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Abstract: Three-dimensional (3D) culture models have gained relevant interest in tissue engineering
and drug discovery owing to their suitability to reproduce in vitro some key aspects of human
tissues and to provide predictive information for in vivo tests. In this context, the use of hydrogels as
artificial extracellular matrices is of paramount relevance, since they allow closer recapitulation of
(patho)physiological features of human tissues. However, most of the analyses aimed at characterizing
these models are based on time-consuming and endpoint assays, which can provide only static
and limited data on cellular behavior. On the other hand, biosensing systems could be adopted to
measure on-line cellular activity, as currently performed in bi-dimensional, i.e., monolayer, cell culture
systems; however, their translation and integration within 3D hydrogel-based systems is not straight
forward, due to the geometry and materials properties of these advanced cell culturing approaches.
Therefore, researchers have adopted different strategies, through the development of biochemical,
electrochemical and optical sensors, but challenges still remain in employing these devices. In
this review, after examining recent advances in adapting existing biosensors from traditional cell
monolayers to polymeric 3D cells cultures, we will focus on novel designs and outcomes of a range
of biosensors specifically developed to provide real-time analysis of hydrogel-based cultures.

Keywords: biosensors; hydrogels; 3D models; in vitro cell cultures

1. Introduction
1.1. Standard 2D Cultures and In Vivo Models

Two-dimensional (2D) cells monolayers, cultured over planar substrates, have been
considered the main in vitro culture systems for cell-based screening and drug testing
for several decades [1,2]. These systems offer simple, cheap and relatively standardized
tools for reproducing biological processes and study (patho)physiological mechanisms in
response to changes in the intra/extracellular environment since the late 19th century [3,4].
However, these bi-dimensional platforms display some significant disadvantages, princi-
pally due to the lack of a three-dimensional (3D) tissue-specific spatial features, as reported
in Table 1. Planar models present thus incomplete or altered cell-to-cell and cell-to-matrix
interactions, as well as tissue-specific biomechanical and biochemical cues; this, in turn, may
affect normal cells proliferation and differentiation, genes and proteins expression, and re-
sponse to pharmacological treatments [5,6]. Conventional 2D culture on plastic may change
the original cell morphology and heterogeneity [7,8], as cells are mostly in contact with
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surface coating proteins through focal adhesions, forcing a polarized and an abnormally
flattened shape, with fewer contacts available for intercellular connection [9,10]. The spatial
architecture of cell communication is, in fact, pivotal for correct cell functions and cannot
be reproduced correctly in a bi-dimensional context, where cells cannot uniformly express
adhesion molecules and receptors [11] and are completely exposed to nutrients and oxygen
distributions, in contrast to the metabolic gradients experienced in vivo [12–15]. Similarly,
although some drugs appear to be efficient in vitro by using 2D systems, they might not be
as effective when administered in vivo, often providing false positive results [16–18].

Table 1. Main advantages and disadvantages of the main pre-clinical tissue models.

Pre-Clinical Model Main Advantages Main Disadvantages

2D cell cultures

Simple to use Limited or altered cell–cell and cell–extracellular
matrix (ECM) interactions

Cheap Altered cell morphology, proliferation, and
differentiation

Standard
Overestimated drugs response

Lack of metabolic gradients
Oversimplified

Animal models High complexity
Time-consuming, laborious, expensive

Species-specific responses
Ethical issues

3D cellular spheroids

Cheap Lack of surrounding ECM
Metabolic gradients

Susceptibility to physical deteriorationProper cell–cell interactions
In vivo-like cell morphology and proliferation

3D hydrogel-based
tissue models

Surrounding ECM with tunable properties Batch-to-batch variability
Reproduction of key mechanical and biochemical

features of human tissues Difficult to monitor cell activity with
traditional toolsProper cell–cell and cell–ECM interactions

On the other hand, animal models, which are considered the current gold standard,
present other disadvantages, such as being time-consuming, remarkably laborious, expen-
sive [19], and not fully translatable to human scenarios [20]. Moreover, animal testing has
been subjected to ethical issues, objections, and limitative regulations as testified by the ban
of animal models for cosmetic testing recently promoted in EU countries [21–25]. Further-
more, the establishment of 3Rs-based approaches aims at sensitizing scientists to optimize
their animal employment and slowly promoting alternative in vitro models [26,27].

1.2. 3D Tissue Models

In this context, in vitro 3D cell culture models have consequently been gaining at-
tention as compromises between 2D cultures and animal models [16,28]. In fact, 3D
systems can better reproduce the in vivo environment, if compared with 2D cultures, while
maintaining the benefits of the traditional bi-dimensional cultures—high control of the
experimental conditions, ease of manipulation [1,29–32].

In this scenario, different typologies of 3D in vitro models can be identified. One
of them consists in the cellular spheroid, which is a spontaneous and stable cell aggre-
gate [32,33]. It has been shown that it recapitulates different biological features (e.g., 3D
architecture, chemical gradients, hypoxic core) better than cell monolayers [34]. In par-
ticular, cells display interactions with the neighbors in all spatial directions and exhibit a
proliferation rate comparable to that observed in vivo, often significantly lower than the
one shown in 2D culture conditions [35,36]. Although these 3D culture systems widely
improved the reliability of in vitro tests in different medical areas, they still have different
drawbacks, mainly caused by a general lack of a proper surrounding extracellular matrix
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(ECM). In fact, the tissue microenvironmental conditions, such as the matrix mechanical
rigidity and its role in modulating cell activity, cannot be finely tuned and reproduced [37].

To provide cells of the necessary ECM, researchers moved to the culture of 3D en-
gineered tissues [38–40]. For this purpose, different kinds of biomaterials have been
adopted [40–42].

3D Hydrogel-Based Tissue Models

3D hydrogel-based tissue models are emerging among others due to their potential of
mimicking native ECM and their cell encapsulation capability [41].

In particular, hydrogels are hydrophilic polymer chains embedded in water-based
3D substrates, where cells can be entrapped to resemble, in vitro, specific tissue com-
plexities [42], and where molecules can diffuse through their reticulated structure, as it
happens in human organs [43–46]. They can more closely recapitulate key mechanical and
biochemical features of the human tissues due to their high water content, softness, and
reticulated structure. In particular, these soft polymeric substrates better replicate most of
the soft tissues in the human body [47,48], allowing proper oxygen, nutrients and signaling
molecules transport, as well as cells migration and arrangement [49–51].

Actually, a plethora of various types of hydrogels with different physical, chemical,
biological features have been explored [52]. All of them need to be carefully optimized
based on the cell types used and the final tissue to resemble. In fact, besides a proper level
of porosity mentioned above to guarantee an efficient transport of nutrients, they should
also present adequate mechanical properties to promote cell attachment, arrangement and
tissue formation [53,54]. Natural polymeric biomaterials such as collagen, gelatin and
hyaluronic acid are the most used to fabricate 3D hydrogels because of their chemical
resemblance of the natural ECM components [55].

1.3. Importance of Integrating Biosensors with 3D Hydrogel-Based Tissue Models

When culturing a 3D hydrogel-based tissue model, cells morphology, viability and
proliferation are generally assessed by using optical/confocal microscopes, but, unfortu-
nately, optical microscopy is hampered in the visualization of structural details in such 3D
constructs [56]. In this case, confocal fluorescence microscopy allows a more precise visual-
ization of the 3D structure [57], but data acquisition on a large enough number of replicas
to perform statistically robust quantitative analysis is very time-consuming. Moreover, it
is often of interest to monitor the actual state of the cells and the continuous observation
of morphological parameters can only contribute to provide elemental information about
the cellular behavior. Furthermore, the use of fluorescent staining, as an alternative—e.g.,
in live/dead assays—is laborious and involves irreversible cellular modifications and
damages, providing only end-point information [17,58].

Hence, the need for more sophisticated non-disruptive systems to monitor the cellular
physiological state in real-time, over time and upon different stimulations, is perceived as
primary for the development standardized advanced culture models.

In this context, the use of biosensors can be of relevant importance to acquire the
actual state of the cells, as well as to collect sufficient data for robust statistics in a non-
invasive way.

1.4. Biosensors

The definition of biosensor is “a self-contained analytical device that combines a
biological component with a physicochemical component for the detection of an analyte of
biological importance” [59].

Generally, a biosensor is composed of a receptor of biological sample, a transducer and
a system to detect the results and convert them into a measurable signal [60]. Thanks to
their components, biosensors can measure very small signals from few biological samples,
providing a robust analysis in a non-invasive way [61].
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They are designed to detect the presence of an analyte as an indirect measure of
several cellular phenomena. Among various principles to classify biosensors, they can
be categorized based on the physico-chemical parameter monitored as a measure of the
cellular activity.

For example, the main molecules involved in cell metabolism (pH, oxygen, glucose,
etc.) can be analyzed through specific biosensors [62]. The integration of advanced in vitro
models with an accurate metabolic analysis is pushed by different needs. In studies related
to drug efficacy tests, the monitoring of metabolism contributes to the standardization
of the tests, and, especially in cancer research, provides important information on tumor
progression and the eventual efficacy of anticancer drugs [63]. Different working principles
are adopted in designing this category of biosensors. In general, electrochemical and
optical-based ones are the most commonly used, which enable a label-free, continuous
monitoring of metabolic transient mechanisms [64].

Information related to cellular activity can be provided also by detecting the variations
on the cellular electrical properties. In this case, impedance-based biosensors, which reveal
changes in conductivity as indirect measure of cell growth, are the most commonly used
for label-free detection, since this method does not require any detection tag for sensing of
the analytes [61].

