
����������
�������

Citation: Ademujimi, T.; Prabhu, V.

Digital Twin for Training Bayesian

Networks for Fault Diagnostics of

Manufacturing Systems. Sensors 2022,

22, 1430. https://doi.org/10.3390/

s22041430

Academic Editors: Ondrej Krejcar,

Sara Shirowzhan, Samad M.

E. Sepasgozar, Rafiq Ahmad

and Limao Zhang

Received: 18 December 2021

Accepted: 10 February 2022

Published: 13 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Digital Twin for Training Bayesian Networks for Fault
Diagnostics of Manufacturing Systems
Toyosi Ademujimi and Vittaldas Prabhu *

Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, Pennsylvania State
University, University Park, PA 16802, USA; tta5@psu.edu
* Correspondence: vittal.prabhu@psu.edu

Abstract: Smart manufacturing systems are being advocated to leverage technological advances
that enable them to be more resilient to faults through rapid diagnosis for performance assurance.
In this paper, we propose a co-simulation approach for engineering digital twins (DTs) that are used
to train Bayesian Networks (BNs) for fault diagnostics at equipment and factory levels. Specifically,
the co-simulation model is engineered by using cyber–physical system (CPS) consisting of networked
sensors, high-fidelity simulation model of each equipment, and a detailed discrete-event simulation
(DES) model of the factory. The proposed DT approach enables injection of faults in the virtual system,
thereby alleviating the need for expensive factory-floor experimentation. It should be emphasized
that this approach of injecting faults eliminates the need for obtaining balanced data that include
faulty and normal factory operations. We propose a Structural Intervention Algorithm (SIA) in this
paper to first detect all possible directed edges and then distinguish between a parent and an ancestor
node of the BN. We engineered a DT research test-bed in our laboratory consisting of four industrial
robots configured into an assembly cell where each robot has an industrial Internet-of-Things sensor
that can monitor vibrations in two-axes. A detailed equipment-level simulator of these robots was
integrated with a detailed DES model of the robotic assembly cell. The resulting DT was used to
carry out interventions to learn a BN model structure for fault diagnostics. Laboratory experiments
validated the efficacy of the proposed approach by accurately learning the BN structure, and in the
experiments, the accuracy obtained by the proposed approach (measured using Structural Hamming
Distance) was found to be significantly better than traditional methods. Furthermore, the BN structure
learned was found to be robust to variations in parameters, such as mean time to failure (MTTF).

Keywords: smart manufacturing; Bayesian network; structure learning; digital twin; fault diagnostics;
small data set

1. Introduction

With the increasing globalization of manufacturing, manufacturers are facing fiercer
competition, leaving very little room for inefficiencies, such as downtime. In a recent survey
of senior manufacturing professionals by Reference [1], 92% of respondents identified
improving operational efficiency as their most significant business imperative. Fast and
accurate fault diagnosis can significantly reduce downtime and is the most challenging
phase of machine repairs [2,3].

Following the hierarchical nature of manufacturing systems, manufacturing faults
can be classified as either machine-level (equipment) or factory-level (system) faults [4].
Machine-level faults pertain to the loss of functionality of individual components of a
machine, such as the spindle bearing fault or axis servomotor fault, in a CNC machine.
Errors caused by human operators running the equipment also fall under equipment-level
faults. Factory-level faults, on the other hand, occur at the unit, cell, area, site, or enterprise
levels in the integrated ISA-95 and ISA-98 model [5]. They refer to underperformance of
the overall system or subsystem expressed as shortcomings in key performance indicators

Sensors 2022, 22, 1430. https://doi.org/10.3390/s22041430 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041430
https://doi.org/10.3390/s22041430
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4051-3308
https://doi.org/10.3390/s22041430
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041430?type=check_update&version=2

Sensors 2022, 22, 1430 2 of 24

(KPIs), such as low overall equipment effectiveness (OEE), low production throughput,
and high scrap rate. Examples of common manufacturing KPIs include those defined in the
ISO 22400-1 [6] and ISO 22400-2 [7] standards. Because a manufacturing system consists of
several machines, equipment-level faults are usually the root causes of factory-level faults.
Despite this inherent relationship, system-level and machine-level fault diagnostics are
usually modeled independently. However, a unified fault model of both fault classes can
provide top management visibility on the effect of lower level faults on factory performance.

The increasing adoption of smart manufacturing and Industry 4.0 is propelling the
application of advanced data-analytics tools, such as machine learning (ML) models for
improving performance, and additive manufacturing of functional parts [8]. Bayesian
network (BN) is an ML algorithm that employs a graph-based representation to compactly
encode the joint distribution of random variables in a single model, making it an ideal
candidate for representing multilevel faults of complex hierarchical systems, such as
manufacturing systems. Much of the existing diagnostics models are usually suited for
single equipment rather than complex multilevel interconnected equipment [9,10]. BN’s
compact representation allows for determining fault-propagation paths within and across
fault classes, i.e., within factory-level faults and from factory-level fault to machine-level
fault. Another significant advantage of BN is that a single model can be used for both
diagnostics and prediction without the need for retraining, while modeling the associated
uncertainties. It must be emphasized that, in contrast to most ML models that are black-box
models, the graphical representation in BN allows for transparency, as the human expert
can easily visually verify the model [11].

