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Abstract: Self-interference occurs when there is electromagnetic coupling between the transmission
and reception of the same node; thus, degrading the RX sensitivity to incoming signals. In this paper
we present a low-complexity technique for self-interference cancellation in multiple carrier multiple
access systems employing whole band direct to digital sampling. In this scenario, multiple users
are simultaneously received and transmitted by the system at overlapping arbitrary bandwidths
and powers. Traditional algorithms for self-interference mitigation based on recursive least squares
(RLS) or least mean squares (LMS), fail to provide sufficient rejection, since the incoming signal
is far from being spectrally flat, which is critical for their performance. The proposed algorithm
mitigates the interference by modeling the incoming multiple user signal as an autoregressive (AR)
process and jointly estimates the AR parameters and self-interference. The resulting algorithm can be
implemented using a low-complexity architecture comprised of only two RLS modules. The novel
algorithm further satisfies low latency constraints and is adaptive, supporting time varying channel
conditions. We compare this to many self-interference cancellation algorithms, mostly adopted from
the acoustic echo cancellation literature, and show significant performance gain.

Keywords: self-interference cancellation; full duplex; alternating minimization; recursive least
squares; auto regressive process; multiple access

1. Introduction

Future multiple access systems, supporting heterogeneous services and applications,
such as virtual reality (VR), augmented reality, holographic telepresence, industry 4.0, and
robotics, will have to accommodate multiple users in different resource blocks, such as
time slots, frequency bands, spreading codes, and power levels. To accomplish this, these
systems have to go to higher bandwidth efficiencies and higher connectivities compared to
conventional multiple access schemes.

Full duplex communications, where both transmitter (TX) and receiver (RX) use the
same frequency band at the same time, has the potential to improve the spectral efficiency of
wireless communications and become a significant driver of the next generation of cellular
communications. Full duplex communications can theoretically increase the spectral
efficiency by a factor of two, and the flexibility of transmitting in any frequency at a given
time may improve the scheduling performance. From the viewpoint of the base station, we
denote the signals incoming from users as uplink (UL) and the system’s transmission as
downlink (DL). These notations will be used interchangeably.

Many initial works on full duplex interference cancellations considered a single band
operation [1–3]. In this simple case, the interference is present in all of the sampled bands
and, therefore, resembles white noise, allowing simple algorithms, such as LMS or RLS, to
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be useful in self-interference cancellation. This is not the case in the carrier aggregation of
contiguous and non-contiguous spectrum allocations. This technique is one of the main
techniques used for increasing the capacity and flexibility of next generation wireless
systems. Having analog filters on each of the tens of bands will not be practical, thus very
wide band sampling will be used and simple solutions, such as RLS and LMS, will not
work well.

Obviously, TX to RX interference occurs in the full duplex case, but it also appears
in an additional case, where TX and RX reside in adjacent bands. Wideband sampling is
used such that there is no analog filter at the transmitter to filter out the intermodulations
caused by the power amplifier’s (PA) nonlinearity. This intermodulation noise limits the
sensitivity of the victim RX band—and it is desired to measure it and cancel it. This is a
similar model as the direct full duplex interference cancellation, so the same techniques
hold in this case too.

An illustrative example can be seen in Figure 1, where a DL signal with 40 MHz
bandwidth (BW) and a UL with 20 MHz BW are on the same center frequency. The DL
leakage is added to the UL and can be seen more clearly in frequencies where the UL is not
present. Consider an additional UL from another user transmitting a lower power signal at
a frequency of 750 MHz (not shown). This user will suffer an increased noise level at the
level of the DL leakage. Cancelling the DL signal while there is a strong UL signal in close
frequency is the main difficulty treated in this paper.
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Figure 1. Exemplary spectrum of DL signal masking the UL signal.

There are several approaches to counter the effects of self-interference, which are
generally composed of two steps. First, analog domain mitigation (antenna nulling or
sharp analog filters) reduces the interference to a level that does not saturate the analog to
digital converter (ADC). Next, digital signal processing algorithms counter the residual
noise by estimating the leakage filter and then removing its interference on the UL. A
comprehensive summary on the solutions and algorithms in both analog and digital
domains can be found: [1,4–9]. For the rest of this paper, we will focus on the digital
signal processing cancellation, assuming RX ADC is not saturated and the LNA is in the
linear region.

