Precision 96.8% 96.69% 91.0% 91.0%

Recall 97% 96.6% 90.5% 91.93%

F1 Score 97.63% 96.67% 90.7% 91.53%

Metric
Leak Size 0.5 mm, Pressure 13 bar

Proposed FFT-CNN CWT-LSTM CWT-SVM

Accuracy 96.67% 93.33% 87.67% 95.33%

Precision 95% 94.0% 85.0% 94.1%

Recall 95.27% 93.33% 88.27% 93.33%

F1 Score 95.3% 93.27% 86.3% 94.27%

The proposed model showed good classification results as well; to prove this we
computed the ROC_AUC score which was 0.500 for normal conditions, while the leak
condition had an ROC_AUC score of 0.9289. Figure 9 shows the ROC curve of the proposed
model. For better demonstration of the comparison between the proposed and referenced
models, the scatter plots were also computed. Figure 10 shows the scatter plots of the
proposed method and all the referenced methods. The scatter plots were computed for
the results of data set obtained from testbed having a 0.3 mm leak hole size and 7 bar
fluid pressure. It is obvious from Figure 10 that the proposed method outperformed the
referenced methods in terms of accuracy, since the features obtained from the proposed
method were less scattered and highly discriminant for the normal and leak conditions of
the pipeline. Compared to the proposed method, the features obtained from the referenced
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methods were either scattered or less discriminant for the normal and leak conditions of
the pipeline, which is why the referenced methods underperformed in the identification of
pipeline health condition. The pipeline signal was analyzed by the proposed method using
MATLAB software. The total time taken for extracting the features from AE images and
classification was approximately 340 s for 5 trails on a PC with a 4.2 GHz processor and a
16 GB RAM capability.
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5. Conclusions

This paper proposed a novel deep learning-based pipeline leak detection approach.
First, acoustic emission signals were collected from the pipeline under normal conditions
and with different leak sizes. The acoustic emission images were obtained from the
time series acoustic emission signal using continuous wavelet transform. To utilize the
information in the acoustic images for pipeline leak detection, a novel deep learning
framework was introduced. The novel deep learning framework was composed of a
convolutional autoencoder and a convolutional neural network. The novel deep learning
framework extracted a new set of local and global features from the acoustic emission
images using a convolutional autoencoder and convolutional neural network. The new
set of features was merged into a single feature vector. The merged feature vector was
provided as input into the ANN for pipeline condition classification. In the experimental
part of this study, the proposed approach was compared with a state-of-the-art method.
The proposed method showed higher accuracies of 98.4% and 96.75% for different leak
sizes. The proposed method can only detect leaks but cannot deliver any information
about the leak localization. In the future, we will explore our proposed method in different
locations of the leak with respect to the sensor and longer distances and leak localization of
a pipeline.
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