Another important category of biosensors is represented by the molecule-based ones,
which exploit biochemical reactions to detect the presence of specific molecules secreted
by the cells [65]. In particular, within these systems a bio-recognition element, such as an
antibody or an aptamer, is immobilized close to the cells. The combination of high-affinity
biomolecules with cells allows a higher level of sensitivity and selectivity of a range of
analytes, if compared to other categories of biosensors [66].

Overall, there has been a huge progress both in the development of 3D hydrogel-based
tissue models and biosensors technologies, but their integrated adoption into standardized
cell culture platforms is still in its infancy.

Several kinds of biosensors, based on different working principles, have already
been realized and validated to work in bi-dimensional environments and applied in dif-
ferent fields, due to their attractive features, such as stability and sensitivity, ease of
miniaturization and cheapness, which make them suitable for many different biomedical
applications [67,68].

Henceforward on, in this review, we will examine in detail: (i) the current strategies
to adapt different kinds of biosensors, originally conceived for 2D settings, to several 3D
cell hydrogel-based culture models, by taking advantage of the same working principles
adopted in 2D cell cultures; and (ii) the cutting-edge technologies to realize brand-new
application-specific biosensors for monitoring the activity of cells cultured in 3D advanced
hydrogel-based tissue models.

This critical review is divided in different sections based on the physico-chemical
parameters monitored as indirect measures of the status of the cells:

- biosensors to monitor the cellular metabolism, where glucose and oxygen consump-
tions as well as pH surrounding levels are monitored;

- impedance biosensors, where the variations of cellular electrical properties are
revealed;

- biosensors to detect the secretion of specific molecules modulated by cell activity.

2. Biosensors to Monitor the Cellular Metabolism

Cellular metabolism represents the complex biological mechanism, through which
living cells uptake energetic substrates (e.g., glucose, fatty acids, etc.) and oxygen (O2),
to generate energy and acidic waste products [69,70]. Cells release acidic metabolites
into the surrounding microenvironment (causing extracellular acidification) to maintain
the proper intracellular pH levels [71]. The continuous monitoring of these parameters
provides information on the status of the cells. In order to analyze metabolism, the most
relevant metabolic parameters, e.g., pH, oxygen or glucose, are generally measured, through
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standard end-point assays [63]. We here discuss different biosensors, for pH, O2 or glucose
monitoring, integrated with 3D hydrogel-based culture formats.

2.1. PH Biosensors

pH level in the microenvironment regulates several pivotal cellular functions [72,73];
an altered pH, for example, is an emerging hallmark of cancer advancement [74]. An acidic
pH (6.2–6.9), with respect to the neutral extracellular pH of normal cells (7.2–7.4), enables,
for example, disease progression by promoting cancer cells proliferation, migration and
invasion [75–77]. Accordingly, the measurement of pH levels is crucial to monitor cells
conditions, revealing changes related to the cell status and phase.

Three main features should be considered in designing sensors suitable to monitor
pH levels in highly complex 3D tissue models: (i) the biocompatibility of the overall
system; (ii) the sensitivity in a wide-pH range of response along with 3D grafts; (iii) the
non-invasiveness of the system [78].

Traditionally, on-line pH sensing for cell cultures has been carried out through different
methods: electrochemical [79–81], ion-sensitive field effect transistors (ISFET) [82], light-
addressable potentiometric (LAP) [69], or optical [83,84] detection methods.

2.1.1. Electrochemical Biosensors

Electrochemical sensors are accurate and fast, but they require large sample volume
and physical contact [85,86]. Moreover, conventional techniques (such as pH-meter probes
or microelectrodes) provide only an average pH value, not taking into consideration the
local discrepancies and thus the gradients which may be present in a 3D cell culture system.
Novel devices such as microneedle sensors, able to pierce the sample without serious
damages, have been developed, however they do not resolve the need for large volumes
of culture medium, and are limited in design regarding shape, mechanical properties and
sterility [87].

2.1.2. ISFETs and LAPs

On the contrary, ISFETs sensors can provide sensitive and repetitive measurements for
small sample volumes of sample [88–90]; however, they still rely on physical contact. An
ISFET device is normally composed of a metal-oxide-semiconductor field-effect transistor
(MOSFET), where the metal gate electrode is replaced by a series combination of the
reference electrode, electrolyte and chemically sensitive insulator, usually made in silicon.
As a result, the culture medium is in direct contact with the insulator, which detects the
ion concentration generating an interface potential corresponding to a current inside the
semiconductor channel [91]. In this context, Lehmann et al. [92] demonstrated the use of
ISFET-based sensors to explore the acidification degree in a 2D cell culture.

Likewise, LAPs are semiconductor devices similar to ISFETs, widely employed in pH
sensing for biological analysis [93,94]. The principle of operation of LAPs is based on a
pH-sensitive electrolyte/insulator/semiconductor (EIS) structure. Usually, the insulating
layer consists of silicon oxide and silicon nitride heterostructure, which separates the silicon
substrate from the electrolyte. In this way, when hydrogen ions (H+) interact with the
insulator, affecting the surface potential of the sensor, an activation of charge carriers by
LED or laser is performed, causing a photocurrent, thus transducing the pH to an electrical
quantity [95].

A recent work reported an efficient device to measure cancer cell metabolism in real-
time. Authors developed a light-sddressable potentiometric sensor integrated with pH
sensitive hydrogel nanofibers to monitor pH in breast cancer cell culture media in real-time,
also in the presence of an anticancer drug [96]. Similarly, Yang et al. developed a fully
integrated system, named Mirror-LAPS, which was able to easily construct 2D images and
a real-time video to monitor the cellular metabolism and acidification of HK2 cells [97].

However, the use of LAP and ISFET sensors requires a physical contact, which cur-
rently limits their use in 3D cultures [64]. Moreover, most of the 3D scaffolds are composed
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of insulating materials, remarkably undermining their application in electrochemical detec-
tion [98].

Therefore, novel pH sensing approaches are required to adapt the biosensing tech-
niques to hydrogel-based systems.

2.1.3. Optical Biosensors

To date, several attempts have been directed towards the realization of optical pH
sensors, largely due to their low costs, absence of immune and electrical interference, and
non-invasive sensing also in a 3D environment [99]. Optical methods may be preferred over
electrical counterparts since they do not require electrical connections and are less prone to
electrochemical interferences induced by the biochemical species, allowing consistent and
reliable surveys, also in 3D and dynamic environments [100].

Typically, the optical detection of pH is based on the measurement of the alterations in
the optical property of a pH indicator [101].

In this respect, phenol red has been used as a stable biocompatible pH indicator,
allowing the real-time inspection of acidification levels of the culture medium exploiting
the different absorption characteristics of a culture medium enriched with phenol red, in
accordance with its pH variations [86]. However, this technique detects the pH values in
the surrounding culture medium and not within the 3D models.

The exploitation of fluorescence microscopy has provided additional techniques that can
be used for probing the cell microenvironment pH in real-time with high spatial resolution.

Many fluorescent sensors have been recently developed to allow the analysis of pH
alterations at a cell-size scale [102,103], as they represent a minimally invasive sensing
technology, devoid of cell-damaging effects [104].

However, fluorescent molecules available for pH monitoring usually display intrinsic
cytotoxicity and photobleaching effects. For example, fluorescein, which is widely used
for detecting pH levels in the range of 6–7.2, can be easily photobleached [105,106]. To
overcome this problem, Kenney et al. incorporated pH-sensitive fluorescein-based particles
and pH-insensitive reference particles in a polyurethane thin film, thus creating a so-called
“optode”. Subsequently, they placed these culture-compatible probes in a 3D tumor model
containing MDA-MB-231 cells, as shown in Figure 1a, successfully measuring the spatio-
temporal evolution of the extracellular pH gradients for 48 h in a range corresponding
to that of normal and tumorigenic breast tissues (pH 6.5–7.5), as reported in Figure 1b,c.
Importantly, the sensing platform revealed to be fast, not cytotoxic, reversible, as well as
stable in a tumor-like structure, and evidenced only minimal photobleaching effects [107].

Other relevant results in monitoring pH values in 3D cell culture systems were
achieved by Chandra et al., by encapsulating fluorescent particles within a 3D ECM-
mimicking construct [108]. They reported the fabrication of 3D polyethylene glycol (PEG)
microgels containing carbon dot-based pH nanoprobes as represented in Figure 1d, by
employing a microfluidic assembly technique, to monitor time-dependent pH variations
in the cellular microenvironment. Indeed, carbon-based fluorescent sensors are another
class of fluorophores that have been reported by various groups for pH probing in cell
cultures [109–111]. In the same paper, the authors preliminary demonstrated that the
nanoprobes were biocompatible and that mammalian cells could be simply enclosed to-
gether with sensitive carbon dots in PEG gels. Further, they showed that microenvironment
pH fluctuations in a physiologically-relevant range (5.8–7.7) can be revealed by using these
3D engineered hydrogels, suggesting that these systems are useful tools to analyze the
cellular growth and disease progression [108].
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Figure 1. pH monitoring. (a) Representative illustration of the sensing culture platform containing the
pH-sensing film assembled with a paper-based cell culture. (b) Fluorescence images of the engineered
breast cancer cells cultured in delimited regions of the paper-based scaffold and corresponding heat
maps showing the pH values spatial distribution. Scale bars are 250 µm. (c) Average pH profiles
within the cell culture system over 48h, represented as mean and standard deviation of three different
cell cultures. The dotted lines indicate the cells-seeded areas in the paper-based system. (d) Brightfield
(top) and fluorescence images (bottom) of polyethylene glycol (PEG) microgels encapsulating HeLa
cells and carbon dots pH nanoprobes over time; fluorescent signal intensity increasing over time
indicate a decrease in pH level within the hydrogel cultures. Scale bar is 500 µm. (e) Representation of
HeLa cells provided with surface-anchored lipid-DNA pH sensing probes embedded in a 3D collagen
hydrogel (left); fluorescence signal emission in various pH extracellular levels. Signal intensifies
with the increasing of pH values (right). (a–c) Adapted and reprinted with permission from [107].
Copyright (2018) American Chemical Society; (d) Adapted and reprinted with permission from [108].
Copyright (2017) American Chemical Society; (e) Reprinted with permission from [112]. Copyright
(2014) American Chemical Society.