Digital domain cancellation architectures can be generally divided to two categories:
those using auxiliary path ADC, such as [7], and those which do not, such as: [2,3,10,11].
The signal after the digital to analog converter (DAC), in the TX RF path, passes through a
PA and other active devices, which create nonlinear intermodulation (IMD) terms, which
are hard to model accurately. The auxiliary ADC, sampling the signal as close as possible
to the TX antenna, records an accurate replica of the TX signal, which can later be used
for leakage filter estimation. Solutions that do not use an auxiliary ADC and, thus, save
hardware costs, usually use some sort of polynomial approximation of the PA IMD. In [7], an
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auxiliary receiver measures the DL frequency response and a least squares (LS) estimation
(not taking into account the UL spectrum) is performed to recover the leakage filter in
frequency domain. Next, the filter is used to cancel out the self-interference signal by simply
passing the DL through an inverse leakage filter. In [2], there is no auxiliary ADC path, and
modeling of the IMD is proposed using second-order nonlinear terms. A training sequence
is transmitted by the system when there is no RX reception and the self-interference filter is
estimated using LS. This assumption is not useful in practice, since the users can transmit
at any time, particularly in cellular communications. Furthermore, the channel may be
changed during the payload, thus tracking is needed.

In the full duplex literature, estimation of the leakage filter is traditionally based on
least squares (LS) techniques [9]. While these techniques are adequate for simple narrow
band problems, they perform poorly for wide band systems in complex scenarios, which
will be demonstrated in this paper. Least mean squares (LMS) is the most simple and low-
complexity algorithm that can be used for a time-varying channel without any modification
or loss. The main disadvantage of LMS is that it cannot converge if the input or the noise is
highly correlated, which is the case in our application as explained above. We will later
show in simulations that the LMS fails miserably. Another common family of algorithms is
recursive least squares (RLS), which explicitly solves the LS problem in lower complexity,
but even the RLS with its higher complexity will not help in many scenarios, since the
interference is not white.

While the problem at hand was given less attention in the wireless full duplex com-
munity, we looked for candidate algorithms to compare to in other fields. Self-interference
cancellation is analogous to a problem in acoustic research known as the acoustic echo
cancellation. In this problem, the output of the loudspeaker (far-end signal) is fed back into
the microphone, along with near-end signal (desired signal) and background noise. The
far-end signal, can be viewed as the DL leakage signal while the near-end signal as the UL
signal from users; the double-talk scenario is basically equivalent to the self-interference
scenario. This problem has been extensively studied and there are a variety of techniques
for echo cancellation that can be applied to our setting.

In [12–14], the variable step size normalized LMS (VSS-NLMS) algorithm is discussed,
which is an extension of the LMS algorithm. This algorithm is designed to overcome the
difficulty of gradient noise amplification by normalizing the step-size parameter by the
power of the input signal. In basic NLMS algorithms, the step-size parameter is constant
and the choice of the variable step-size parameter reflects the trade-off between speed
of convergence, on the one hand, and achieving a small misadjustment, on the other
hand. In [15], the affine projection algorithm (APA) is presented. This algorithm is a
generalization of the NLMS algorithm, which uses N (called projection order) vectors of the
input signal instead of a single vector as the NLMS algorithm. Under this interpretation,
NLMS can be viewed as a one-dimensional affine projection algorithm. As the projection
dimension increases, so does the convergence speed of the algorithm and, unfortunately,
the algorithm’s complexity.

The family of the multi-delay filtering (MDF) [16] algorithm was proposed to miti-
gate the self-interference problem by partitioning the adaptive filter length L into shorter
length-N sub-filters, such that the delay was reduced by a factor of K = L/N. Improved
proportionate MDF (IPMDF) [16] was proposed for networks where the impulse response
was sparse. In [17,18], the extended MDF (eMDF) considered the correlation between
blocks of MDF.

Subband filtering is another approach used to tackle the fact that the UL is not spec-
trally flat. The transmitted and received signals are divided into narrow frequency bands by
filter banks. Since the UL is assumed to be relatively flat at each band, LMS can be applied
to each one separately. One of the disadvantages of subband filtering is the additional delay
caused by the filtering performed by the analysis and the synthesis filter banks. Another
disadvantage of subband filtering is that the stopbands of different subbands can alias and
leak into other subbands; therefore, filters should be sharp, which results in many taps



Sensors 2022, 22, 1485 4 of 18

and, thus, increases complexity, power, and delay. Another important issue with subband
filtering is the fact that downsampling and low pass filtering to subbands can cause the
adaptive filters in the subbands to become non-causal, and inducing delays into the echo
path may become necessary, which further increases the delay caused by the subband
filtering [19]. Additionally, when time varying leakage has to be tracked, the convergence
will be extremely slow; thus, channel variations cannot be tracked.

