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Abstract: Identifying voice individuality is a key issue in the biometrics field. Previous studies have
demonstrated that voice individuality is caused by differences in the shape and size of the vocal
organs; however, these studies did not discuss voice individuality over a long term that includes
periods of voice change. Therefore, we focus on adolescence (early teens to early twenties), which
includes voice changes due to growth of vocal organs, and we reveal invariant voice individuality
over a long period. In this study, the immature and mature periods during vocal organ development
were defined as unstable and stable periods, respectively. We performed speaker verification tests
across these two periods and evaluated voice features that are common to these periods using Fisher’s
F-ratio. The results of the speaker verification test demonstrated a verification accuracy of 60% or
more in most cases, and the results of the evaluation using Fisher’s F-ratio demonstrated that robust
voice individuality existed in the frequency regions of 1–2 kHz and 4–6 kHz regardless of the period.
These results suggest that voice individuality is unaffected by age-related changes over the long term,
including adolescence.

Keywords: voice individuality; speaker verification; Fisher’s F-ratio; adolescence; deep learning

1. Introduction

Biometrics technologies are used to identify and authenticate individuals based on
their physical characteristics. To date, many biometrics techniques that use physical charac-
teristics, e.g., face, voice, fingerprint, iris, gait, and palmprint, have been proposed [1–8].
Among such techniques, speaker verification is easy to implement and can be used to
authenticate people remotely using telephone and video calls. Speaker verification dis-
criminates differences between individuals, i.e., voice individuality, using voice features,
e.g., the frequency spectrum and sound spectrogram of the voice [9–12]. Thus, identifying
individuality in voice features is very important in terms of achieving accurate speaker
verification systems.

To date, many studies of voice individuality have been presented [13–19]. Most
focused on the frequency characteristics produced by the resonance of the speaker’s vocal
tract [15–19]. Some studies have revealed that voice individuality and the shape and size
of the vocal organs are closely related [17–19]. However, to the best of our knowledge,
no study has investigated voice individuality relative to age-related changes due to vocal
organ growth. As the shape and size of the vocal organs change, voice characteristics
also change [20]. Thus, a change in voice characteristics can reduce verification accuracy.
Therefore, it is important to identify voice individuality in a manner that is robust against
age-related changes due to vocal organ growth.

The goal of this study was to reveal invariant voice individuality during adolescence,
which is the period in which vocal organs grow significantly. According to the World
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Health Organization [21], adolescence is defined as the phase of life between childhood and
adulthood (ages 10 to 19). During puberty, which occurs during the first half of adolescence,
the voice changes because the vocal organs grow significantly with secondary sexual
characteristics. Thus, we expect that identifying voice individuality in adolescence will help
reveal voice individuality information that is robust against long-term age-related changes.

In this study, experiments were performed using Japanese audio data of voice actors
(early teens to early twenties) who have appeared continuously in a series of movies
over a period of 10 years. The audio data were divided into an immature (i.e., unstable)
period and mature (i.e., stable) period based on the developmental stage of the vocal
organs. To clarify voice individuality common to these two periods, we conducted two
experiments using phrase samples and vowel samples from the audio data. First, we
performed speaker verification tests across the unstable and stable periods to determine
whether target speakers can be identified correctly before and after vocal organ growth.
Second, we evaluated the relationship between frequency bands and voice individuality
using Fisher’s F-ratio to identify voice features that are robust and unaffected by age-related
changes caused by growth of the vocal organs.

The remainder of this paper is organized as follows. Section 2 introduces related work.
Section 3 explains the experimental method, and the experimental results are presented
in Section 4. A discussion of the results is given in Section 5. Finally, conclusions and
suggestions for future work are presented in Section 6.