The first step in training a BN model is determining the directed acyclic graph (DAG)
structure. Common structure learning methods include either heuristic search methods
that learn the DAG from observational data, eliciting the DAG from domain experts, or
causal discovery through intervention on the real system. Heuristic search DAG learning
algorithms require large amounts of complete balanced-class data to learn a DAG structure
accurately. In contrast to other domains, such as image processing or social media, where
available training data are in the hundreds-of-thousands to billions, manufacturing data
are much smaller [12]. Furthermore, the amount of failure class examples in a dataset are
usually much less than healthy class examples, creating a large class imbalance. Even with
infinite balanced-class observational data, heuristic search algorithms cannot distinguish
between graphs that are independently equivalent (I-equivalent) [13,14], such as graphs
in Figure 1a,b. Incorrect edge directions in causal BN can result in misdiagnosis, which is
undesirable. Thus, eliciting the whole or a subset of the DAG from domain experts is the
most prevalent method. Expert opinion, however, may vary from one expert to the other,
and there is no guarantee that an expert always remembers the influential relationship
between variables. Although carrying out designed experiments is required for causal
discovery, experimentation in a manufacturing environment will require shutting down
normal production, and this can be prohibitively expensive.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 25

underperformance of the overall system or subsystem expressed as shortcomings in key
performance indicators (KPIs), such as low overall equipment effectiveness (OEE), low
production throughput, and high scrap rate. Examples of common manufacturing KPIs
include those defined in the ISO 22400-1 [6] and ISO 22400-2 [7] standards. Because a
manufacturing system consists of several machines, equipment-level faults are usually the
root causes of factory-level faults. Despite this inherent relationship, system-level and
machine-level fault diagnostics are usually modeled independently. However, a unified
fault model of both fault classes can provide top management visibility on the effect of
lower level faults on factory performance.

The increasing adoption of smart manufacturing and Industry 4.0 is propelling the
application of advanced data-analytics tools, such as machine learning (ML) models for
improving performance, and additive manufacturing of functional parts [8]. Bayesian
network (BN) is an ML algorithm that employs a graph-based representation to compactly
encode the joint distribution of random variables in a single model, making it an ideal
candidate for representing multilevel faults of complex hierarchical systems, such as
manufacturing systems. Much of the existing diagnostics models are usually suited for
single equipment rather than complex multilevel interconnected equipment [9,10]. BN’s
compact representation allows for determining fault-propagation paths within and across
fault classes, i.e., within factory-level faults and from factory-level fault to machine-level
fault. Another significant advantage of BN is that a single model can be used for both
diagnostics and prediction without the need for retraining, while modeling the associated
uncertainties. It must be emphasized that, in contrast to most ML models that are black-
box models, the graphical representation in BN allows for transparency, as the human
expert can easily visually verify the model [11].

The first step in training a BN model is determining the directed acyclic graph (DAG)
structure. Common structure learning methods include either heuristic search methods
that learn the DAG from observational data, eliciting the DAG from domain experts, or
causal discovery through intervention on the real system. Heuristic search DAG learning
algorithms require large amounts of complete balanced-class data to learn a DAG
structure accurately. In contrast to other domains, such as image processing or social
media, where available training data are in the hundreds-of-thousands to billions,
manufacturing data are much smaller [12]. Furthermore, the amount of failure class
examples in a dataset are usually much less than healthy class examples, creating a large
class imbalance. Even with infinite balanced-class observational data, heuristic search
algorithms cannot distinguish between graphs that are independently equivalent (I-
equivalent) [13,14], such as graphs in Figure 1a,b. Incorrect edge directions in causal BN
can result in misdiagnosis, which is undesirable. Thus, eliciting the whole or a subset of
the DAG from domain experts is the most prevalent method. Expert opinion, however,
may vary from one expert to the other, and there is no guarantee that an expert always
remembers the influential relationship between variables. Although carrying out
designed experiments is required for causal discovery, experimentation in a
manufacturing environment will require shutting down normal production, and this can
be prohibitively expensive.

Figure 1. Illustration of independence equivalent graphs: (a,b) I-equivalent, (c) completed partially
directed acyclic graph of (a,b), and (d) skeleton of (a,b).

x1 x2

x3 x4

(b)

x1 x2

x3 x4

(a)

x1 x2

x3 x4

(d)

x1 x2

x3 x4

(c)

Figure 1. Illustration of independence equivalent graphs: (a,b) I-equivalent, (c) completed partially
directed acyclic graph of (a,b), and (d) skeleton of (a,b).

Sensors 2022, 22, 1430 3 of 24

In this paper, we propose the utilization of digital twin (DT) model to train BN that
models both factory-level and equipment-level faults. A DT model can mirror the real
operating conditions of a factory at both the system-level and machine-level, thereby
simulating its real behavior [15–18]. Given that intervention is usually required for causal
discovery [19] and the prohibitive cost of perturbing the physical production system for
causal discovery, using a DT model is a more cost-effective alternative.

Developing an all-purpose high-fidelity DT model for a complex manufacturing sys-
tem is practically challenging, due to several reasons, including insufficient data and
computational power [20]. DT models of multistage manufacturing systems are also
uncommon in the literature, in comparison to single-stage and product DTs [21]. There-
fore, we first propose a method to develop a multistage manufacturing system DT model
specifically for multiclass fault diagnostics. Given that an ontology is usually required to
develop an effective DT model for fault diagnostics but many organizations do not cur-
rently have an ontology [22,23], our proposed method utilizes natural language processing
(NLP) data-tagging technique to mine the fault cause-and-effect relationships directly from
maintenance log data. Additionally, considering the challenge of developing high-fidelity
simulation models that mimic the behavior of a machine with fine granularity, we utilized
co-simulation of original equipment manufacturer (OEM) simulator and discrete-event
simulation (DES) model to actualize a DT model. The contributions of this research are as
follows: (i) engineering of a detailed multilevel (equipment and system level) DT model,
using co-simulation of equipment OEM simulator for process-level modeling and DES for
system-level modeling showcased via an experimental robotic assembly cell; (ii) applying
data-tagging NLP technique to extract fault events directly from qualitative data sources to
facilitate high-fidelity fault modeling in a DT model; and (iii) utilization of a DT model for
training of BN model for diagnostics of multilevel faults in manufacturing systems.