Unfortunately, only few validated probes exist for the real-time detection of in situ pH
within 3D ECM-mimicking models.

Recently, in a paper published by Moldero et al., the basis for a new generation of smart
pH sensing scaffolds has been established by realizing a cell-laden 3D scaffold integrated
with capsules-based optical sensors aimed at investigating cellular microenvironment
pH alterations during pathophysiological processes [87]. In particular, authors fabricated
fluorescent micro-particle pH sensors based on the SNARF-1 fluorescent dye and entrapped
them within a 3D printed scaffold, realized through the fused deposition modelling (FDM)
technique. Human mesenchymal stromal cells were simultaneously seeded in the scaffold.
In this way, they were able to detect time–spatial pH variations and gradient formation
occurring in the in vivo-like microenvironment. Hence, they obtained a kind of pH map of
the 3D culture system for seven days, differently from conventional methods that provide
only bulk values without discriminating zonal variations [107]. Notably, the 3D cell-laden
scaffold was also compared to the 2D respective system, revealing that pH changes were
more evident in 3D conditions. Specifically, more acidic values were found within the
scaffold with respect to the 2D culture, indicating that the presence of an ECM-like material
influences the microenvironment surrounding the cells.

In this context, Ke et al. developed a cell-surface-anchored fluorescent probe to
measure the microenvironmental pH [112]. Specifically, the pH sensor consists of a lipid-
DNA probe conjugated to the surface of cells, which were subsequently encapsulated in
a type I collagen hydrogel. Authors reported that this system showed a sensitive and
reversible response in the pH range of 6.0–8.0, as illustrated in Figure 1e, thus appearing
useful for most pH extracellular analyses. Furthermore, confocal fluorescence imaging
proved that entrapping these “opto-engineered” cells in the 3D matrix was an effective



Sensors 2022, 22, 1517 8 of 34

method to evaluate the acidification rate of the extracellular environment, opening new
perspectives in the cellular metabolism investigation.

Up to date, only a few commercial optical pH sensors are available in the market [86].
However, they require physical contacts with the sample and suffer from dye leaching,
thus reducing their use in complex 3D hydrogel-based cell culture.

Therefore, many efforts are still needed to optimize existing pH sensors or design
novel smart ones and to develop materials suitable for monitoring the pH fluctuations of
the extracellular environment in 3D cell cultures. These devices should work in real-time
for a long-term culture period, to generate spatial and temporal maps of the pH values
throughout the 3D cell-seeded constructs in a highly reliable, repeatable, non-invasive and
high throughput manner.

2.2. Glucose Biosensors

Glucose metabolism analysis is crucial for monitoring cellular status, as it represents
the main energy source for cells activity.

Moreover, since glucose is a nutrient present in the culture medium and its concen-
tration directly reflects the metabolic cellular state, it has always been considered as an
indicative parameter of the metabolic activity of cultured cells [113,114].

A continuous monitoring of glucose in culture media has been conventionally per-
formed to control and ensure the optimal environmental conditions in 2D cultures. To
achieve this goal, different biosensing approaches have been developed. Interestingly, most
of the devices currently employed in pre-clinical research derive from sensing tools used
in the past years for self-measuring glucose levels in the blood by diabetic patients [115].
For instance, these include enzyme-based sensors that employ glucose-oxidase or glucose-
dehydrogenase enzymes to evaluate glucose concentration in blood and interstitial flu-
ids [116].

2.2.1. Electrochemical Biosensors

Nowadays, electrochemically-coupled enzyme- and non-enzyme-based systems [117]
have also gained popularity in cell cultures, because of their high selectivity and sensitivity,
as well as low costs [118].

Among them, enzyme-based glucose biosensors have attracted more attention for
the analysis of cell culture media. For example, a glucose-oxidase-based sensor exploits
an oxidation reaction catalyzed by the glucose-oxidase. Notably, this enzyme is able to
transform glucose in other metabolites with the production of hydrogen peroxide (H2O2),
which, in turn, is amperometrically detectable through a working electrode. In this way,
the chemically-induced current signal is directly correlated with the glucose analyte con-
centration [115]. Specifically, in 2D cultures, cells can adhere directly on the electrode
surface for a continuous real-time detection. However, several researchers claimed that
H2O2 accumulations damaged and caused adverse effects on cells [119]. To overcome this
problem, sensors have been located far from cells, causing a detection only of the general
bulk variations instead of precise local glucose concentration values [120,121].

In 3D models, the concentration fluctuations are smaller than in conventional cultures
and are characterized by spatial gradients, making the detection of the analyte more
difficult [64].

In this context, different research groups have successfully translated glucose biosen-
sors, originally designed to work in 2D conditions, to 3D cell culture models by developing
novel application-specific devices, to easily take advantage of the same glucose measure-
ment principles exploited in 2D cell cultures in a more complex in vitro environment [122].

For example, Ma et al. [123] realized a 3D hollow fiber structure provided with a
glucose-oxidase sensing system. Specifically, they fabricated a polysulfone hollow fiber
(PHF) composite, characterized by a peculiar gradient porous structure, where human lung
cancer PC9 cells were grown onto the outer surface, whereas the enzyme was immobilized
in the lumen, as shown in Figure 2a. In this way, the glucose sensor was located close to
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cells but not directly in contact, ensuring a continuous non-disruptive monitoring of the
cell metabolism. In fact, experimental results showed higher sensitivity and stability of
the sensor, also for H2O2 degradation, than conventional electrode structures. Their PHF
system allowed to detect the glucose consumption vs. cell viability in response to 24-h
exposure to two different concentrations of the anticancer drug Osimertinib, as shown in
Figure 2b.

Another recent work about real-time monitoring of a metabolic function was published
by Bavli et al. [124]. They fabricated a liver-on-chip device able to maintain HepG2/C3A
cells embedded as spheroids in a collagen type I hydrogel for over a month under physi-
ological shear stress and oxygen gradient conditions, closely resembling the liver-native
scenario, to analyze the dynamics of mitochondrial dysfunctions. A commercial glucose-
oxidase enzyme-based sensor was installed in a polymethyl methacrylate (PMMA) flow-
chamber onto an off-chip switchboard controlled by a computer to provide automatic
amperometric glucose measurements. Primarily, results revealed discrepancies in glucose
concentration along the spheroid, caused by a different cellular consumption, thus mim-
icking the physiological glucose gradient experienced by cells in vivo. Further, together
with O2 consumption, inn surveys performed by embedding O2 sensitive microbeads
within the collagen hydrogel, authors showed that 62% of glucose was used in anaerobic
glycolysis, showing the capability of this microdevice in monitoring metabolic changes in a
clinically-relevant environment.

However, even though enzyme-based sensors have already been commercialized,
their employment has been restrained due to the chemical and thermal instability of the
enzymes [118]. Hence, non-enzyme-based applications are being exploited to overcome
these limitations. In addition, more versatile sensing approaches are required to work
with 3D in vitro models. A considerable commitment to innovation is especially needed
for hydrogel-based scaffolds, since they are made of low or non-conductive materials,
thus hampering their adoption in electrochemical sensing. For example, one possible
strategy may be to equip these insulated culture systems with conductive materials with
electrocatalytic ability, as reported by Zhang et al. [98].

Another strategy was developed by Obregon et al. [118]; the authors took advantage
of innovative nanomaterial-based films to fabricate a nanoporous gold (Au) biosensor to de-
tect the glucose uptake of an in vitro model of skeletal muscle. Currently, the realization of
a reliable pre-clinical model of this kind of tissue is of considerable significance, as it can be
used both to evaluate drug efficacy against type 2 diabetes and to elucidate glucose uptake
mechanisms during physical exercise, traditionally assessed through animal experimenta-
tion. For these reasons, authors cultured C2C12 myoblast cells on a micro-grooved gelatin
methacrylate (GelMA) hydrogel, realized by utilizing a polydimethylsiloxane (PDMS) mold
via the microcontact molding technique, thus creating an in vitro contractile muscle model.
Next, in order to investigate the glucose consumption by the muscle, they synthetized
a nanoporous Au (NPG) film, as described in their previous work [125], coupled with a
three-electrode system to carry out electrochemical glucose measurements in the culture
medium. The sensor showed a linear response in a wide concentration range [1–50 mM],
thus demonstrating to be suitable for many glucose detections analyses. In addition, the
measurements were performed in a rapid, real-time and non-invasive way, indicating
that the nanomaterial-based approach is a relevant alternative to detect glucose uptake in
engineered tissue-mimicking constructs, opening new scenarios for glucose monitoring in
complex cell cultures.