2. Related Work

The differences in voice qualities between individuals are caused by differences in the
characteristics of the vocal organs [22]. For example, the shape and size of the vocal tract
and vocal cords play a very important role in voice individuality. Lu and Dang investigated
the relationship between vocal organs and frequency components [17], and found that
speaker identification information derived from vocal organs was concentrated in three
frequency regions, i.e., the 100–300 Hz region (related to the length and stiffness of the
vocal cords), the 4.0–5.5 kHz region (related to the shape of the piriform fossa), and the
6.5–7.8 kHz region (related to consonants). In addition, Kitamura et al. investigated the
relationship between Japanese vowels and vocal individuality [18,19]. They found that
vowel individuality was observed in the frequency region of approximately 2.5 kHz or
higher and that this result was related to the shape of the hypopharynx, which comprises
the laryngeal tube and piriform fossa. As mentioned previously, the shape and size of the
vocal organs and voice individuality are closely related; however, these previous studies
did not consider the relationship between vocal organ growth and voice individuality.
Thus, in this study, we investigated voice individuality that is independent of age-related
changes caused by the growth of vocal organs.

Voice individuality information is commonly used in speaker verification systems,
and age-related voice changes must be considered when developing such systems. To
date, several studies have investigated speaker verification techniques that are robust
against age-related voice changes [23–26]. However, these studies did not consider the
developmental periods in the growth process of vocal organs. In contrast, in this study, we
focused on adolescence, which includes periods of voice change due to significant growth
in the vocal organs. Specifically, we investigated the possibility of speaker verification
between two different periods in adolescence, i.e., the unstable period, in which the vocal
organs are immature, and the stable period, in which the vocal organs are mature.

3. Methodology
3.1. Definition of the Unstable Period and the Stable Period

The growth in vocal cord length and vocal tract length stops by the ages of 20 and
21, respectively, regardless of gender [27,28]. Thus, in this study, we defined the unstable
period as less than 20 years old, the mixed period as 20 years old, and the stable period
as 21 years old or older. In our experiments, we considered voice data from the unstable
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and stable periods to verify whether there exists voice individuality that is independent of
age-related changes during these periods.

3.2. Data Preparation
3.2.1. Collection of Audio Data

We considered Japanese audio data in our experiments. At the start of this study,
no Japanese audio data had been recorded continuously over a long period (including
adolescence to the early twenties). Thus, we collected Japanese-dubbed voices of eight
British movies that were serialized over a 10-year period. We first selected six Japanese
voice actors (three males and three females) who performed in the eight movies from their
unstable periods to their stable periods. Then, we collected monaural audio data of each
voice actor, in which utterances with sound effects or BGM were eliminated. Here the
sampling rate was set to 16 kHz, and the quantization bit rate was set to 16 bits. We then
divided the audio data of each voice actor into the unstable and stable periods.

Table 1 shows the details of the six voice actors. One male voice actor and one female
voice actor who played in all movies had the highest number of utterances, and these actors
were selected as the verification targets. In this paper, the male and female voice actors are
referred to as targets M and F, respectively. The remaining male and female voice actors are
referred to as non-target M1, non-target M2, non-target F1, and non-target F2.

Table 1. Details of voice actors.

Voice Actor Gender Unstable Period (Age) Stable Period (Age)