The organization of the rest of the paper is as follows. Firstly, an introduction to
basic BN concepts is presented, including the current state-of-the-art in BN training and
DT applications. Next, we discuss how the DT model was engineered, and its usage for
training a BN is presented. We then present the experimental test bed setup that was used to
validate the proposed approach before we conclude and discuss future research directions.

2. Background and Literature Review

A BN, denoted as a set (G, θ), graphically models the joint distribution of a set of
random variables. G is a directed graph that represents the dependencies between vari-
ables, while θ represents the degree of influence between connected nodes in G. For fault
diagnostics applications, these nodes correspond to faults, and a directed arc between two
variables, such as Xj → Xi , means that Xj is the parent (or cause) of Xi, and Xi is the child
(or direct effect) of Xj, denoting a cause and effect relationship. Identifying the causal
relationships among process variables is required for effective fault diagnostics [24], which
is challenging to derive from observational data, as statistical dependency does not always
imply causality [25]. Using the chain rule of probability, the joint probability distribution of
a BN is given by the following:

Pr(X) =
r

∏
i=1

Pr(Xi|Pa(Xi)) (1)

where Pa(Xi) is the parent set of node Xi, and r is the total number of nodes.

2.1. Bayesian Network Structure Learning

BN structure learning methods can be generally classified as either heuristic search
methods or other methods. Heuristic search methods learn the DAG from observational
data and can be either score-based method, constraint-based method, or a hybrid of both
methods. Other methods include expert opinion, using engineering models, and using
design of experiment (DOE).

Sensors 2022, 22, 1430 4 of 24

Score-based methods search for a DAG that maximizes a goodness-of-fit score, and
the search is a combinatorial optimization problem that is well-known to be NP-Hard [26].
Thus, a heuristic search is usually used in practice. The hill climbing (HC) algorithm is a
popular score-based method that provides good tradeoff between computational demands
and the quality of the models learned [27].

Constraint-based methods learn the structure from data by carrying out independence
test to sequentially remove or add arcs. The undirected graph is determined first, followed
by setting directions to v-structures (a node that has more than one parent) and finally
directing the other arcs such that the acyclicity constraint is satisfied [28]. Examples of
constraint-based algorithms are PC (Prototypical Constraint) [29], Grow–Shrink [30], and
incremental association Markov blanket [31]. Finally, the hybrid method combines both
score-based and constraint-based methods.

Heuristic search structure learning methods require a large amount of balanced-class
training data, but data are not always available in the required quantity, especially in
manufacturing companies at the nascent stage of digitalization [32]. Large class imbalance
is a result of the relative rarity of failure state in comparison to the healthy state. Even if
adequate data are available, only the essential graph (skeleton and v-structures) can be
learned at best from exploratory data, but the causal relationships between variables cannot
be fully determined [13,33].

Expert opinion elicitation is the most preferred structure learning method in real-
world applications, and it is either used to elicit the whole DAG or incorporated to improve
DAGs learned using heuristic search methods, such as in References [34,35]. To obtain the
DAG for diagnosing faults in a rolling manufacturing process, Li and Shi [24] integrated
PC constraint-based learning algorithm with expert opinion. In Reference [36], the au-
thors combined pairwise node-ordering knowledge elicited from an expert with a small
observational dataset to determine the influential relationship between different human
resource KPIs. Major challenges of expert elicitation include the misinterpretation of the
BN edge direction due to variation between BN terminology and domain terminology [34];
inconsistency between experts; and experts’ memory-recollection limitations [36].

Engineering models developed by experts for other purposes embed some domain
causal relationship knowledge and have been applied to determine BN structure. Examples
include the failure mode and effect analysis (FMEA) model [37] and fault trees [38]. Cost
models were utilized in Reference [39] to determine the BN graph for characterizing
the influence of manufacturing decisions and variables on KPIs. A method to train BN
using sensor data and maintenance log data for equipment-level fault diagnostics was
proposed in Reference [40]. Carrying out designed experiments in the manufacturing plant
is another BN structure learning method used in Reference [41]. Experimenting with a
real manufacturing plant is, however, not economically feasible in most cases, and most
of these approaches are limited to training BN for diagnosing either equipment-level or
factory-level faults, but not both.

2.2. Digital Twin

The confluence of the maturity of computing technologies, Internet-of-Things (IoT)
sensor technology, and faster Internet speed has given rise to the concept of cyber–physical
systems (CPS). CPS is a technology that provides an interaction between systems via inte-
grated communication, computing, and control [42,43], and this technology facilitates the
integration of a physical asset with its virtual counterpart. A DT model is a virtual replica of
a physical object connected via flow of information and data [44]. IoT sensors facilitate data
collection from the physical system to update the DT model’s parameters in real time. Real
time, here, can be hours, days, or even weeks, depending on the required decision-making
timescale. This live connection between the physical and virtual worlds extends the DT’s
use to timescales over which the physical object’s behavior will change significantly, thus
preserving its representativeness throughout the physical object’s lifecycle [45]. A clear
distinction between a digital model, digital shadow, and DT is that a digital model has

Sensors 2022, 22, 1430 5 of 24

no automated data connection to the physical system, while a digital shadow is a digital
model with established unidirectional data connection from the physical equipment, and
lastly a DT is created only when the communication is bidirectional [46].