Anyway, despite the aforementioned methods allowed to measure glucose uptake by
adopting stable and non-invasive approaches in complex 3D cell culture architectures, they
quantified the glucose concentration within the culture medium instead of detecting the 3D
glucose spatial distribution within the ECM model. Moreover, culture medium components
may influence electrochemical non-enzyme-based sensors, for example by occupying active
sensing sites and consequently altering the measurement performances [118].
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A more direct measurement of the glucose concentration in a 3D-cell encapsula-
tion model was recently published [126]; in this work, glucose diffusion into a silated-
hydroxypropylmethylcellulose (Si-HPMC) hydrogel containing human adipose-derived
stem cells (hASCs) was investigated by the use of a micro-needle-based electrochemical
glucose sensor. In particular, this sensor was implanted in the core of cylindrical-shaped
cell-encapsulating hydrogels with different polymer concentrations and different numbers
of seeded cells to examine the effects of these two parameters on the glucose diffusion in
terms of cells viability. Glucose concentration analyses evidenced a reverse relationship
between the number of viable cells and the polymer concentration, as well as cell density,
indicating that the amount of available glucose within the gel strongly affects cell activity
and viability.

Nevertheless, in general, electrochemical sensors, such as the microneedle ones, have
a limited lifetime and require a periodic recalibration [124]. Further, despite the work
mentioned above, useful insights have been provided regarding the glucose transport
within the hydrogel; the sensor employed was only able to provide a single-point glu-
cose concentration measurement, in an invasive and potentially destructive manner for
the polymer matrix. It was not possible to perform a spatio-temporal assay of glucose
profile within the 3D model and to correlate it with the cellular spatial arrangement [126].
Moreover, although hydrogels are widely recognized as very promising materials for 3D
culturing, little efforts have been made so far to map spatial and temporal gradients of glu-
cose throughout 3D cell-seeded constructs, in spite of its relevance for cellular respiration
and proliferation [126,127].

2.2.2. Optical Biosensors

Only recently, a cutting-edge method has been developed by Maioli et al. which
demonstrated that a time-lapse 3D imaging of multicellular spheroids (MCS), provided
with a Forster resonance energy transfer (FRET) biosensor gene, may be a valuable approach
to spatially monitor the glucose concentration within MCS. The genetically expressed FRET
sensor is generally employed to measure distinct cellular metabolic-associated parameters,
as its expression is directly related to the analyte concentration [128], whereas the use
of 3D imaging techniques is used to show real-time cell activity, such as the light-sheet
fluorescence microscopy (LSFM) [129]. Specifically, these authors applied the LSFM tech-
nique by adopting an oblique plane microscopy (OPM) to acquire time-lapse-3D images
of the glucose FRET sensor within HEK293T cells spheroids embedded in Matrigel in
96-well plates, as shown in Figure 2c,d. Three experimental conditions with different
glucose concentrations were tested. Interestingly, a spatio-temporal FRET ratio response
map was generated for the three conditions, proving that an OPM-FRET coupling is a
remarkable sensing system to record and display the 3D dynamics of cells activity in MCS
over time [130].

However, this detection mechanism requires genetic modification which can impair
gene expression. Thus, a possible strategy to overcome these limitations could be adapting
detection technologies, currently used for measuring the culture medium glucose content,
to the internal monitoring of the hydrogel. In particular, research should focus on sensing
instruments capable of spatially mapping glucose concentration within cell-laden hydrogels
to further elucidate the influence of nutrients distribution and exchange on cellular activity
in vitro.
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Figure 2. Glucose monitoring. (a) Schematic representation of the cellularized PHF scaffold integrated
with the enzyme-based glucose sensor. Human lung cancer cells (PC9) adhere on the outer wall
of the structure working as a permeable barrier for the glucose diffusion, whereas the enzyme
is immobilized in the lumen. Here, electrochemical reactions occur through the sensing system
composed of multi-walled carbon nanotubes (MWNT), glucose oxidases (Gox) and Prussian blue
(PB). (b) Glucose consumption per day by PC9 cells cultured over the PHF upon different Osimertinib
concentrations. (c) Scheme of the experimental set up: Matrigel-based HEK293T cells spheroids
expressing the glucose FRET biosensor gene were seeded in a 96-well plate; different experimental
conditions were tested and observed with the OPM technique, which is capable of orienting the
light sheet towards the samples [130]. (d) Spatial glucose distribution within the Matrigel-coated
spheroids at different depths (z-axis). Color scale and brightness determine the expressed FRET ratio
and the emission intensity, respectively [130]. (a,b) Adapted and reprinted from [123], Copyright
(2020), with permission from Elsevier.

2.3. Oxygen Biosensors

One of the most important chemical cues to maintain cellular phenotype and function
in vitro is surely the oxygen concentration, which is essential in the energy metabolism of
the cells. O2 is a potent modulator of cell function and a transcriptional regulator for over
300 genes responsible for tissue homeostasis and maintenance [131,132]. Moreover, among
the great variety of biochemical signals, O2 plays a pivotal role in modulating mammalian
cell mechanisms both in healthy and diseased states [133]. Due to the physiological
activities, O2 gradients naturally occur within biological tissues, affecting cell response and
viability, as well as the preservation of tissue functions [132,134–136]. Furthermore, it is
well-known that the correct O2 levels regulate different cellular mechanisms which are
essential for cell differentiation [137–140].

Physiological O2 levels in the human body vary from ∼14% in lung alveoli down to
∼3% in muscle and skin [141]. Additionally, even lower values—around 0.5%—can be
found in some tissues and are often correlated with a great variety of human pathologies,
including cancer [142], tissues necrosis [143] and cardiovascular diseases [144].

However, an atmospheric O2 tension of 21% is generally present in cell culture models,
affecting the reliability of the data obtained from in vitro culture systems and impairing
their translation potential [145].

In this context, the proper implementation of systems capable of precisely reproducing
and controlling physiological O2 concentrations in in vitro culture platforms is presently a
critical challenge for organ modelling and tissue engineering.

As a consequence, different sensing strategies aimed at measuring and manipulating
O2 profiles have been developed.

The majority of sensors used to monitor O2 levels in 2D cell cultures are based on
fluorescence quenching, which is an optical principle based on the evaluation of the flu-
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orescence amplitude or the lifetime of a fluorescent dye. Generally, this is encapsulated
in a sensor spot or spread in a polymeric membrane immobilized at the center of a well.
Then, the fluorescence excitation and the luminescence emission readouts are performed
non-invasively, by using LEDs or optical fibers [64]. Finally, the correlation between the
sensor output and the O2 concentration can be found by considering the Stern–Volmer
equation, which states that luminescence intensity is inversely proportional to O2 concen-
tration [146–148].

2.3.1. Electrochemical Biosensors

Electrochemical O2 sensors have been broadly employed to examine, for instance, the
cellular respiration of adhering cells or to assess the pericellular O2 levels in the culture
medium of 2D systems by using Clark-type or direct amperometric tools [149,150]. In
both cases, the working principle is based on the reduction of O2 at the level of a noble
metal electrode. Nevertheless, while the cell culture medium is directly in contact with the
electrode in amperometric sensors, a gas-permeable membrane separating an independent
sensor electrolyte from the medium solution is present in Clark-type tools. This specific
configuration was implemented, since contaminations of the electrode surface by cell
adhesion or protein adsorption can occur in non-Clark-type designs, resulting in a lower
specificity and stability of the sensor [151,152].

However, it is necessary to adapt the previously mentioned sensing approaches to
monitor O2 levels also in 3D biomaterial-based models to establish optimal environmental
conditions necessary to ensure the correct cell functions [153,154].

One of the first and traditional methods for O2 probing in 3D culture platforms was
proposed by Weltin et al., who positioned an electrochemical two electrodes-based mi-
crosensor close to a spheroid composed of hepatocytes exposed to an anticancer drug
within a 96-well plate. In this way, authors combined information related to the real-time
O2 consumption of the cells with toxicological data, indicating how metabolic alterations
are correlated with increasing levels of drug exposure. However, only a spheroid global
quantification of the O2 present in the medium was performed by using this methodol-
ogy, without providing information about the oxygen concentration throughout the 3D
spheroid [155].

2.3.2. Optical Biosensors

Recently, bioengineering research has progressed to tackle the integration of optical
sensors, able to spatially monitor O2 concentration, with 3D hydrogel-based systems.
Figueiredo et al. evaluated the O2 concentration within a cell-laden hydrogel provided
with a perfusable microchannel network by using a needle-type optical fiber microsensor
(PreSens, Regensburg, Germany) and a micromanipulator (Eppendorf TransferMan NK2,
Hamburg, Germany) (Figure 3a). O2 levels were detected for 24 h at three different depths
within the hydrogel to investigate whether the presence of a perfusable network, mimicking
tissue vascularization, could affect cell viability [156].

Although this sensing method is simple, effective and gives preliminary insights about
the O2 concentration profiles in 3D cell-seeded constructs, its data output is too limited
to map the 3D spatial distribution of the O2 throughout the model. Moreover, it is an
invasive method, being the needle diameter in the range of 200–250 µm, which can lead to
irreparable damages of the samples [157].

For these reasons, it is necessary to design other types of optical O2 sensors capable
of mapping spatial–temporal variations and gradients in 3D cell-laden scaffolds without
affecting the whole system, and possibly providing real-time quantitative monitoring of O2
concentration with a sub-cellular spatial resolution. Hence, further optical technologies
have recently gained great attention, since they may offer a wide spectrum of versatile
bioengineering tools suitable for 3D in vitro models [136,158,159].