Target M Male 12, 13, 15, 16, 18 21, 22

Target F Female 13, 14, 16, 17, 19 21, 22, 23

Non-target M1 Male 13, 14, 16, 17, 19 22, 23

Non-target M2 Male 12, 13, 15, 16, 18 22

Non-target F1 Female 14, 17, 19 21, 22, 23

Non-target F2 Female 17, 19 21

3.2.2. Extraction of Vowel Data

The Japanese language has five vowels: /a/, /i/, /u/, /e/, and /o/. Here, we
explain the method used to extract these vowels (hereafter referred to as vowel data) from
the collected audio data. Here, Julius [29], which is a high-performance general-purpose
engine for large vocabulary continuous voice recognition, was employed to extract the
vowel data. An important function of Julius is the alignment output function, which
identifies the appearance section of a phoneme by comparing the input audio data and
their corresponding text data. The appearance sections of phonemes were identified using
a Japanese acoustic model based on a hidden Markov model. Figure 1 shows the procedure
used to extract the vowel data. First, the appearance sections of phonemes in the audio
data were identified using Julius, and the audio data were divided into phonemes based on
the identified appearance section. Then, only the appearance sections of vowels, i.e., vowel
data candidates, were extracted from the phoneme data. As a result, vowel data candidates
were collected automatically by performing these operations on all audio data. In addition,
we manually selected clear vowels as the final vowel data.

3.2.3. Preparation of Voice Samples

We prepared voice samples for our experiments using the collected audio data
(Section 3.2.1) and the extracted vowel data (Section 3.2.2). The voice samples were ex-
tracted by shifting a window of a fixed frame width from the start point of the audio data
and vowel data. Note that silent samples were eliminated. Here, the frame width and
overlap width were set to 50 and 40 ms, respectively. In this paper, the voice samples ob-
tained from the audio and vowel data are referred to as phrase samples and vowel samples,
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respectively. Table 2 shows the number of phrase and vowel samples in the unstable and
stable periods.
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Table 2. Number of phrase and vowel samples.

Unstable Period Stable Period Total

Phrase 47,041 22,709 69,750

Vowel /a/ 4223 1535 5758

Vowel /i/ 1277 591 1868

Vowel /u/ 360 189 549

Vowel /e/ 1266 613 1879

Vowel /o/ 3254 1343 4597

3.3. Experimental Setup
3.3.1. Extraction of Voice Feature

In most speaker verification systems, the mel-frequency cepstral coefficient (MFCC) is
used as the baseline voice feature [30]. However, recent studies have suggested that the
linear-frequency cepstral coefficient (LFCC) is superior to the MFCC as a voice feature for
speaker verification tasks [31,32]. The MFCC focuses on only the low-frequency region;
however, speaker characteristics are present in both the low-frequency and high-frequency
regions [17]. LFCC transforms frequencies using a uniform linear frequency filter bank;
thus, it can extract frequency characteristics uniformly without losing the characteristics of
the speakers in high-frequency regions. Therefore, LFCC was used as the voice feature in
our experiments.

Figure 2 illustrates the LFCC extraction procedure. For each generated voice sample
(Section 3.2.3), the amplitude was first normalized to the range −1 to 1, and a Hamming
window was applied. Then, Fast Fourier Transform (FFT) was applied, and the absolute
values of the amplitudes after the FFT were squared to transform them into a power spec-
trum. Subsequently, the power spectrum was filtered using 60 linear frequency filter banks.
Finally, a 60-dimensional LFCC was extracted by applying a discrete cosine transform
(DCT).
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3.3.2. Construction of Verification Model

A deep neural network (DNN) is a multi-layer feedforward NN with at least three
hidden layers [2]. In this study, we used a DNN to construct verification models for targets
M and F. Figure 3 shows the architecture of the verification model. The input to the model
is a 60-dimensional LFCC. Affine is a fully-connected layer in which each node connects
to all nodes of the subsequent layer. Batch Normalization [33] was introduced to reduce
overfitting and achieve faster learning. ReLU is a function that was implemented to avoid
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the vanishing gradient problem and achieve faster learning. Softmax is a function that was
introduced to output the probability distribution over all classes. In this experiment, the
number of training iterations was set to 300, and the mini-batch size was set to 32. The
verification model was trained to identify two classes, i.e., a target class (a set of voice
samples of either target M or F) and a non-target class (a set of voice samples of the four
non-targets). During training of the verification model, the parameters were updated via
backpropagation. Cross entropy was used as the loss function, and Adam [34] was used as
the optimization method. In the verification test, the probabilities, which were calculated
by the Softmax function, of the target class and non-target class were output in the range of
0 to 1 for the input test data.
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3.3.3. Evaluation Index in Verification Test