DT models have been developed for improving the prognostic and health management
of systems including fault diagnostics. A review of DT application in the maintenance
domain is provided in Reference [47]. Physics-based models were utilized to develop a
DT of a six-axis robot for predictive maintenance application in Reference [44], using a
combination of OpenModelica (for creating the machine model) and MATLAB (for data
processing). To extend the usage of a robotic cell’s design-phase digital model to production
phase, automatic processing time updating was implemented via a code in the robot’s
program in Reference [48] to obtain time stamps of the beginning and ending of a process.
The up-to-date DT was used for improving production planning. A DT model for gearbox
prognostics of a wind turbine was proposed in Reference [49]. In Reference [50], a DT model
of a robot’s gripper with three failure modes was developed for remote monitoring, fault
detection and diagnosis, and virtual commissioning. Processing variables were directly
estimated from sensor data, and the DT model was used to detect anomalies in the gripper.
The majority of these applications focus on single-equipment DT models.

A common DT modeling approach is to utilize an ontology model to describe the
properties and relationships of the virtual model, such as in Reference [51], where a
geometric ontology was used to create a DT model of a machined part. A reconfigurable
assembly line DT model that uses ontology to describe the properties of the virtual layer’s
five dimensions, namely geometric, rule, behavior, physical, and capability, was proposed
in Reference [52]. Many organizations, however, do not have ontologies, as most ontology
development approaches proposed in the literature have had very limited acceptability in
industry [22,23]. We propose mining fault events and their effects directly from qualitative
data sources, such as maintenance log data (or maintenance work order (MWO)), and
corrective and preventive action (CAPA) report in this work.

Applications involving DT models of complex assembly shop-floor are less common
in the literature because they are more challenging to construct than single-equipment DT
models. In Reference [53], the authors developed a DT model for a satellite assembly shop-
floor to fulfil smart production management and control. A multiscale (timescale and space
scale) modeling method was proposed in Reference [54] for satellite assembly, integration,
and test shop-floor modeling. For actualizing the DT model of a mine for maintenance
optimization of multiple equipment, co-simulation of DES model and system dynamic
cash-flow model was utilized in Reference [55] to study the influence of macroeconomic
variables on the long-term time-based maintenance policy. A DES model was used to model
the low-level interaction between equipment, while the cash-flow model was used to model
high-level managerial profitability decisions. In this study, we also used co-simulation,
where the equipment level was modeled using a simulator provided by the OEM, and the
system level was modeled using DES, a commercial software.

BN models have been applied to create DT models, such as in Reference [56], where a
non-parametric BN was used to model the health-state evolution process of the DT model
for complex health-system monitoring. In Reference [57], a BN was used to model the
decision system of the smart connection controller of a DT applied to telematics-based
driving assistance. A dynamic BN was utilized to realize a DT in Reference [58] for aircraft-
wing-health monitoring. To the best of the authors’ knowledge, despite the enormous
amount of research focusing on DT technology for modeling manufacturing systems, a DT
model is yet to be applied to train BN models for fault diagnostics.

Sensors 2022, 22, 1430 6 of 24

2.3. Data Extension

Data extension involves data augmentation/extension wherein an algorithm is used
to generate additional data from the available small dataset or independent of it. Data
generation has been effectively applied to improve ML model performance in cases with a
small dataset [32]. Generative adversarial networks (GANs) are widely used generative
models mostly in image-processing domain [59].

Other data-extension methods have also been proposed in the manufacturing domain,
such as the particle swarm optimization (PSO) based virtual sample generation (VSG)
method utilized to train forecasting models [60]. A VSG method based on Gaussian dis-
tribution was also used for training classification ML models in Reference [61], where the
generalization ability of the classifiers on the combined synthetic and original training
set outperformed that of the original training set only. The feasibility of using Kriging
and Radial Basis Function models to generate data for learning BN model parameters
was explored in Reference [32]. PSO was used to tune the parameter’s prior probabil-
ities, and the authors reported that generated data could increase the accuracy of the
trained networks.

2.4. Digital Model for Data Generation

A different perspective from data extension is to generate data from a simulation
model of the physical system. Given that running causal discovery experiments in real
manufacturing systems for fault diagnostics could result in safety issues, lost production
time, and damage to healthy equipment, leveraging their digital representation is a better
alternative [62]. Simulation models embed the behavior of the real system and, thus, can
be used to generate factory-like synthetic data for data analytics [16,17,63]. Data farming
is an ongoing research area that focuses on generating data from simulation models and
using data mining algorithms to uncover new knowledge from the generated data [64].
A general review of the use of DES model in conjunction with data analytics is presented
in Reference [65].

In a small job shop where limited factory data are available, synthetic data were gener-
ated in Reference [66], using a virtual factory prototype to train an artificial neural network
(ANN) model to predict the cycle time of incoming orders based on current shop-floor
conditions. The virtual factory prototype was further used to generate data [16] for com-
paring the performance of ANN and Gaussian process regression models in predicting the
cycle time of incoming orders. The ability to generate synthetic data from the virtual model
allowed for the evaluation of different factory conditions, as well as the implementation of
the model-selection step of ML training process before real data were available. To address
the challenge posed by insufficient and imbalanced fault data in constructing prognostics
models, Wang et al. [67] developed a DT model of an autoclave to generate fault data to
train a convolutional neural network to enhance fault prediction.

3. Digital Twin Development

We utilized a three-layer DT model framework consisting of a physical layer, virtual
layer, and data/information-processing layer, as shown in Figure 2. The physical layer
is the real physical system being modeled, while the virtual layer is a representation of
the physical system in virtual space. The data/information-processing layer entails how
data are processed and exchanged between the real system and virtual model. A DT
model intended to train a BN model for both factory- and machine-level fault diagnostics
application must include both factory-level and machine-level dynamics. That is, all the
diagnosis data types collected in the manufacturing system must be included.