In this scenario, Rivera et al. integrated a photonic O2 biosensor into a 3D tissue
scaffold. The biosensor is a phosphorescence-based O2 sensor that employs the quenching
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of palladium-benzoporphyrin to transduce the local O2 content, and it was validated by
using both healthy and tumorigenic breast epithelial cells, MCF-10A cells and BT474 cells,
respectively, cultured under normoxic and hypoxic culture conditions [160].

Similarly, Boyce and colleagues prepared a polystyrene thin film containing palla-
dium tetrakis(pentafluorophenyl)porphyrin (PdTFPP) molecules, whose luminescence is
quenched by O2, and placed it in contact with a cellulose scaffold containing a Matrigel
hydrogel encapsulating MDA-MB-231 cells to measure spatial and temporal O2 gradients
within the culture. Oxygen diffuses into the polystyrene thin films, resulting in variations
in luminescence intensity. The sensor is compatible with optical- and fluorescence micro-
scopies, sensitive to small changes in oxygen tension. Authors observed oxygen gradients
formed in paper-based scaffolds containing fluorescent breast cancer cells. Consequently,
the O2 consumption rate of cells was analyzed by simultaneously visualizing the luminesce
intensity of the O2-sensing film and the fluorescently labelled cells [161].

In another work, the cells-embedding hydrogel and the same sensing film were
incorporated by Boyce and colleagues in a Block-Layered O2-Controlled Chip (BLOCC),
which is a modular multi-layer device realized by assembling multiple alternate acrylic
and silicone layers. In particular, this chip was designed to have cell-containing chambers
in the center between two lateral parallel channels, where oxygenated and deoxygenated
gas mixtures were flowed to impose physio-pathologically-relevant O2 gradients in the
cell-seeded regions. O2 gradients and resulting cellular responses were simultaneously
mapped in real-time to examine whether these cells modify their activity proportionally to
O2 tensions [162].

Nevertheless, the three-dimensionality of the matrix was not entirely mapped by the
film, therefore limiting the O2 investigation to a single plane.

To overcome this issue, a possible alternative was developed by Wolff et al., by
integrating an O2 probing foil with an additional optical fiber-based sensor set up, to
display the oxygenation level within the construct along the z-axis of the scaffold. In this
way, the identification, localization, and temporal observation of the O2 dissolved within
the 3D cell-loaded hydrogels was performed [163].

However, this micro sensor is invasive, impairing the integrity of the hydrogel. More-
over, this approach requires the use of two different O2 sensors and thus the integration of
two different data sets, resulting in a very laborious and expensive procedure.

For these reasons, more recently, several research groups have proposed the combina-
tion of O2-sensitive fluorophores with micro- or nano-particles as a potential alternative
to O2 sensing films for monitoring O2 concentration in 3D hydrogels [164]. In particu-
lar, carboxylic acid-modified polystyrene nanoparticles (NPs; 510 nm in diameter) were
functionalized with a commercially available O2-sensitive fluorophore for measuring the
O2 gradients in different cellularized hydrogel-based environments. These custom-made
fluorescent nano-O2 particles (FNOPs) were incorporated inside electro-sprayed calcium
(CaCl2)- and strontium (SrCl2)-gelated alginate beads (700–1000 µm in diameter) containing
HeLa or RIN-m5F cells to fabricate a model of the pancreas in vitro. This sensing culture
system showed a good dynamic range and resolution as well as the capability to show the
3D distribution of the analyte within the 3D hydrogel-based tissue by using fluorescence
microscopy. Higher cell viability in the external areas of the hydrogel compared to the
inner region was found, due to the establishment of O2 gradients through the hydrogel,
attributable to the well-known gas limitations in diffusion. Moreover, results reported first
a decrease in O2 concentration within the hydrogel due to the cells consumption, and then
a reverse increased analyte tension, probably due to the exponential decay of the cellular
density within the gel over time [165].

Likewise, Wilson and colleagues developed fluorescent hydrogel microparticles to
monitor O2 levels in 3D artificial tissues, up to 2 mm in thickness, which did not cause any
cytotoxic effect and displayed an excellent photostability. In particular, these microparticles
contained an O2-sensitive porphyrin dye and an O2-insensitive reference dye, to avoid pho-
tobleaching. They were synthetized from an organic-in-oil suspension, and then embedded
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in mm-scale cellularized PEG hydrogels, as shown in Figure 3b. O2 gradients in physiologi-
cal ranges were accurately detected across the entire polymeric matrix and, notably, the
O2 consumption of both primary and transformed cells within the 3D in vitro model was
measured by combining the experimental methodology with a computational one [153]. In
fact, in silico models can help researchers in the fabrication of clinically-relevant in vitro
models by predicting the nutrients and O2 delivery and waste products removal kinetics
within size-relevant tissue-engineered scaffolds [154,166–168].
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Figure 3. O2 detection. (a) The optical fiber-based sensor set up composed of a micromanipulator
and an optical needle microsensor to investigate O2 concentration within 3D cell-laden hydrogel
(left); O2 levels measured at different depths (bottom, middle position, top) after 24h of bioprinting
in the following tested conditions: “Microchannels”, indicating the presence of microchannels
within the hydrogel without perfusion; “Microchannels + Perfusion”, indicating the presence of
microchannels within the hydrogel with perfusion; “Bulk”, indicating the absence of microchannels
within the hydrogel. Stagnant culture media were used as control (right) ** p < 0.01 when compared
to culture media [156]. (b) Schematic illustration of the 3D millimeter-scale cellularized PEG hydrogel:
hydrogel-based microparticles biosensor incorporating O2-sensitive fluorescent dyes (left) were
encapsulated within cell-seeded PEG hydrogel (right). (c) Side-view representation of the cell-free
(Region 1) and the cell-laden (Region 2) collagen hydrogel. Polydimethylsiloxane PDMS O2 sensing
microbeads were distributed in the entire polymeric matrix. Dotted lines delimit the computational
domain. Boundaries “a” and “d” represent PDMS– and polystyrene–hydrogel interfaces, respectively.
Boundary “b” represents cell culture media–air interface. Boundary “c” represents the z-axis at a
radial position of 0, in the disk-shaped hydrogel. Regions 1 and 2 represent the cell-free hydrogel
plus cell culture media, and cell-laden hydrogel regions, respectively. (d) Experimental data of O2

concentrations and their best fitting within the 3D hydrogel versus the distance from the center of
the hydrogel. (e) Spatial map of the simulated O2 concentration within the selected computational
domain. (b) Adapted and reprinted with permission from [153]. Copyright (2019) American Chemical
Society; (c–e) Reproduced from Ref. [169] with permission from the Royal Society of Chemistry.

Pérez et al. combined dispersible O2-sensing PDMS microbeads and computational
fluid-dynamic mass transport simulations to estimate the O2 uptake rate of breast cancer
cells encapsulated within a collagen hydrogel. Specifically, MDA-MB-231 cells were dis-
persed only within a specific region of a 3D collagen hydrogel, whereas the microsensors
were entirely distributed within the hydrogel to consider two different areas: a cell-free
region surrounding a cell-laden one (Figure 3c). O2 concentration was assessed in both
areas by using phase fluorimetry, which is a method exploiting the luminescence lifetime
of an indicator. Then, O2 values were analyzed producing spatial graphs of the analyte
distribution, which highlighted significant discrepancies in the O2 microenvironment be-
tween the two regions, as illustrated in Figure 3d. Lastly, a computational model of O2
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supply, diffusion and consumption was implemented to calculate the O2 uptake rate and
the half-saturation constant of MDA-MB-231 cells by performing the best fitting of the O2
profiles experimentally observed (Figure 3e) [169].

The advances here reported have highlighted the importance of integrating non-
invasive, easy-to-use and biomaterial-compatible O2 sensors. In particular, important
information regarding the crucial role of O2 for cell activity and viability were achieved by
using fluorescent-based technologies [170–172].

Among the different typologies shown, the micro/nano-particles based-ones seem to
better fulfill the desired requirements, having the capability to perform real-time measure-
ments of the O2 profiles throughout the entire three-dimensionality of the culture model.
The employment of such O2 detecting systems can represent a significant advancement
towards the development and translation of viable and controllable organ-scale constructs.

3. Biosensors to Monitor the Cellular Behavior: Impedance Biosensors
3.1. Working Principle

Impedance biosensors are some of the most important cell-based biosensors currently
available since represent an automation-compatible label-free technology which enables
to obtain data in real-time on the cellular conditions. In particular, cellular impedance
biosensors are capable of monitoring cellular viability, adhesion and spreading, for any
adherent cell type, by monitoring electric variations at the contact surface between the cell
and an electrode [173].

They are typically developed by immobilizing a group of cells on an array of electrodes
onto an insulated substrate for real-time data acquisition, analysis, and display.

In the past years, cellular-based impedance sensing has been adopted for real-time,
non-invasive, and non-disruptive monitoring of cell viability [174–179].

Programmed cell death, or apoptosis, which is the desired therapeutic response of
a cancer cell to effective chemotherapies or radiation treatments, is characterized by dra-
matic changes in cell morphology, ionic channel conductance, and extracellular membrane
integrity, as well as altered intracellular structure [180–182]. These electrical property
variations can be diagnosed by cell impedance biosensors at significantly reduced costs
and through expedited assessment procedures [173].