We employed an index based on the equal error rate (EER) [35] to evaluate the ver-
ification accuracy for the target class. For the probability of the target class output from
the DNN, the thresholds were set to the values in the range 0 to 1 in increments of 0.01.
The following operations were executed for the respective thresholds to calculate the EER.
First, using the DNN, the input data were classified as the target class if the corresponding
probability exceeded a given threshold; otherwise, the input data were classified as the
non-target class. Then, the false acceptance rate (FAR) and false rejection rate (FRR) were
computed using the classification results. FAR and FRR are defined as follows:

FAR =
FP

FP + TN
, (1)

FRR =
FN

FN + TP
, (2)

where FP is the number of times the non-target was classified incorrectly as the target, TN
is the number of times the non-target was classified correctly, FN is the number of times
the target was classified incorrectly as the non-target, and TP is the number of times the
target was classified correctly. After executing these operations for all thresholds, the EER
was calculated using the FAR and FRR values. As illustrated in Figure 4, there is a trade-off
between FAR and FRR. The EER was calculated as follows using the FAR and FRR values
when those values matched (or were as closed as possible) at a given threshold value:

EER =
FAR + FRR

2
. (3)

The final verification accuracy was evaluated using the EER as follows:

Verification accuracy = 1 − EER. (4)

3.4. Experimental Method
3.4.1. Speaker Verification Test

To investigate the feasibility of speaker verification using voices that have changed over
time, verification tests for targets M and F were conducted using voice samples of the six
voice actors from both the unstable and stable periods. As shown in Figure 5, we conducted
two experiments using the constructed DNN-based verification model (Section 3.3.2). The
first experiment was conducted to confirm whether the voice samples from the stable
period can be recognized correctly when using voice samples from the unstable period as
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training data. The second experiment was conducted to confirm whether voice samples
from the unstable period can be recognized correctly when using voice samples from the
stable period as training data. In these experiments, by changing the initial values of the
weights and mini-batch sampling in the DNN, we generated five verification models for
each of the targets M and F. Here, the average of the verification accuracy obtained using
each verification model was used as the final verification accuracy.
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3.4.2. Evaluation of Voice Individuality

Lu and Dang investigated the relationship between each frequency band and speaker
individuality using Fisher’s F-ratio (hereafter F-ratio) [17]. Following their work, we
investigated the frequency bands involved in voice individuality relative to targets M and F.
Here, the F-ratio was calculated as follows. First, a linear frequency filter bank was applied
to the power spectrums calculated from the voice samples, and those power spectrums
were divided into 60 frequency bands. Next, for each frequency band k, the average power
spectrum µi,s,k of voice actor i in period s and the average power spectrum µs,k of all voice
actors in period s were calculated as follows:

µi,s,k =
1

Ni,s
∑

Ni,s
j=1xi,s,j,k , (5)

µs,k =
1
I ∑I

i=1µi,s,k, (6)
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where Ni,s is the total number of voice samples of voice actor i in period s, xi,s,j,k is the value
of the power spectrum in frequency band k of voice sample j of voice actor i in period s,
and I is the total number of the voice actors. The F-ratio of frequency band k for voice actor
i in period s was calculated as follows:

F-ratioi,s,k =
1
I ∑I

i=1(µi,s,k − µs,k)
2

1
Ni,s

∑Ni.s
j=1

(
xi,s,j,k − µi,s,k

)2 , (7)

where the denominator and numerator indicate the intra-speaker and inter-speaker vari-
ances, respectively. Lastly, F-ratios were normalized using min-max normalization. A
frequency band with a large F-ratio value can be considered a feature that effectively
contributes to the discrimination of targets M and F, i.e., it represents voice individuality.

4. Results
4.1. Results of Verification Tests

The verification tests were conducted to determine whether it is possible to identify
the voice of targets M or F between the unstable period and stable period. In the following,
we present the verification accuracies obtained using the phrase and vowel samples.