Kalman adaptive filtering [20–22] makes the assumption that a time-varying echo path
changes slowly and can be modeled by a first order Markov model. However, this approach
is highly affected by the covariance matrices of process noise and measurement noise, and
improper choices of these statistics may significantly degrade the Kalman filter performance.
Estimation of these covariance matrices adds significant complexity to the algorithm.

Most of the above algorithms for digital domain cancellation perform fairly well when
the UL and DL are spectrally white. In fact, performance of LS, RLS, and LMS will be
as good as maximum likelihood (ML) only when the UL is either spectrally white or its
power is significantly lower than the self-interference. However, in practical applications,
in particular multiple access communications, multiple carriers at arbitrary bandwidths
and power levels coexist at the UL; thus, its spectrum is non-white and its power might be
comparable to the leakage.

In this paper, we propose a novel algorithm for interference cancellation, which is
robust to the spectrum shape of the DL and UL and provides high rejection in highly
non-flat scenarios. The algorithm, first proposed in [23], is based on the observation
that the UL signal can be approximated as an autoregressive (AR) process and a self-
interference cancellation algorithm utilizing the special characteristics of the AR process
was devised. The algorithm performs an approximate joint maximum likelihood estimation
of the leakage and AR filters using alternating minimization. In subsequent sections,
we will show simulations of scenarios where state-of-the-art algorithms fail to provide
sufficient interference rejection, while our novel algorithm provides dramatically better
interference rejection. The main advantage of our approach is in scenarios where the
UL contains a strong narrow band user along with other weak users, while interference
from DL affects the weak user. In such scenarios, the leakage filter is poorly estimated by
traditional methods and the weak users are not serviced. Our algorithm is able to remove
the self-interference such that these users can be serviced, which results in an increased
service range of the system.

The resulting algorithm can be implemented online using a low-complexity architec-
ture composed of only two RLS modules, providing real time tracking for variations in the
model of the UL and the leakage channel. The RLS blocks can be implemented using low-
complexity methods, such as DCD [24], providing overall practical, robust, low-complexity
system implementation and latency.

This paper adds to the work presented in [23], by extending it to a more practical
system, having a sampler that samples the signal close to the transmitter and adding another
receiver chain. Moreover, no sufficient evaluation of the algorithm was done in [23]. In
this paper, we perform a comprehensive complexity and performance comparison between
the proposed algorithm and many state-of-the-art algorithms. The analysis presented
demonstrates the superior rejection performance of our algorithm compared to state-of-
the-art algorithms, while having a relatively low computational complexity. In addition,
the rejection performance of the algorithm for time varying channels is simulated and it
is shown that the algorithm performs well for typical time-varying channels using Jakes’
channel model [25]. Finally, a proof for convergence of the algorithm is provided.

2. System Model

In this section, the system model for our setting is presented and a base band model is
derived. A block diagram of the communication system is presented in Figure 2. We note
that there is a dedicated reference channel that samples the DL signal as close to the TX
antenna as possible for use as a reference. Sampling the TX signal requires a coupler, which
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attenuates the signal toward the reference ADC. By sampling the TX signal after the PA, the
intermodulations are taken as part of an effective transmitted signal, which is used as the
reference. Moreover, as described in Figure 2, two identical RX analog processing chains are
used for the RX and reference signals. The same LO is used both in the reference branch and
RX branch for down-conversion and, thus, phase noise is cancelled out. Adding another
RX channel is justified only when there is a formidable nonlinear part in the PA, otherwise
the reference can be the digital TX signal itself. In addition, LNA linearity impairments on
the RX signal are neglected since it is assumed that there is some analog cancellation before
LNA, such as antenna nulling, which provides sufficient initial self-interference rejection
(35–40 dB initial rejection of self leakage).

Let y[n] be the discrete time domain received signal after down-conversion and sam-
pling, which is composed of the DL self-interference and UL signals. Let x[n] be the discrete
time domain reference signal.

Downlink
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Converter
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Amplifier
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Converter
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Figure 2. System architecture.

Since the proposed algorithm deals with the digital samples, we can model the ADC
output vector y of N samples or y[n] as,

y = Xh + s (1)

where s is the UL, modeled as a size N circularly symmetric complex normal random
vector, h is the self-interference filter of length M and X is an N ×M tall Toeplitz matrix
(N � M) with Xij = x[i + j] for 0 ≤ i < N and 0 ≤ j < M. The matrix multiplication Xh,
is the equivalent of convolving the digital DL with an FIR filter: h (neglecting boundary
effects). The FIR filter is a filtered and sampled approximation of the analog leakage filter.