Sensors 2022, 22, 1430 7 of 24
Sensors 2022, 22, x FOR PEER REVIEW 7 of 25

Figure 2. Three dimensions of the DT model.

3.1. Physical Layer

The physical space is a factory containing several production elements and

production processes. Production elements refer to all entities that fall under the 4M1E,

i.e., man, machine, material, method, and environment, while the production process

includes the interaction between the production elements, such as part routings,

equipment layout, and production logistics. The resolution of each element includes the

fault modes and their effect on each element and the manufacturing system as a whole.

3.2. Virtual Layer

The virtual layer is a virtual representation of the physical layer. It contains several

models representing all the key elements and processes in the physical layer, including

their system-level interaction as a manufacturing system. These virtual models are

constructed in terms of their geometry, physics, behavior, and rule. The geometric and

physical dimensions include the 3D CAD (computer aided design) model of the elements,

as well as their physical properties, such as material, weight, and so on. The behavior

dimension describes the operation dynamics logic of the element, while the rule defines

its constraints, including association and deduction rules.

3.3. Data/Information-Processing Layer

This layer handles the continuous bidirectional data/information transfer between

the physical layer and the virtual model, including the various data-processing

techniques, to keep the virtual layer up-to-date with the physical twin. For the DT to

support fault diagnostics at all levels, defect-occurrence events from quality management

system (QMS) data, failure events from computerized maintenance management system

(CMMS) data, and KPI data from enterprise resource planning (ERP) data, along with

other IoT sensor data, must be fed into the DT model. For text data types, structuring of

Physical Layer

Man

Machine

Material

Method

Environment

IoT Sensor

Virtual Layer

Geometry Model

Behavior modelPhysics Model

Rule model

Information Processing Layer

CMMS Data

i.e. MWO

QMS Data

i.e. CAPA

ERP Data i.e.

KPIs, Master
Schedule

IoT Data
Cloud

MES Data

i.e. Part
Dimensions

ML Techniques NLP Technique

Figure 2. Three dimensions of the DT model.

3.1. Physical Layer

The physical space is a factory containing several production elements and production
processes. Production elements refer to all entities that fall under the 4M1E, i.e., man,
machine, material, method, and environment, while the production process includes the
interaction between the production elements, such as part routings, equipment layout, and
production logistics. The resolution of each element includes the fault modes and their
effect on each element and the manufacturing system as a whole.

3.2. Virtual Layer

The virtual layer is a virtual representation of the physical layer. It contains several
models representing all the key elements and processes in the physical layer, including their
system-level interaction as a manufacturing system. These virtual models are constructed
in terms of their geometry, physics, behavior, and rule. The geometric and physical
dimensions include the 3D CAD (computer aided design) model of the elements, as well
as their physical properties, such as material, weight, and so on. The behavior dimension
describes the operation dynamics logic of the element, while the rule defines its constraints,
including association and deduction rules.

3.3. Data/Information-Processing Layer

This layer handles the continuous bidirectional data/information transfer between
the physical layer and the virtual model, including the various data-processing techniques,
to keep the virtual layer up-to-date with the physical twin. For the DT to support fault
diagnostics at all levels, defect-occurrence events from quality management system (QMS)
data, failure events from computerized maintenance management system (CMMS) data,
and KPI data from enterprise resource planning (ERP) data, along with other IoT sensor
data, must be fed into the DT model. For text data types, structuring of the raw data

Sensors 2022, 22, 1430 8 of 24

is required to obtain event data that can be modeled in the DT, i.e., failure modes and
their effects.

3.3.1. Qualitative Data Structuring Using Natural Language Processing

The raw text data, such as maintenance work order (MWO) from the CMMS database
and CAPA report from the QMS database, being human-generated text written in natural
language, oftentimes contain wrong spellings, abbreviations, and inconsistent terminology,
making it impossible to automatically feed into the DT model. We are proposing utilizing
the NLP algorithm proposed in Reference [68] to structure the data. The resulting structured
data are in the form of cause-and-effect relationship, along with the frequency of occurrence
of fault events, as well as repair time. The logic for each fault mode, as well as its effects, is
modeled in the digital model.

3.3.2. Automatic Estimation of Processing Time, Batch Loading Time, and Part Travel Time

To automatically estimate the cycle time of a process, we utilized the software time-
stamping approach used in Reference [48]. This cycle-time updating is implemented by
adding some software code to the beginning and end of a machine’s program to trigger
digital output signals when the program execution starts and ends. The time difference
between these signals is then used as an estimate of the processing time. Because these
signals are triggered in the equipment’s actual controller locally and only the results are
exported, it does not suffer from signal latency when compared to sending a signal via
TCP (transmission control protocol) to the edge computing device. Similarly, the batch
loading time is estimated by setting a signal to trigger at the end and start of a batch, such
that the time between signal activation is an estimation of the batch processing time (the
longer duration) and batch loading time. Two separate signals could be used for this, as
well, instead of a single signal. Lastly, setting up another digital output signal to track robot
part drop-off time versus when the part reaches the next processing station (tracked by
the proximity sensor) is a good estimate of part travel time between stations. This value
can either be zero (meaning that there are already parts waiting to be processed) or can be
some value which is the estimated travel time. This estimation works only when the time
to travel from one station to the other is shorter than the time it takes to process a part. That
way, the first part arrives at the subsequent station before the next part finishes processing.