4.1.1. Verification Results Obtained with Phrase Samples

Figure 6 shows the verification accuracies for targets M and F obtained using the
phrase samples. Here, the blue bar is the result in which the phrase samples in the unstable
period were trained and the phrase samples in the stable period were tested. The orange bar
is the result in which the phrase samples in the stable period were trained and the phrase
samples in the unstable period were tested. As can be seen, the verification accuracy ranged
from 54% to 75%, which is high compared to the expected values (p < 0.1). These results
indicate that it is possible to identify the targets across the unstable and stable periods using
the phrase samples. In addition, for both targets, we found that the verification accuracy
was higher when the phrase samples of the unstable period were used for training.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 6. Verification accuracy obtained using phrase samples. 

4.1.2. Verification Results Obtained with Vowel Samples 
Figures 7 and 8 show the results obtained when the vowel samples in the unstable 

and stable periods were used as training data, respectively. As can be seen, the verification 
accuracy ranged from 46% to 75%, and 13 out of the 20 cases exhibited 60% or more accu-
racy, which is high compared to the expected values (p < 0.1). These results indicate that 
it is possible to identify the targets across the unstable and stable periods using the vowel 
samples. In addition, similar to the results obtained using the phrase samples, we found 
that the verification accuracy was higher for both targets when training the vowel samples 
of the unstable period. 

 
Figure 7. Verification accuracy obtained using vowel samples in the unstable period as training 
data. 

Figure 6. Verification accuracy obtained using phrase samples.

4.1.2. Verification Results Obtained with Vowel Samples

Figures 7 and 8 show the results obtained when the vowel samples in the unstable
and stable periods were used as training data, respectively. As can be seen, the verification
accuracy ranged from 46% to 75%, and 13 out of the 20 cases exhibited 60% or more
accuracy, which is high compared to the expected values (p < 0.1). These results indicate
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that it is possible to identify the targets across the unstable and stable periods using the
vowel samples. In addition, similar to the results obtained using the phrase samples, we
found that the verification accuracy was higher for both targets when training the vowel
samples of the unstable period.
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4.2. Frequency Bands Involved in Voice Individuality

As discussed in Section 3.4.2, the F-ratio allows us to identify the frequency bands
that effectively contribute to speaker verification. In other words, a frequency band with
high F-ratio can contribute to voice individuality. Here, the F-ratio was used to evaluate
individual characteristics shared between the unstable and stable periods.

4.2.1. Evaluation Results of Voice Individuality with Phrase Samples

Figure 9 shows the F-ratio obtained when using the phrase samples, where the left
and right figures show the results for targets M and F, respectively. As can be seen, for
both targets M and F, the frequency region around 4–6 kHz exhibited high F-ratios for
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both periods. In other words, this frequency region is likely to include individual voice
characteristics that are common to the unstable and stable periods.

From the comparison between targets M and F, we can see that in the low-frequency
band, the difference between the two periods in target M was larger than that of target F.
This is because the fundamental frequency of males fluctuates greatly during the period of
voice change.
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4.2.2. Evaluation Results of Voice Individuality Obtain with Vowel Samples

Figures 10 and 11 show the F-ratio results for targets M and F obtained using vowel
samples, respectively. For the vowel /u/, no clear features were observed over the entire
frequency range because, as shown in Table 2, the number of samples for vowel /u/ was
extremely small compared to that of other vowels. Therefore, the results for the other
vowels are discussed in the following. As shown in Figures 10 and 11, similar to the results
obtained with the phrase samples, the frequency region around 4–6 kHz exhibited high
F-ratios in both periods. In addition, a frequency region with a high F-ratio was found
to commonly exist around 1–2 kHz for all vowels. Note that this finding was unique to
vowels, i.e., it was not observed with phrases. Furthermore, in addition to the 1–2 kHz and
4–6 kHz frequency regions, each vowel had unique frequency regions that demonstrated a
common individuality in both the stable and unstable periods.