Moreover, we assume a Bayesian setting where the self-interference filter is a circularly
symmetric complex normal random vector h ∼ CN (0, σ2

h I). This is only really needed
as part of the regularization for the leakage filter estimation at low signal-to-noise ratio
(SNR) scenarios.

3. Proposed Solution

As discussed in the introduction, most digital domain self-interference mitigation
algorithms attempt to estimate the leakage filter using some variants of LS. Without prior
information on the UL signals, the common working assumption is to model the UL as an
AWGN process. However, in the multiple access scenario, the UL signal is composed of
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multiple carriers/users with different bandwidths and power levels. For example, several
LTE and CDMA carriers from multiple users. Therefore, the UL is clearly not spectrally
white and, thus, RLS and LMS will have a significant performance loss compared to ML
with prior information on the UL spectrum.

The first step in our algorithm derivation is finding a statistical model to approximate
the UL signal. The autoregressive moving average (ARMA) model defines a dense set
in the class of all continuous PSDs according to Section 3.2 in [26]. These processes are
modeled as the output of a stable LTI system with zero mean white Gaussian input, where
the frequency response of the system can be written as a division of two polynomials.
Therefore, the second order statistics of an ARMA process can approximate most well-
behaved WSS processes. However, ARMA processes are hard to estimate and it is preferred
to work with AR processes instead. Fortunately, causal and invertible ARMA processes
can be written as an AR process of infinite order [27]. Therefore, we suggest approximating
the UL signal s, as a complex valued autoregressive process of order p, which is fine-tuned
by the users to achieve maximum performance. Obviously, using a finite model order p is
only an approximation of the true UL statistical model, and as p increases to infinity, the
model may approach the true spectrum of the UL, assuming the UL is WSS.

3.1. Stochastic Modeling of the UL Signal

The AR model approximating the UL signal will be written as

s[n] =
p

∑
k=1

gks[n− k] + u[n] (2)

where g = [g1, g2, . . . , gp] is an unknown vector of size p, u[n] is a circularly-symmetric
complex normal i.i.d process with zero mean and variance σ2

u . The choice of p determines
the approximation accuracy, and it affects the model’s frequency selectivity.

Equivalently, (2) can be written in matrix form,

u = Ws (3)

where W is a square Toeplitz whitening matrix with dimension N, which is the size of
vectors u and s

W =


1 −g1 −g2 . . . −gp 0 0 . . . 0
0 1 −g1 −g2 . . . −gp 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 0 1 −g1
0 0 0 0 . . . 0 0 0 1

 (4)

We notice that due to (3) and the fact that W is invertible, the co-variance matrix Σ of
the random vector s can be written as,

Σ = E
(
(W−1)†uu†W−1

)
(5)

which is,
Σ = (W−1)†E(uu†)W−1 (6)

Since u is an i.i.d vector, the inverse is

Σ−1 =
W†W

σ2
u

(7)
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3.2. Minimum Mean Square Error Estimation of the UL Signal

The second part of the algorithm derivation is to recover the UL signal, and we choose
to use the minimum mean square error (MMSE) criterion. Therefore, the optimal estimator
for s under the block signal model in (1) is

ŝMMSE = E
(

s|y
)

(8)

where,

ŝMMSE = E
(

y− Xh|y
)

= y− XE
(

h|y
)

= y− XĥMMSE

(9)

Since h is assumed to be a random Gaussian vector, then the MMSE solution is the
same as the maximum likelihood (ML). The ML solution for the leakage filter finds the
vector h, which maximizes the log likelihood function:

log
(

p(y|h; Σ)
)

∝ − log(det Σ)

−
(

y− Xh
)†

Σ−1
(

y− Xh
) (10)

where Σ is the covariance matrix of the vector s and ()† is the matrix conjugate transpose
operator.

If Σ was known a-priori, then maximization of (10) would reduce to a closed form
solution (weighted least squares (WLS)). Moreover, if s was an i.i.d vector, then the LS and
RLS solutions would yield the same performance as ML.

However, s has unknown statistics, since it is the combination of all the active users in
a given cell sector. All users are transmitting in different bandwidths, center frequencies,
and power levels, in various formats, such as LTE, GSM, and WCDMA.