3.3.3. Automatic Downtime Estimation

During the lifecycle of a machine, the failure characteristics might change, as new faults
not captured in historic data can occur. Therefore, to automatically update the equipment
downtime, we propose using vibration sensor data in conjunction with proximity sensor
data. Many industrial equipment, such as robots and CNC machines, vibrate when running.
Based on this, the vibration data can be used to determine whether or not the machine
is running via a classification or clustering ML algorithm. Because it is possible that the
machine is not running because it was not scheduled to produce parts, the production
schedule is factored into this estimation. Additionally, during normal production, to
account for the times that the machine is waiting for parts to process, the proximity sensor
data of incoming parts are used to estimate the starvation time of the machine. The equation
for estimating the downtime is as follows:

Downtime = TotalSensorDowntime− noProd− StarveTime (2)

where TotalSensorDowntime is the time duration when the equipment is not running,
estimated by using the vibration sensor data; noProd is the time duration when the machine
was not scheduled to be producing; and StarveTime is the amount of time during normal
production when the equipment is not producing because it is waiting for parts to process.

Although downtime information is also documented in maintenance log data and the
failure parameters, i.e., mean time to repair (MTTR) and mean time to failure (MTTF), can
be obtained from there, it is not uncommon to find errors in the date and time data [69,70].

Sensors 2022, 22, 1430 9 of 24

Having two different data sources for failure time can help to improve the confidence in the
failure time data in the case the estimates match, or allow for improving the data quality in
the case where discrepancies exist.

4. Bayesian Network Training Using Digital Twin

In this section, we propose methods to utilize the DT model developed in the previous
section for training BN models for diagnostics of multilevel faults.

4.1. Digital Twin Model for Structure Learning

Two methods are being proposed for DAG learning using DT. The first is using data-
driven DAG learning algorithms to learn the DAG from synthetic data generated from the
DT model, while the second method is to carryout intervention to learn the DAG in the
DT model.

4.1.1. Data Generation Using Digital Twin for DAG Learning

The first proposed approach is to use the DT model to generate data and apply any
BN heuristic search structure learning algorithm to learn the DAG from the generated data.
As we illustrate using the experimental test bed in Section 5, this method suffers from the
limitations of BN structure learning using observation data, which are only guaranteed to
identify the skeleton of the of the DAG at best [71].

4.1.2. Intervention Using Digital Twin for DAG Learning

The second approach entails applying structural intervention [14] to learn the DAG by
using the DT model. Structural intervention involves forcing the value of the intervened
variable to particular states and observing which other variables’ states change as a result
of this intervention. We propose a Structural Intervention Algorithm (SIA) consisting of
two steps: influence discovery step and parent-confirmation step. The pseudocode for
SIA is presented in Algorithm 1 below. In the influence discovery step, a single variable,
yi, is intervened upon, and if this intervention changes the state of any other variable(s)
yj, for j = 1 to n − 1, edge(s) are added between yi and each yj, pointing in the direc-
tion of yj, i.e., yi → yj . Following this, if there are potential indirect causes that have
edges between them, the parent-confirmation step is implemented by intervening on two
variables simultaneously to distinguish between a direct cause (parent) and an indirect
cause (ancestor).

Algorithm 1 Structural Intervention Algorithm

Given a variable set V with n variables
Initialize the edge set: E = { }
1. Influence Discovery step:

for each vi in V
intervene on vi

if the state of vj changes, where j 6= i,
add edge vi → vj to E

for each directed path vl → vl+1 → vl+2 → . . .→ vm in E
if there are any directed edges between vl → vl+2, . . .

Goto 2
2. Parent Confirmation step:

Simultaneously intervene on vl and vl+1 by fixing vl+1 and perturbing vl
if the state of vl+2 does not change

remove edge vl → vl+2
return G = (V, E)

To illustrate this, consider a BN whose correct DAG structure is shown in Figure 3c. If
we assume that intervening on y1 changes the states of y2, y3, and y4, then intervening on
y2 also changes the state of both y3 and y4; and, lastly, intervening on y3 changes the state

Sensors 2022, 22, 1430 10 of 24

of y4, resulting in the DAG presented in Figure 3a. There is a possibility that the influence
between y1 and y3 is through y2, meaning that y1 might be an ancestor of y3. Upon carrying
out the parent-confirmation step by simultaneously intervening on both y1 and y2, if the
states of y3 and y4 do not change, then y1 is conditionally independent of y3 given y2, and
the resulting DAG is shown in Figure 3b.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 25

 Simultaneously intervene on 𝑣𝑙 and 𝑣𝑙+1 by fixing 𝑣𝑙+1 and perturbing 𝑣𝑙

 if the state of 𝑣𝑙+2 does not change

 remove edge 𝑣𝑙 → 𝑣𝑙+2

return 𝐺 = (𝑉, 𝐸)

To illustrate this, consider a BN whose correct DAG structure is shown in Figure 3c.

If we assume that intervening on 𝑦1 changes the states of 𝑦2, 𝑦3, and 𝑦4, then intervening

on 𝑦2 also changes the state of both 𝑦3 and 𝑦4; and, lastly, intervening on 𝑦3 changes

the state of 𝑦4, resulting in the DAG presented in Figure 3a. There is a possibility that the

influence between 𝑦1 and 𝑦3 is through 𝑦2, meaning that 𝑦1 might be an ancestor of 𝑦3.

Upon carrying out the parent-confirmation step by simultaneously intervening on both

𝑦1 and 𝑦2, if the states of 𝑦3 and 𝑦4 do not change, then 𝑦1 is conditionally independent

of 𝑦3 given 𝑦2, and the resulting DAG is shown in Figure 3b.