From the comparison between targets M and F, we can see that in the low-frequency
band, the difference between the two periods in target M tended to be larger than that
of target F for all vowels. As mentioned in Section 4.2.1, this is because the fundamental
frequency of males fluctuates greatly during the period of voice change.
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4.3. Evaluation of the Robustness of the Frequency Regions Related to Voice Individuality

In Section 4.1, it was shown that speaker verification was possible regardless of age-
related voice changes using the DNN model. In Section 4.2, the frequency regions related
to voice individuality were identified for each period. Here, we evaluated whether the two
frequency regions identified in Section 4.2, 1–2 kHz and 4–6 kHz, show robustness with
respect to age variations. This evaluation was conducted using the vowel samples of the
targets and non-targets in the unstable period and stable period. We first transformed the
vowel samples into the spectrograms. Next, for each spectrogram, we calculated medians
of amplitude values in each frequency band. Subsequently, we generated pairs of two
medians taken randomly from different two frequency regions. Finally, for each person
(the targets and non-targets), we calculated the centroid of the pairs of medians. In this
experiment, the centroids between the two periods for each person were compared to
evaluate robustness of the 1–2 kHz and 4–6 kHz frequency regions in age variations.

Figure 12 shows the scatter plots of the centroids. The markers of the same color
in each figure indicate the centroids of the unstable period and stable period for each
person. The figures on the left are scatter plots of the centroids calculated using medians
taken from each of 1–2 kHz and 4–6 kHz. The figures on the right are scatter plots of
the centroids calculated using medians taken from the frequency regions other than the
1–2 kHz and 4–6 kHz frequency regions. As can be seen, the results of the 1–2 kHz and
4–6 kHz frequency regions exhibited closer distances between the markers of the same
person across the two periods compared to those of the other frequency regions. In addition,
the markers of the two periods for each person formed a more distinct cluster in the results
of 1–2 kHz and 4–6 kHz, especially in the vowels /a/, /i/, and /e/. In contrast, in the
results of the other frequency regions, such a clear tendency was not observed. Figure 13
shows the boxplots for the distances (Euclidian distances) between the centroids for the
two periods of each person. Each boxplot in this figure was created using 6000 centroids
(i.e., 3000 distances) calculated from pairs of randomly obtained medians in the 1–2 kHz
and 4–6 kHz frequency regions, or in other frequency regions. From this figure, we can
see that the distance between the same person in the 1–2 kHz and 4–6 kHz frequency
regions was significantly smaller than that in the other frequency regions. This means that
the 1–2 kHz and 4–6 kHz frequency regions include voice individuality that is robust to
age-related changes.
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5. Discussion

As demonstrated by the results discussed in Section 4.1, verification accuracy was
lower when the samples from the stable period were used as training data for both phrase
and vowel samples. This is due to the influence of the number of samples. As discussed
in Section 3.2.3, the number of samples in the stable period was less than half that in the
unstable period. Therefore, we conjecture that sufficient training was not realized in the
stable period.

In addition, the difference in verification accuracy between the unstable and stable
periods was larger for target M than target F. Compared to females, males generally exhibit
greater changes in voice pitch (i.e., in the fundamental frequency) from the unstable period
to the stable period because vocal organ growth in males is greater during the unstable
period than that of females. Accordingly, the intra-speaker variance in the fundamental
frequency in males during the unstable period is also greater. In fact, as demonstrated in
Section 4.2, the F-ratio of the low-frequency band that includes the fundamental frequency
of target M was high in the stable period but low in the unstable period. In this case, a model
trained using samples from the stable period is more likely to focus on the low-frequency
band that possesses low discrimination power in the unstable period. To improve the
verification accuracy of the model for the stable period, it will be necessary to remove the
influence of the fundamental frequency.