We propose using a generalized likelihood ratio (GLRT) approach for solving the ML
problem. We find the vector g, which maximizes (10), and use it to compute the posterior.
Equivalently, we can look at this approach as jointly maximizing (10),

ĥ, ĝ = arg max
h,g

p(y|h; W) (11)

3.3. Alternating Minimization Algorithm

In this section, an algorithm that approximately solves (11) is proposed. Since the
optimization is also done on the matrix W, then the problem does not have a simple closed
form solution and a unique algorithm is developed. We use alternating minimization [28]
of the likelihood function and converge on a joint solution for both filters.

Note that since det A−1 = 1
det A , (10) becomes,

log
(

p(y|h; Σ)
)

∝ log(det W†W)

−
(

y− Xh
)† W†W

σ2
u

(
y− Xh

) (12)

Since W is an upper triangular matrix with all ones across its main diagonal (assuming
large enough vectors, thus neglecting boundary effects), then det W = 1. Moreover,
det W†W = det W† det W; thus det W†W = 1

ĥ, ĝ = arg min
h,g

(
y− Xh

)†
W†W

(
y− Xh

)
(13)
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In the following sections, the details of the alternating minimization algorithm will be
discussed. In particular, the alternating minimization algorithm can be converted into two
alternating least squares problems, based on the specific structure of W.

The flow diagram of the algorithm is detailed in Algorithm 1, which works in batch
on the received signal, y. In the start, hk=0 and gk=0 are set to some initial values, where k

is the iteration index for the alternating minimization. Then hk is fixed and a minimization
for gk+1 is performed. Then gk+1 is fixed to the new value and hk+1 is optimized. This
procedure is repeated until the difference between the estimated filters in subsequent
iterations is smaller than a predefined value. Note that the algorithm uses diagonal loading
factors λh and λg. These parameters are commonly used for regularization in LS problems.

The regularization introduces the terms
∥∥∥hk
∥∥∥2

and
∥∥∥gk
∥∥∥2

(leakage and whitening) into the
LS optimization, thus, improving the robustness of the LS estimation to low SNR situations.

Algorithm 1: Batch alternating minimization algorithm.

hk=0 = 0, gk=0 = 0, e0 = 1, k = 1;

while ‖ek‖
2
2 > ε do

Compute Wk using gk based on Equation (4);

hk+1 = (X†W†
k WkX + λh IM)−1X†W†

k Wky;

ek = y− Xhk;
Compute Ẽk based on Equation (20);

gk+1 = (Ẽk
†Ẽk + λg IM)−1Ẽk

†ek;
k = k + 1 ;

3.4. Minimization over the Self-Interference Filter

We used the previous estimation of the AR filter taps, gk, which defines the matrix Wk
and minimizes (13) over the vector h.

hk+1 = (X†W†
k WkX + λh IM)−1X†W†

k Wky (14)

where IM is an M by M identity matrix and λh is a regularization factor added to increase
robustness to the estimation.

Note that (14) is the WLS solution to the ML problem, when the matrix, Wk, is known.
This result has the following interpretation: passing the DL and UL signals through a
whitening filter and performing LS estimation of the self-interference filter. In the next step,
we will use this filter estimation in order to estimate the whitening filter; this process will
alternate until convergence.

3.5. Minimization over the Whitening Filter

In the second step of each iteration, we use the previous estimation of the self-
interference filter, hk and minimize (13) over the vector g.

We define the following residual vector:

ek = y− Xhk (15)

Plugging (15) into (13)

gk+1 = arg min
g
‖Wek‖

2
(16)
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Since W is a Toeplitz matrix dependent on g and the matrix multiplication in (16) is
equivalent to a convolution between [1,−g] and ek, we can rewrite (16) as,

gk+1 = arg min
g

∥∥∥∥Ek

(
1
−g

)∥∥∥∥2
(17)

where Ek is a Toeplitz matrix defined as,

Ek =

 ek(N) ek(N − 1) . . . ek(N − p)
ek(N − 1) ek(N − 2) . . . ek(N − (p + 1))

. . . . . . . . . . . .

 (18)

where ek(i) is the i’th element in the vector ek.
Plugging (18) into (17) and rearranging, we get,

gk+1 = arg min
g

∥∥∥ek − Ẽkg
∥∥∥2

(19)

where Ẽk is defined as,

Ẽk =

ek(N − 1) ek(N − 2) . . . ek(N − p)
ek(N − 2) ek(N − 3) . . . ek(N − (p + 1))

. . . . . . . . . . . .

 (20)

We notice that (19) can be solved using LS and the solution is,

gk+1 = (Ẽk
†Ẽk + λg IM)−1Ẽk

†ek (21)

where λg is a regularization factor added to increase robustness of the estimation.
We notice that (21) is equivalent to the Yule–Walker solution for the AR parameters

estimation.