In particular, to measure the electrical variations of a cell culture, a frequency-dependent
small sinusoidal voltage (V(ω)) is often applied through the cells (or tissue) and the varia-
tions in the resulting sinusoidal current (I(ω)) between the electrodes is recorded [183–185].
Hence, the electrical impedance (Z(ω)) of cell culture is derived using Ohm’s law. More
specifically, when a sinusoidal voltage (typically at 10 kHz) is applied on interdigitated
electrodes, an ion current is formed between the electrodes. As soon as cells grow and
attach to the conductors, the impedance will increase since cells behave as non-conductors
at low frequencies. Conversely, when cells die, they detach from the electrodes and the
impedance decreases [186].

So far, several circuits have been designed to monitor the electrical properties of cells
grown in 2D systems, due the aforementioned correlation between the electrical signal
outputs and changes in cell activity [183–185,187].

However, the use of impedance biosensors in 2D cultures relies on cells attaching
and spreading directly over the electrodes. This does not occur when cells are embedded
within 3D hydrogels, therefore there is an urgent need to adapt these biosensing tools to a
3D context.

In general, it is mandatory to ensure a continuity of the electric field through the whole
3D system and to maintain unaltered mechanical properties of the hydrogel in spite of the
presence of the electrodes in the culture systems.

3.2. Impedance Biosensors

Recently, an electric cell/matrigel-substrate impedance sensing system (3D ECMIS)
was developed. Specifically, the 3D ECMIS consisted of eight individual sensor units, each
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of which composed by a pair of vertical electrodes, a culture chamber and a glass substrate,
as represented in Figure 4a. The Au electrodes were laser-cut and subsequently attached
to the inner surface of a polyethylene terephthalate (PET) culture chamber. Moreover,
an eight-channel 3D ECMIS detection system was incorporated to record the impedance
output signal (Figure 4b,c). As shown in Figure 4d, a model of liver cancer was realized by
embedding human hepatoma cells (HepG2) within a 3D matrigel matrix, and the efficacy
of three different anti-cancer drugs was tested by using the impedance sensing platform
previously assembled. Finally, results were compared with traditional fluorescent staining.
Authors reported increased impedance values with time in respect to the cell-free Matrigel
control, meaning that the cellular growth within the hydrogel-based system conditioned the
impedance of the system. Moreover, the use of anti-cancer drugs led to a major impedance
decay. Interestingly, the impedance biosensing system exhibited a high consistency with the
conventional imaging method for monitoring 3D cell viability, showing that this approach
can represent a promising platform for 3D-culture cell-based drug screening [188].

In another recent work, a methodology for the high throughput and quantitative
drug screening of cells cultured in the 3D environment was proposed by combining a
paper-based cell culture model with impedance sensors. A paper substrate is a reticulated
structure obtained by patterning a paper substrate (i.e., a filter paper) to obtain an array of
culture wells. More specifically, cells embedded in a 3D agarose hydrogel were cultured
over an array of circular culture microwells printed on a paper substrate to realize multiple
hydrogels in a highly reproducible manner. Cell-containing agarose was gelled directly into
the microwells of the paper substrate, which was subsequently submerged in the culture
medium, containing different substances under testing. Measurement of impedance values
was based on a setup of a three-electrode system, fabricated over a glass substrate by stan-
dard micro-fabrication processes, including chrome (Cr)/Au deposition, photolithography,
and metal etching, assembled. The paper substrate allowed the easy transfer of the 3D
hydrogel-containing cells from the culture platform to the detection one. In fact, during
measurements, it was placed over the glass substrate and the microwells were precisely
positioned onto the electrodes. In order to assess the impedance of the culture system,
an electric potential of 0.1 Vrms was applied across the electrodes and an impedance ana-
lyzer recorded the measurements. Such values were reported to be harmless for the cells
suspended in the hydrogel. Subsequently, the impedance magnitudes measured from
100 Hz to 100 kHz were collected and correlated to cell viability; the latter was calculated
as the percentage of live cells between the control impedance magnitude (100% live cells in
the construct) and the background one (hydrogel only). In addition, to demonstrate the
feasibility of drug screening tests by using this sensing system, cell viability of two human
hepatoma cell lines (Huh7 and Hep-G2) treated with two drugs (doxorubicin and etopo-
side) was evaluated. The results showed that Huh7 cells had a higher drug resistance than
Hep-G2 cells and doxorubicin had higher efficacy than etoposide for treating hepatocellular
carcinoma, as confirmed by simultaneous fluorescence image analysis of cell viability [189].

Impedance sensors have been also successfully adopted to monitor the formation of
colonies of cancer cells. In particular, the colony formation assay is considered the gold
standard to assess the development of early tumors in vitro and, eventually, to evaluate the
effects of cytotoxic agents on their growth.

However, conventional colony formation assays are based on manual counting of the
generated colonies under a microscope, which is laborious and not accurate.
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Figure 4. Impedance sensors. (a) Scheme of the 3D impedance biosensor single-unit composed
of two vertical gold electrodes assembled with the PET culture chamber and the glass substrate.
(b) Eight-channel 3D impedance biosensor. (c) 3D electric cell/matrigel-substrate detection platform
containing the 3D impedance biosensor, a signal-conditioning module and a computer-controlled
data acquisition card. (d) Illustration of the 3D single impedance biosensor before (left) and after
(right) culturing HepG2 embedded in Matrigel hydrogel. (e) Image of the multi-layer impedance
sensor consisting of an indium tin oxide (ITO) glass slide for the ground electrode, a PDMS layer
composed of nine independent 3D cylindrical chambers able to host 3D cell-laden hydrogels, and a
glass substrate provided with nine Cr/Au electrodes. (f) Illustrative design of the experimental set-up
and the equivalent circuit to monitor impedance in cancer colonies within 3D hydrogels between the
parallel plate electrodes. (a–d) Reprinted from [188], Copyright (2019), with permission from Elsevier;
(e,f) Reprinted from [190], Copyright (2015), with permission from Elsevier.

Interestingly, in a recent work, an impedance-based biosensor was developed to
quantify the cancer cell colonies suspended in a 3D hydrogel. A human hepatoma cell
line, Huh-7, established from a hepatocellular carcinoma, was used and the chemosensi-
tivity of cancer cell colonies under different concentrations of an anti-cancer drug—i.e.,
doxorubicin—was quantitatively investigated. A biosensor embedded with a pair of paral-
lel plate electrodes was developed for the impedimetric quantification of the cancer cell
colonies. In particular, the biosensor consisted of three layers, including a glass layer for
common ground electrode, a PDMS layer for the independent cylindrical chambers, and a
glass substrate with 9 Cr/Au measurement electrodes, as represented in Figure 4e. In such
a configuration, the colony formation process was quantitatively assessed by deriving a
colony index from the measured impedance magnitude (Figure 4f).

In addition, the colony size was also monitored by analyzing the phase angle of
impedance. Notably, as demonstrated by the authors, the knowledge of both parameters
provided quantitative and objective information to describe the formation and size of
cancer cell colonies suspended in a 3D system, allowing an efficient, relatively faster and
simple method for the quantification of cancer cell growth [190].

In summary, impedance-based biosensors are label-free and non-invasive tools to
monitor the status of cells cultured in 3D hydrogel-based environments. However, in 3D
cultures, cellular processes are more complex than in 2D culture conditions, thus impedance
variations may be affected by different factors such as hydrogel matrix degradation and cell
migration. Therefore, the integration of these categories of biosensors with other label-free
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and real-time monitoring systems is required to allow a full multiparametric approach to
monitor the cell activity in 3D environments.

4. Biosensors to Detect Secreted Molecules

Cellular behavior is closely related to a wide number of cells-secreted molecules, which
regulate cell proliferation, migration, cell–cell signaling and cell–ECM interactions. It is
important to detect the activities of functional molecules released from cells, under different
culture conditions to investigate fundamental aspects of cell biology and to establish
innovative therapies aimed at targeting biological pathways in pre-clinical studies [191].

Indeed, a significant variation in molecular biomarkers levels may be indicative of criti-
cal changes in natural tissues physiology, indicating, for example, the origin of a tumor [192].
Moreover, different types of secreted proteins have been described as pivotal modulators
of several cellular mechanisms, such as differentiation or communication [193–195].

For example, cytokines and chemokines have always been of great interest among
researchers, since these small proteins are especially involved in the onset and regulation of
immune responses. In fact, they affect every step of the immunomodulation process, such
as the reproduction, recruitment and efficacy of immune cells during inflammation and
attacks of pathogens [196–198].

To date, the most common techniques employed to examine cytokines profiles rely
on flow cytometry, enzyme-linked immunosorbent assay (ELISA) and enzyme-linked
immunosorbent spot (ELISpot) assays [199–203].

Despite this, their application for the detection of target biomolecules in in vitro models
is flawed. In particular, flow cytometry is usually employed to evaluate the percentage of
cells within a sample producing a specific marker, but it cannot estimate the number of
molecules secreted by cells in the extracellular environment [204]. On the other hand, ELISA
and ELISpot are well-established tools to investigate cell-secreted proteins via antibody
(Abs)-antigen binding. However, they are prefabricated commercial systems which allow
the detection of a single or multiple kind of molecules, but real-time information about
secreting pathways cannot be simultaneously provided, since these assays can be performed
only at single time points [205].

Conventionally, other protein detection systems are based on surface plasmon res-
onance (SPR) [206], mass spectrometry (MS) [207] and surface-enhanced Raman spec-
troscopy (SERS) [208]. Nevertheless, they are very expensive, labor intensive and time-
consuming [205,209,210].

For these reasons, there is an increasing interest in developing new detection tools
capable to provide more detailed information about the kinetics of cell-released molecules,
with more rapid and gentle protocols for cell culture manipulation, also reducing working
volumes and costs [211].