Figure 3. Example of resulting DAG using intervention. (a) After implementing influence

discovering step. (b) After implementing parent-confirmation step for y1 and y2. (c) After

implementing parent-confirmation step for y2 and y3, as this is the correct DAG.

The number of interventions required depends on the number of variables involved,

the underlying structure of the network, and the sequence of implementing the

interventions. This exhaustive search approach which would have been very expensive

and time-consuming to carryout in a physical system, especially for BN with large number

of variables, is much easier to implement in a DT model. The number of required

interventions can also be reduced by incorporating other DAG learning methods, such as

expert elicitation or data-driven learning methods, to limit the interventions to only edges

with low confidence or some other criteria. Comparing SIA to pairwise DAG structure

search where a single variable at a time is intervened upon and the resulting effect on

another variable is observed, such as pairwise expert elicitation used in Reference [36],

SIA requires fewer steps to discover the DAG. For example, using pairwise search, all the

three DAGs in Figure 4a–c will require 20 steps to arrive at the correct DAG, while SIA

will take 5, 5, and 7 steps respectively. It should be emphasized that, here, the SIA exploits

the causal relationship between variables to implicitly prune the search space, as this can

be a significant advantage in learning larger BNs.

y1 y2

y4 y3

(b)

y1 y2

y4 y3

(a)

y1 y2

y4 y3

(c)

Figure 3. Example of resulting DAG using intervention. (a) After implementing influence discovering
step. (b) After implementing parent-confirmation step for y1 and y2. (c) After implementing parent-
confirmation step for y2 and y3, as this is the correct DAG.

The number of interventions required depends on the number of variables involved,
the underlying structure of the network, and the sequence of implementing the inter-
ventions. This exhaustive search approach which would have been very expensive and
time-consuming to carryout in a physical system, especially for BN with large number
of variables, is much easier to implement in a DT model. The number of required in-
terventions can also be reduced by incorporating other DAG learning methods, such as
expert elicitation or data-driven learning methods, to limit the interventions to only edges
with low confidence or some other criteria. Comparing SIA to pairwise DAG structure
search where a single variable at a time is intervened upon and the resulting effect on
another variable is observed, such as pairwise expert elicitation used in Reference [36],
SIA requires fewer steps to discover the DAG. For example, using pairwise search, all the
three DAGs in Figure 4a–c will require 20 steps to arrive at the correct DAG, while SIA will
take 5, 5, and 7 steps respectively. It should be emphasized that, here, the SIA exploits the
causal relationship between variables to implicitly prune the search space, as this can be a
significant advantage in learning larger BNs.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 25

 Simultaneously intervene on 𝑣𝑙 and 𝑣𝑙+1 by fixing 𝑣𝑙+1 and perturbing 𝑣𝑙

 if the state of 𝑣𝑙+2 does not change

 remove edge 𝑣𝑙 → 𝑣𝑙+2

return 𝐺 = (𝑉, 𝐸)

To illustrate this, consider a BN whose correct DAG structure is shown in Figure 3c.

If we assume that intervening on 𝑦1 changes the states of 𝑦2, 𝑦3, and 𝑦4, then intervening

on 𝑦2 also changes the state of both 𝑦3 and 𝑦4; and, lastly, intervening on 𝑦3 changes

the state of 𝑦4, resulting in the DAG presented in Figure 3a. There is a possibility that the

influence between 𝑦1 and 𝑦3 is through 𝑦2, meaning that 𝑦1 might be an ancestor of 𝑦3.

Upon carrying out the parent-confirmation step by simultaneously intervening on both

𝑦1 and 𝑦2, if the states of 𝑦3 and 𝑦4 do not change, then 𝑦1 is conditionally independent

of 𝑦3 given 𝑦2, and the resulting DAG is shown in Figure 3b.

Figure 3. Example of resulting DAG using intervention. (a) After implementing influence

discovering step. (b) After implementing parent-confirmation step for y1 and y2. (c) After

implementing parent-confirmation step for y2 and y3, as this is the correct DAG.

The number of interventions required depends on the number of variables involved,

the underlying structure of the network, and the sequence of implementing the

interventions. This exhaustive search approach which would have been very expensive

and time-consuming to carryout in a physical system, especially for BN with large number

of variables, is much easier to implement in a DT model. The number of required

interventions can also be reduced by incorporating other DAG learning methods, such as

expert elicitation or data-driven learning methods, to limit the interventions to only edges

with low confidence or some other criteria. Comparing SIA to pairwise DAG structure

search where a single variable at a time is intervened upon and the resulting effect on

another variable is observed, such as pairwise expert elicitation used in Reference [36],

SIA requires fewer steps to discover the DAG. For example, using pairwise search, all the

three DAGs in Figure 4a–c will require 20 steps to arrive at the correct DAG, while SIA

will take 5, 5, and 7 steps respectively. It should be emphasized that, here, the SIA exploits

the causal relationship between variables to implicitly prune the search space, as this can

be a significant advantage in learning larger BNs.

y1 y2

y4 y3

(b)

y1 y2

y4 y3

(a)

y1 y2

y4 y3

(c)

Figure 4. Example of common DAGs encountered in manufacturing domain used to compare
pairwise search to SIA. (a) DAG representing multiple component assembly. (b) DAG representing
distribution network. (c) DAG representing a combination of assembly and distribution.