3.6. Convergence of Alternating Minimization

In this section, the convergence of the proposed algorithm is analyzed. Unfortunately,
there is no guarantee that the alternating minimization algorithm for the problem defined
in (13) provides the optimal set of filters. However, using the results from [29], it is
possible to prove that the algorithm converges to a stationary point and, thus, a real time
implementation of the system is useful.

Consider the following optimization problem for x ∈ X , y ∈ Y :

min
x,y

f (x, y)

In [29], the following theorem is provided for block coordinate descend algorithms:

Theorem 1 (Grippo and Sciandrone (2000)). Let f be continuously differentiable and X ,Y
the closed and convex sets. Assuming both sub-problems have solutions and that the sequence
{(xk, yk)} has limit points. Then, every limit point is stationary.

The alternating minimization algorithm proposed in this paper is equivalent to a block
coordinate descend of (13) when the optimization is done on two blocks: g and h. Each
least squares optimization is performed with regularization. This is equivalent to least
squares with a Euclidean norm constraint on h and g. Therefore, the possible filter vectors
belong to closed sets.

Lemma 1. The set Ω defined as the set containing all the vectors h ∈ Rn such that ‖h‖2 ≤ λ is
convex and closed.
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Proof. The claim that Ω is closed is trivial. For two vectors, h1 ∈ Ω and h2 ∈ Ω with
0 ≤ α ≤ 1

‖αh1 + (1− α)h2‖
2

= ‖αh1‖
2 + ‖(1− α)h1‖

2 + 2α(1− α)hT
1 h2

(22)

Using the fact that h1, h2 ∈ Ω and the Cauchy–Schwartz inequality,

‖αh1 + (1− α)h2‖
2 ≤ α2λ + (1− α)2λ + 2α(1− α)λ

This means that every convex combination of two vectors in the set Ω satisfies:

‖αh1 + (1− α)h2‖
2 ≤ λ

Therefore, the algorithm satisfies the conditions of Theorem 1 and the algorithm
converges to a stationary point.

4. Low-Complexity Implementation Using RLS Submodules

Algorithm 1 works on a batch of samples, which is not suitable for real time systems.
LS problems can be converted to adaptive recursive least squares (RLS), providing a
sequential, real time solution. The proposed algorithm, which we denote as Joint Whitening
RLS (JWRLS), is detailed in Figure 3, and can be summarized as follows: the DL and UL
signals go through a whitening filter 1− g and are then fed to an RLS module that produces
an estimate of the self-interference filter. In parallel, the reference is convolved with the
self-interference filter estimate and subtracted from the UL, which produces an estimate of
the UL without interference. This output is delayed by one sample and sent to another RLS
module, which estimates the UL covariance, which is basically the whitening filter.

y(t)

x(t) −
+

h

1− g

1− g

RLS1

RLS2

ŝ(t)

D

Figure 3. Joint Whitening RLS (JWRLS) algorithm flow diagram.

The RLS has many implementations. One notable implementation in low-complexity
is the RLS-DCD [24]. RLS-DCD algorithm is a low-complexity approximation of RLS.
This algorithm has a linear (with the filter’s length) number of real multipliers and, thus,
it is much simpler to implement than conventional RLS. In [30], there is also an FPGA
implementation of this algorithm, which shows its real world value and applicability. The
JWRLS-DCD will denote the JWRLS implementation using DCD.

The classical RLS adaptive algorithm uses an initial regularization to stabilize the
solution to the RLS problem [31]. Because the initial regularization decays exponentially
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in time, we may have to add additional diagonal loading to maintain robustness [32].
However, such extra diagonal loading increases the complexity to O(N3) [31], which makes
the RLS algorithm impractical [32]. In [33], the authors propose modifying the adaptive
RLS-DCD algorithm introduced in [24] to incorporate the diagonal loading factor.

5. Performance Analysis

In this section, the proposed algorithm is compared to other state-of-the-art self-
interference cancellation algorithms. The comparison is for computational complexity and
interference cancellation quality. It will be shown that the proposed algorithm provides the
best trade-off between computational complexity and interference cancellation.

5.1. Computational Complexity

The computational complexity is measured in terms of the number of real multipliers
needed for the implementation of each algorithm. In Table 1, the parametric expression
for the computational complexity for several state-of-the-art algorithms is detailed. All of
these algorithms will be compared in terms of interference cancellation in Table 2.