The results presented in Section 4.1 reveal that it was possible to discriminate targets
M or F across the unstable and stable periods. Thus, we consider that voice contains
individuality that is unaffected by age-related changes in the period including adolescence.
From the results presented in Section 4.2, we found that the F-ratio was high around the
4–6 kHz frequency region compared to other regions, which was a common characteristic
in both the unstable and stable periods. Thus, this frequency region is likely to be involved
in voice individuality. Lu and Dang [17] confirmed the existence of voice individuality
in the 4.0–5.5 kHz frequency region, and they suggested that this region is related to the
shape and size of the piriform fossa, which is a part of the vocal organs. In addition,
Kitamura et al. [18,19] reported that voice individuality was present in a wide frequency
region of approximately 2.5 kHz (or higher). They considered that the above result was
derived from the shape of the hypopharynx, which comprises the laryngeal tube and
piriform fossa. The frequency regions we revealed are largely consistent with the results of
these previous studies. In addition, considering the findings of these previous studies, the
shape of the piriform fossa may be deeply involved in voice individuality in the 4–6 kHz
frequency region.

From the results described in Section 4.2.2, we found a common individuality among
the different vowels in the 1–2 kHz frequency region. However, the reason for this result
remains unclear. In future, we plan to investigate the relationship between this frequency



Sensors 2022, 22, 1542 14 of 16

region and the vocal organs. We also found that each vowel exhibited unique individuality
in frequency regions other than the 1–2 kHz and 4–6 kHz regions. Therefore, we expect
that verification accuracy can be improved by utilizing these frequency regions observed in
each vowel.

From the results presented in Section 4.3, we found that the 1–2 kHz and 4–6 kHz
frequency regions included voice individuality that was robust to age-related changes.
The evaluation of robustness was conducted using only vowel samples. In future, we
will investigate voice individuality and its robustness for different manners of articulation
such as fricatives, affricates, semivowels, stops, liquids, and nasals. In addition, we must
consider more speaker voices obtained over a longer period to increase our understanding
of voice individuality.

Voice biometrics technologies that are independent of age-related voice changes over a
long period are expected to play an important role in various fields, e.g., speaker verification,
identification of missing persons, and investigation of special fraud and kidnapping cases.
In this sense, we believe that our findings represent a significant contribution to society
and the voice biometrics field.

6. Conclusions

In this study, our objective was to verify whether there exists voice individuality that
is unaffected by age-related changes by targeting adolescent Japanese speakers. We defined
the immature and mature periods in vocal organ development as unstable and stable
periods, respectively. In our initial experiment, we performed speaker verification tests
across these two periods and evaluated voice features that are common to these periods
using Fisher’s F-ratio. The experiment was performed using phrase and vowel samples.
The speaker verification tests using the phrase samples demonstrated verification accuracy
of 54% to 75%. For vowel samples, the verification accuracy ranged from 46% to 75%;
however, most of them obtained verification accuracy of 60% or greater. These results
suggest that it is possible to recognize speakers across the unstable and stable periods.
In a subsequent evaluation of voice features using Fisher’s F-ratio, we observed voice
features that are common to both the unstable and stable periods, and we found that
both phrase and vowel samples contained voice individuality in the 4–6 kHz frequency
region. For vowel samples, voice individuality was found in the 1–2 kHz frequency region
regardless of the type of vowel. In addition, we found that each vowel exhibited unique
frequency regions related to voice individuality. Furthermore, we found that the 1–2 kHz
and 4–6 kHz frequency regions included voice individuality that was robust to age-related
changes compared to the other frequency regions. These results suggest that there are
invariant frequency features that are unaffected by age-related changes in the human voice.

In future, we plan to conduct additional experiments with more speakers over a
longer period. In addition, we plan to construct a speaker verification model that focuses
on the frequency regions revealed in this study. Furthermore, we will conduct similar
investigations in languages other than Japanese, such as English and Chinese.
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