4.1. Antibody-Based Biosensors

Microfabrication techniques have been largely employed to realize monitoring plat-
forms characterized by well-organized patterned surfaces of self-assembled monolayers,
which allow the firm anchoring of Abs able to capture specific ligands of interest [212–214].

In particular, gold (Au), silicon, glass or PEG-coated glass slides have been function-
alized with Abs spot microarrays for cells attachment or specific molecules binding sites.
Traditionally, the most common methods of protein patterning include photolithography
and soft lithography technologies. Briefly, they consist of transferring a geometric pattern
to a light-sensitive substrate by using a photomask and ultraviolet irradiation, or an inked
elastomeric stamp placed in contact with the surface, respectively. Furthermore, conven-
tionally, PDMS or PEG microwells are frequently fabricated to confine cells in multiple
small areas, as close as possible to the sensing domain, in order to improve their sensitivity
and selectivity [215–219].

Hence, these novel devices allow simultaneous exploitation of the high specificity
of Abs-based assays, such as ELISA and ELISpot, to significantly reduce the amounts of
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reagents and costs, as well as to get multiple real-time measurements, thus remarkably
improving the accuracy of the acquired information [191,211,220].

Adapting these current sensors to the emerging 3D biomaterial-based in vitro models
is necessary to precisely monitor small messenger molecules secretion in highly realistic
in vitro environments [100,221].

With this purpose, Berthuy et al. fabricated a biosensing system composed of an
Au-slide provided with specific Abs spots for the real-time identification of prostate-
specific antigen (PSA), involved in the phases of prostate cancer, and β2-microglobulin
(β2M) released by a human prostate carcinoma cell line (LNCaP) embedded in 3D alginate
hydrogels under dihydrotestosterone (DHT) stimulation. More specifically, alginate beads
were realized over the Au substrate placed within a culture chamber, so that the cells could
grow in a 3D environment directly in contact with the sensing domains. Subsequently,
a SPR prism was integrated below the chamber and the assembled system was inserted
into a SPR imaging device. This tool assessed the PSA and β2M levels by measuring the
refractive index variations of a polarized light exciting the Au surface, since these changes
can be correlated with the molecules adsorption or desorption from the sensing regions.
In this way, authors showed the different release kinetics of these two proteins after only
20 min, differently from the traditional ELISA assay, which cannot effectively detect these
molecules within 24 h [222].

Among other sensing principles currently employed, electrochemical-based approaches
offer remarkable stability, sensitivity and biocompatibility, as well as the capability to per-
form long-time analyses [223,224]. Furthermore, electrochemical sensors are particularly
suitable to be incorporated within microfluidic devices, due to their simple fabrication and
miniaturization [224]. Notably, they can be efficiently functionalized with immobilized Abs
on their surfaces to exploit specific binding for targeted biomarkers [221,224].

For instance, Shin Su Ryon et al. have recently provided Au electrodes with an Abs
binding self-assembled monolayer to realize a microfluidic electrochemical biosensor. This
system was connected to a micro-bioreactor hosting GelMA hydrogel embedding human
primary hepatocytes to evaluate the acetaminophen effects on liver cells, by monitoring
albumin and glutathione-S-transferase-alpha (GTS-α) production, as they represent crucial
indicators of hepato-toxicity. Multiple online measurements were carried out and revealed
that results were comparable with those collected with conventional ELISA assays, proving
the ability of the platform to precisely detect cells-secreted molecules in a 3D dynamic envi-
ronment [204]. Subsequently, the same electrochemical technology was also successfully
adopted in a dual organ-on-chip platform, where GelMa-based organoids mimicking the
liver and heart were cultured to simultaneously assess drug induced hepatotoxicity and
cardiotoxicity by monitoring albumin, GST-α and creatine kinase-MB soluble biomarkers,
respectively [225]. Similarly, they utilized the same approach in a further implementation
of a multi-organ system that also included a lung organ model [226]. Interestingly, another
group has recently developed a bioprinted muscle model that was stimulated both electri-
cally and biologically. The sensing system, composed of Abs-functionalized screen-printed
gold electrodes, was fluidically connected to the organ compartment for the detection of
IL-6 and TNF-α upon tissue stimulations [227].

Although Abs immobilization on the sensor surface is typically used to detect cell-
secreted markers within microfluidic devices [228–231], one of the main disadvantages of
this approach is the fast saturation of the sensing systems, which limits their application
for continuous long-time analyses [232].

To overcome this issue, reconfigurable devices or an additional washing system can
be implemented and integrated, but these ameliorations still remain challenging and labor-
intensive [233,234]. Alternatively, microbeads can be coated with Abs and directly inserted
and removed within microfluidic channels, as suitable substitutes to static biosensors. In
fact, when particle surface saturation occurs, the sensing system can be rapidly regenerated
by merely injecting a new set of beads within the device without the need for any additional
steps of washing [204,235,236].
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For example, Riahi Reza et al. combined Abs-coated magnetic microbeads with an elec-
trochemical sensing microfluidic chip to investigate the effect of different acetaminophen
concentrations onto albumin and transferrin release by human hepatocytes. Specifically,
liver spheroids embedded in 3D GelMa hydrogels were placed within a bioreactor fluidi-
cally connected to the chip. In particular, the microdevice was designed with two chambers
provided with a magnet for microbeads immobilization during the antigen detection, and
an electrochemical microelectrode for signal production. Moreover, a computer-controlled
microvalve system was implemented within the chip to allow automatic loading and re-
placement of the magnetic microbeads after each measurement, as well as transferring of
sample solutions from the liver bioreactor to the sensing platform. The process could be
efficiently repeated by releasing the magnetic field and activating specific valves, flushing
out microbeads and samples volumes into separate reservoirs, and immediately starting a
new cycle of measurements. Indeed, this platform allowed long term assays to be carried
out, precisely verifying the changes of the hepatic cell-secreted biomarker levels upon drug
treatments. Results turned out to be comparable with those obtained with standard ELISA
control assays, thus demonstrating the accuracy of the sensor performance [232].

Similarly, Son Kyung Jin and colleagues realized polystyrene Abs-modified fluorescent
microbeads and infused them into a microfluidic chip to monitor hepatocyte growth factor
(HGF) and transforming growth factor (TGF)-β1 secretion. Specifically, primary hepato-
cytes were grown within a first chamber as a monolayer adjacent to a 3D PEG hydrogel
structure, mimicking the native ECM barrier, through which released HGF and TGF-β1
could spontaneously diffuse towards a separate chamber; here, fluorescently-labelled mi-
crobeads functionalized with anti-HGF and anti-TGF-β1 were injected (Figure 5a) and the
quantitative measurements of each cytokine concentration were performed. Consequently,
their chip design allowed to detect the local concentrations and secretion rate of HGF and
TGF-β1 without disturbing cell activity for seven days [237].

4.2. Aptamer-Based Biosensors

Valid alternatives to Abs-based biosensors in cells culture application are based on
the use of aptamers, which consist of DNA or RNA strands [238–243] that have already
been adopted as sensing elements to effectively detect a large variety of molecular biomark-
ers [244–250].

Indeed, aptamers offer a better thermal and chemical stability, as well as a more
stable sensibility over environmental perturbations, if compared to Abs-based sensors [251].
Moreover, they are characterized by a simpler molecular structure than Abs which can be
easily modified with functional groups [252,253] and designed into beacons, which directly
emit optical or electrical signaling once the targeted analyte is bound, without the need for
further labeling or washing steps [247,249,254–257].

In this context, Liu et al. largely employed aptamer-based microfluidic immunosensor
for monitoring local interferon gamma (IFN-γ) release from primary human leukocytes.
Authors designed an Au microelectrode array assembled on a glass surface; the microelec-
trodes were functionalized with aptamers labelled with a redox probe. Cell attachments
sites were located immediately next to each electrode, as represented in Figure 5b. Then,
these micropatterned slides were integrated within a PDMS microfluidic device where
blood samples were infused to capture CD4+ T cells and evaluate IFN-γ production. Since
IFN-γ is a fundamental inflammatory cytokine correlating with T cells immunological
response to several diseases, such as human immunodeficiency virus or tuberculosis, a fur-
ther development of these biosensors could provide robust support to the immunological
research and diagnostics [258].

Subsequently, the same authors improved this device to simultaneously assess the
presence of IFN-γ and tumor necrosis factor (TNF)α secreted by both T cells and monocytes,
by adopting two different novel configurations: (i) a single electrode functionalized with a
specific aptamer for IFN-γ or TNFα [259]; and (ii) a single electrode provided with both
specific aptamers for IFN-γ and TNFα (Figure 5c) [260].
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Moreover, in a further work, authors modified the microfluidic chip design with a
reconfigurable one to study the paracrine cross-talk via TNFα signaling between two groups
of cells. To this aim, the microfluidic device was provided with a removable structure to
separate two chambers, both containing the previously described aptamer-based biosensor
and monocyte-like cells (U937 cell line) [261].

Due to such promising results obtained in 2D culture conditions, currently, there
is a growing interest in adapting electrochemical aptasensors to 3D hydrogel-based cell
culture systems.

For instance, Su Ryon et al. designed a microfluidic electrochemical sensor functional-
ized with specific aptamers for the detection of cardiotoxic biomarkers and connected it to
a custom-made perfusable bioreactor to investigate cardiac damages caused by cardiotoxic
drugs. In particular, human embryonic stem cell-derived cardiomyocytes (hESC-CMs)
spheroids were encapsulated within GelMA hydrogels and inserted within a bioreactor,
where these were exposed to doxorubicin treatments. Levels of creatine kinase-MB, which
is in vivo secreted from injured cardiac tissue, were measured, demonstrating significantly
higher sensibility and stability of their probing system compared to Abs-based biosen-
sors [262].