Since the proposed algorithm (JWRLS DCD) is composed of two DCD-RLS modules,
its complexity is linear with the filter size. The only algorithms that scale the same are
based on LMS, which perform poorly when the spectrum of the UL is not white.

Table 1. Computational complexity of algorithms.

Algorithm Real Multiplications per Sample Comments

JWRLS DCD 60L L is the filter size
VSS-NLMS1 [12] 20L + 34
VSS-NLMS2 [13] 8L + 22
VSS-NLMS3 [14] 20L + 41

VSS-APA [15] 4p3 + 8p2 + 8pL + 8p + 12 p is the projection order
MDF [34] 8K + (4K + 6) log2 N K sub-filters, N is the sub-filter length

IPMDF [34] 10K + (4K + 6) log2 N
EMDF [17,18] 48K− 8K/N + 18− 12/N + 4(2K + 3) log2 2N

General KF [21] 4L3 + 8L2 p + 8Lp2 + 8Lp + 4p3

APA KF [21] 8Lp + 12p2 + 4p3 Complexity without noise statistic calculation.
IPAPA KF [21] 4Lp2 + 12Lp + 4L + 4p3 + 4p2

Classical FDAKF [22] 24M3 + 12M2 + 1.5M log2 M− 3 3
4 M M is the length of FFT.

Diagonalized FDAKF [22] 1.5M log2 M + 20M2 + 6 1
4 M

Constrained FDAKF [22] 2.5M log2 M + 20M2 − 3 3
4 M

Table 2. UL SNR Comparison.

Algorithm Scenario A UL SNR [dB] Scenario B UL SNR [dB] Scenario C UL SNR [dB]

JWRLS DCD 50 70 20
RLS & LS 50 50 0

LMS 35 35 −15
VSS-NLMS1 [12] 35 40 −10
VSS-NLMS2 [13] 35 40 −10
VSS-NLMS3 [14] 35 40 −10

VSS-APA [15] 20 40 −10
EMDF [17,18] 35 40 0

General KF [21] 45 60 5
APA KF [21] 25 40 −10

IPAPA KF [21] 30 50 0
Classical FDAKF [22] 50 65 10

Diagonalized FDAKF [22] 45 60 10
Constrained FDAKF [22] 25 50 0
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5.2. Simulation Results

In this section, the proposed algorithm’s performance is analyzed using a simulation.
DL and UL signals were generated by colored Gaussian processes with variable power
levels and bandwidths. In order to simulate the PA’s response, non linearity was introduced
to the DL signal using a Hammerstein–Wiener model [35]. The DL signal was filtered
with a measured lab channel response to simulate the RF leakage filter. Finally, the self-
interference was added to the UL, which was then inputted to our algorithm. Note that
JWRLS-DCD used 24 taps for both filters g and h. All other algorithms used 24 taps for
their filter estimation.

In Table 2, the JWRLS-DCD algorithm is compared with state-of -the-art algorithms
from Table 1, in terms of UL SNR performance. This SNR is computed by first taking the
spectral difference between the clean UL (without DL leakage) and the estimated UL. This
difference is the residual noise on the UL signal. Next, the SNR is computed by taking the
UL power and dividing it with the power of the residual estimation noise. The SNR values
represent the mean SNR across the BW and have been rounded to the nearest 5 dB.

Three different scenarios, which represent typical multi access scenarios, were exam-
ined. The resulting absolute rejection in dB across the frequency domain is plotted for each
scenario. In each figure, we denote the TX signal (DL) as REF, the leakage DL in RX as
interference, the thermal noise floor as noise, and the DL rejection per algorithm as the
residual noise per each mitigation algorithm. The hope is to have the residual noise of a
specific mitigation algorithm below the thermal noise floor.

1. Scenario A: includes a 40 MHz UL and higher power 30 MHz DL. The DL undergoes
the leakage filter and a rippled DL frequency response is present at the RX input. The
performance of the interference cancellation of JWRLS-DCD is comparable to the RLS
in this case since the UL is essentially white in the frequency band of interest. Note
that the computational complexity of JWRLS-DCD is the same order as RLS. It is also
shown that LMS performs very poorly in this case compared to RLS and JWRLS-DCD.
The performance comparison with RLS and LMS is shown in Figure 4.

2. Scenario B: includes two 2 MHz UL signals at a 20 MHz carrier difference and 40 MHz
DL with different power levels. This scenario exemplifies the issue of a non-white UL
signal, which can deteriorate the LS interference cancellation. Indeed the performance
of the interference cancellation of JWRLS-DCD is much better than all of the other
algorithms, some areas are even 10 dB better. The performance comparison with RLS
and LMS is shown in Figure 5.

3. Scenario C: comprises of two narrow band UL signals (2 MHz each) at 4 MHz carrier
spacing with a significant power difference. This scenario simulates a “near- far” issue
where a nearby user is masking a far user and limits the service range of the access
point. In Figure 6, the performance of JWRLS-DCD is shown and we can see that the
weak user is recovered along with the strong user and essentially the residual is at
the noise floor. In this case, we also added the JWRLS estimated UL to show the weak
and strong users and exemplify the fact that the weak user is masked by the residual
noise of the other algorithms. It is clearly shown that JWRLS-DCD achieves the best
performance in this demanding scenario. Since this is an interesting and demanding
scenario, we also included the UL SNR for TDAKF and FDAKF-based algorithms
in Figures 7 and 8. Clearly, JWRLS-DCD is the only algorithm providing sufficient
rejection for the weak user recovery.

In conclusion, in all three scenarios, JWRLS-DCD achieved the best performance while
maintaining low computational complexity. It is worth noting that in scenario C (near far
problem), JWRLS-DCD was the only algorithm to provide sufficient SNR for the reception
of the weak user, enabling to extend the operational range of the base station!
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Figure 4. Rejection performance for wideband UL-RLS and LMS.
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Figure 5. Rejection performance for two narrow band UL-LMS and RLS.
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Figure 6. Rejection performance for near far narrow band UL-LMS and RLS.

Figure 7. Rejection performance for near far narrow band UL-TDAKF.
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Figure 8. Rejection performance for near far narrow band UL-FDAKF.

5.3. Performance for Time Varying Channels

In this section, the performance of the proposed scheme is analyzed for time varying
channels, in particular, channels with Doppler spread. In practical implementations of a
full duplex system, the leakage filter may vary slowly over time due to movement of close
range users or the movement of the base station/access point. This movement can alter
different multi-path components and slowly change the channel response of the leakage.
This slow change of the channel response is modeled using a Doppler power spectrum.
In order to adapt to the varying channel, the proposed self-interference rejection scheme
includes a forgetting factor, which helps track the changing leakage filter.

In this simulation, Jakes’ model [25] was chosen to model a Doppler power spectrum.
The simulation consists of first generating N independent stochastic processes ai(t) for
different multi paths in the leakage channel. Each process, ai(t), is generated by passing a
complex Gaussian sequence through a U-shaped filter sampled at 1 KHz rate. The output
of this filter is then multiplied by the average power of the path to adjust the variance and
interpolated to the system’s sampling rate.

The self-interference, y(t) can be written as:

y(t) =
N

∑
i=0

ai(t)s(t− τi)

where s(t) and τi are the DL signal and delay of multi path ray i, respectively.
A maximal Doppler frequency of 120 Hz was chosen and delay profiles with 2, 3, and

4 taps with the parameters detailed in Table 3 were examined. In Figure 9, the residual
noise after the removal of the leakage is presented and the performance is with negligible
loss compared to the time-invariant channel setting. In Figure 10, the evolution of the first
tap in the leakage filter is plotted for 2, 3, and 4 tap channels. The tracking shows that the
first tap changes over time and considering the fact that the residual interference is very
close to the noise floor (as for a fixed leakage as shown in Figure 9), we can conclude that
the tracking is good.
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Table 3. Parameters for Jakes’ model.

Number of Taps Delays [ns] Amplitudes

2 0, 2 1, 0.3
3 0, 3, 10 1, 0.3, 0.1
4 0, 3, 7, 11 1, 0.5, 0.3, 0.1
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Figure 9. Rejection performance for two narrow band UL signal scenarios with a 2-tap leakage filter
and Doppler of 120 Hz.
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6. Conclusions

In this paper, a novel algorithm for mitigating self-interference in full duplex commu-
nication systems was presented. This algorithm is capable of mitigating self-interference in
multiple access systems, where multiple users are simultaneously received and transmitted
at overlapping arbitrary bandwidths and powers. The main innovation was the stochastic
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modeling of the UL signal as an AR process and the joint estimation of the leakage and
AR parameters. Furthermore, a low-complexity implementation was proposed using the
RLS-DCD scheme, which resulted in an algorithm whose computational complexity scales
linearly with the filter size.

Finally, an extensive comparison to a large number of state-of-the-art algorithms for
self-interference mitigation was carried out, and it demonstrated the superiority of the
proposed algorithm.
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