Likewise, drug-induced cardiotoxicity was studied in a very recent work, where a
similar electrochemical apta-sensing platform was combined with a multi-organ-on-a-chip
system interconnecting a heart-mimicking tissue and a breast cancer model. These tissues
were modelled by embedding induced pluripotent stem cells (iPSCs) and breast cancer
SK-BR-3 cells line spheroids in 3D GelMA hydrogels, respectively. In particular, troponin
T, creatin kinase-MB and human epidermal growth factor receptor 2 (HER-2) secretion
were monitored, upon doxorubicin administration, to investigate the relationship between
chemotherapy-induced cardiotoxicity and breast cancer progression, both in physiological
and pathological cardiac conditions. Optimal results were obtained both in terms of sensor
performance compared with traditional ELISA assay, and in reproducing complex in vivo-
like tissue interactions, since the cross-communication between health and cancer models
affected the biomarkers production over time, significantly changing respect to the single
organ models, when individually treated [263].

Nonetheless, although the organ-on-chip models allow working with low volumes
and reproduction of fluid dynamic stimuli experienced from cells in the human body, they
are characterized by too small matrices dimensions and cell numbers, which limit their
translation to clinical/diagnostic applications due to the lack of physiologically-relevant
sizes [58,166,264,265].

Moreover, it was demonstrated that the direct contact of aptamer-based electrochemi-
cal biosensors with biological complex culture media may affect sensors performance and
stability due to the serum protein-dependent degradation of the sensing oligonucleotides;
this, in turn, leads to the need for sample pretreatments or more complex chemical modifi-
cation of the aptamers [239,266–269].

Therefore, to overcome these issues, novel culture model configurations and integra-
tion with aptasensors are required. To meet this need, Santos-Cancel et al. proposed to
directly interface an electrochemical aptasensor with a 3D collagen I-based cell culture to
realize a highly sensitive device, where gliotransmission mechanisms can be investigated
in a brain-mimicking tissue. In this setting, the sensing element was placed within a com-
mercial PMMA support and then an astrocytes-collagen mixed solution was poured over
the biosensor, as illustrated in Figure 5d. Importantly, this PMMA holder was specifically
adopted to work with larger matrix volumes, with respect to microfluidic-based cell cul-
tures, to let cells grow in a more clinically-relevant size in vitro environment. In addition,
by this approach, the collagen hydrogel prevented the sensing system from a harmful
contact with culture medium components, acting as a protecting membrane without ham-
pering the sensor function, as the same authors previously demonstrated [266,267]. This
study aimed at continuously monitoring adenosine triphosphate (ATP) production, since
it is well-known that astrocytes interactions occur via purinergic signaling through the
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secretion of gliotransmitters as ATP [270,271]. Long-lasting analyses were performed and
high sensitivity to the continuous ATP changes was demonstrated. Interestingly, authors
highlighted the potential of this platform to directly detect small molecule release in a
complex in vivo-like surrounding environment with a high spatiotemporal resolution [272].
The biosensors mentioned have been resumed in Table 2.
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Figure 5. Cell-secreted molecules detection. (a) Illustration of the microfluidic chip composed of
two chambers for human primary hepatocytes cultivation and cell-produced growth factors (GFs)
quantification, respectively. The chambers are separated by a 3D PEG hydrogel barrier, which
allows cell-released molecules to diffuse towards the sensing region, where polystyrene Ab-modified
microbeads are injected to monitor local GFs concentrations [237]. (b) Scheme of the aptasensor
design. Aptamer-modified Au electrodes are fabricated on glass slides provided with T-cell-specific
Abs. PEG hydrogels surrounding the electrodes define cell attachment sites in the proximity of the
sensing domains (top); T cells are captured on Ab-functionalized glass regions next to the aptasensors
which detect leukocytes-released IFNγ (bottom). (c) Arrays of Au microelectrodes modified with a
mixture of aptamers for IFNγ or TNFα binding labelled with thraquinone (AQ) and methylene blue
(MB), respectively. T-cells or monocytes are bound next to aptasensors, changing their conformation
after cytokines binding. (d) Cross-sectional image of the sensor/3D cell culture set-up. A commercial
PMMA holder assembled on a glass surface contains a three-electrodes system directly interfaced
with a 3D collagen hydrogel for astrocytes cultivation and stimulation inducing ATP production
(top); Aptamers immobilized on the sensing electrode surface switch their structure upon ATP
binding, resulting in a quantitative electrical signal change (bottom). (b) Adapted and reprinted
with permission from [258]. Copyright (2011) American Chemical Society; (c) Adapted and reprinted
from [260], Copyright (2015), with permission from Elsevier; (d) Reprinted with permission from [272].
Copyright (2019) American Chemical Society.
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Table 2. Summary of the biosensors analyzed in the current review with their main advantages
and disadvantages.

Biosensors to Monitor Cell Activity in 3D Hydrogel-Based Tissue Models

Typology
Method or

Technology of
Detection

Advantages Disadvantages Ref

pH

Electrochemical Fast and accurate
Require large sample volume
and physical contact; provide

only an average value
[85–87]

ISFETs and LAPs
Sensitive and repetitive

measurements; small sample
volume

Require physical contact; limited
applicability with 3D scaffolds [64,88–98]

Optical

Low costs; absence of immune
and electrical interference;

non-invasive sensing method;
consistent, reliable, real-time, 3D

measurements

Intrinsic cytotoxicity and
photobleaching (fluorescent

molecules);
dye leaching; laborious

(fluorophores with micro- or
nano-particles)

[86,99–112]

Glucose
Electrochemical High selectivity and sensitivity;

low costs

Chemical and thermal instability
of the enzymes, low versatility
(enzyme-based); measure only
culture medium concentration;

limited lifetime, invasive,
single-point measurement

(microneedles)

[64,98,115,118–127]

Optical Real-time; 3D measurements Limited applicability [128–130]

Oxygen

Electrochemical Real-time measurements; low
costs

Susceptibility to contaminations
(non-Clark-type); measure only
culture medium concentration

[149–152,155]

Optical Effective; reliable; real-time; 3D
measurements

Invasive and single-point
measurement (optical fiber);

provide only planar
measurements (sensing film);
laborious (fluorophores with

micro- or nano-particles)

[136,156–165,169–172]

Impedance -
Automation-compatible,

label-free, real-time technology;
versatility; non- invasive

May require multiparametric
approach to for the

interpretation of the data
obtained (cause of impedance
variations, such as hydrogel
matrix degradation or cell
migration, not detected)

[173–190]

Secreted
molecules

Antibody-based
High specificity; quantification

of molecules; small sample
volume

Fast saturation limiting
continuous analyses (need of

reconfigurable systems or
washing processes)

[205,222,225–227,232,237]

Aptamer-based

Real-time; high specificity;
quantification of molecules;
small sample volume; high

thermal and chemical stability;
high sensibility; easily editable;

simple conjugation with
different labels

Sensibility to serum proteins of
culture media (need of samples

or aptamers pretreatments)
[258,260–263,272]

5. Conclusions and Future Outlook

Biosensing tools able to perform automatic real-time readouts in 3D hydrogel-based
in vitro models, as cutting-edge technologies, have been recently developed for several
biomedical applications. Nevertheless, the advantages are still pretty limited, mainly due
to the geometry of the hydrogels, which hampers the integration of sensor tools within 3D
polymeric matrices without affecting their characteristics.
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Although electrochemical and optical sensors allow the analyte to be probed with
optimal sensitivity and stability, the impedance-based ones proved to be more suitable and
versatile in many applications.

In fact, these sensors provide a direct measure of cell viability, proliferation and aggre-
gation in an easily integrable manner, without the use of additional invasive conjugating
elements (e.g., micro- or nano-particles or genetically-encoded probes) which can impair
the mechanical and biochemical features of the cells or scaffolds. In this respect, much
more efforts remain to be generated to integrate a wider range of biosensors with 3D
tissue-mimicking models to gain multiple information, without affecting the cell culture
system integrity and stability.

So far, researchers are moving towards the development of more clinically-relevant
platforms where cells cultured within 3D systems can experience controlled fluidical
and mechanical dynamic stimuli, as it happens in vivo. However, the integration of
new-generation biosensors in 3D fluidic systems must be faced concurrently; indeed,
microfluidic-based diagnostics can be foreseen as a key-driving feature also for an effi-
cient and reliable point-of-care assessment of multiple targets, with reduced processing
times and costs, and with a striking relevant social impact. Promising preliminary results
have been obtained in evaluating cell signaling pathways by combining miniaturized
electrochemical biosensors and micro-fluidic devices, but such applications are still at an
early stage, due to the interference between the culture medium with the sensing element
(i.e., Abs or aptamers), and also due to the fact that excessively small sensing volumes
may affect proper capturing of the analyte molecule(s) of interest. Once these biases are
overcome, however, the combination of engineered 3D cell systems cultured within fluidic
platforms with automated, precise and real-time sensing tools, will remarkably favor a
holistic assessment of cells condition, in highly reliable physio-pathological scenarios. Con-
sequently, the scientific community will gain faster and high throughput data to properly
feed, support and enhance in vitro-to-in vivo data extrapolation, both in the modeling and
in the diagnostic field.
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