4.2. Digital Twin Model for Parameter Learning

Following learning the DAG, any suitable parameter learning method, such as max-
imum likelihood estimation (MLE) or maximum a posteriori (MAP), can be used to fit
parameters (conditional probability table (CPT)) to the DAG by using data generated from
the DT model. DES models have the capability to generate data at specified sampling
interval during the simulation run, e.g., every 1 or 2 or 5 s or minute, etc. This interval
will depend on the frequency of occurrence that need to be captured in the data. Each

Sensors 2022, 22, 1430 11 of 24

instance (row) of the generated data will contain information about the current value/state
of variables/events/objects of interest, e.g., whether or not a particular fault is currently
active on a simulation object, the current value of KPIs, the current time, and so on.

5. Experimental Test Bed

To validate the proposed co-simulation and BN training approaches, an experimental
robotic assembly line was set up in the laboratory. The assembly line consisted of four
industrial ABB IRB 140 robots with IRC5 Single controllers arranged serially and was used
to assemble 3D-printed interlocking plastic bricks. An industrial two-axis vibration sensor,
incorporated with a temperature sensor, and with a sampling rate of 24 kHz programmed
to sample every minute, was magnetically attached to axis two of each robot. The vibration
data were uploaded directly to the cloud. The interlocking brick assembly consists of
a base-brick onto which four other smaller bricks (top-bricks) are attached. Each robot
attaches one top-brick onto the base-brick, making four total top-bricks per base-brick. To
convey the parts from one robot station to the other, plastic U-channels inclined at an angle
such that parts slide on freely were utilized and are here referred to as the slide rail. There
are three U-channels in total. Proximity sensors wired directly into the digital input of the
robot controllers were installed at the end of each U-channel to sense when an incoming
part is available for pickup.

The experimental robotic assembly line is shown in Figure 5. The assembly process
begins with a setup process of manually loading parts into fixtures positioned in each
robot’s station. A batch of 20 top-bricks and 20 base-bricks are loaded in Robot Station 1
while 20 top-bricks each are loaded in the other robot stations. At the start of assembling,
Robot 1 picks up a top-brick, places it on a base-brick, followed by picking the subassembly
(base-brick with 1 top-brick attached) and placing it on the elevated end of the first U-
channel. The partial assembly then slides down the U-channel under gravity to Robot 2
station. Once the subassembly arrives Robot Station 2, the proximity sensor is triggered,
and this signals Robot 2 to go pick up the subassembly from the end of U-Channel 1. The
subassembly is then placed in a fixture in Robot 2’s station, followed by the robot (Robot 2)
fixing a top-brick to the appropriate location of the subassembly. Once assembled, the
subassembly is sent to Robot Station 3, where a third top-brick is added before finally being
sent to Robot Station 4. Robot 4 attaches the last (fourth) top-brick to complete the assembly
process, and the fully assembled part is placed in a box. A detailed view of a robot showing
attached sensors and samples of ten parts at different states of assembly are presented in
Figure 6. The robot stations are reloaded with parts when they run out, and the assembly is
run on a continuous basis.

The fault modes considered in this experiment are presented in Table 1. These few
faults were selected based on the limitation that the robots are all healthy and cannot be
damaged for the purpose of experimenting. They are relatively expensive equipment and
are also used for other teaching and experimental purposes; thus, the faults are limited to
those that can be readily simulated without causing actual damage to the robots. The parts
being assembled are 3D-printed plastic parts, which are inexpensive, and intentionally
defective parts can be readily fabricated. Quality inspection is carried out at each robot
cell, and only correctly assembled parts are passed on to the next robot. The system-level
performance of the robots was evaluated by their individual OEE metric, while the overall
performance of the assembly line was measured by the production throughput (TH). The
target TH is 70 parts per 2-h shift, and the processing time of one part is about 75.6 s
on average.

Sensors 2022, 22, 1430 12 of 24
Sensors 2022, 22, x FOR PEER REVIEW 12 of 25

Figure 5. Physical experimental robotic assembly line setup showing the four robots.

(a) (b)

Figure 6. (a) Detailed view of a robot station. (b) Ten sample assembly parts, 5 on the left and 5 on

the right, at various assembly states starting from empty assembly on top (base-brick only), followed

by base-brick with one top-brick attached, base-brick with two top-bricks attached, and up to fully

assembled at the bottom of the picture.

The fault modes considered in this experiment are presented in Table 1. These few

faults were selected based on the limitation that the robots are all healthy and cannot be

damaged for the purpose of experimenting. They are relatively expensive equipment and

are also used for other teaching and experimental purposes; thus, the faults are limited to

those that can be readily simulated without causing actual damage to the robots. The parts

being assembled are 3D-printed plastic parts, which are inexpensive, and intentionally

defective parts can be readily fabricated. Quality inspection is carried out at each robot

cell, and only correctly assembled parts are passed on to the next robot. The system-level

performance of the robots was evaluated by their individual OEE metric, while the overall

performance of the assembly line was measured by the production throughput (TH). The

Vibration and
temperature
sensor

U-channel with
parts waiting to
be assembled

Top part inventory
holding and part
assembly fixture

Proximity
Sensor

Figure 5. Physical experimental robotic assembly line setup showing the four robots.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 25

Figure 5. Physical experimental robotic assembly line setup showing the four robots.

(a) (b)

Figure 6. (a) Detailed view of a robot station. (b) Ten sample assembly parts, 5 on the left and 5 on

the right, at various assembly states starting from empty assembly on top (base-brick only), followed

by base-brick with one top-brick attached, base-brick with two top-bricks attached, and up to fully

assembled at the bottom of the picture.

The fault modes considered in this experiment are presented in Table 1. These few

faults were selected based on the limitation that the robots are all healthy and cannot be

damaged for the purpose of experimenting. They are relatively expensive equipment and

are also used for other teaching and experimental purposes; thus, the faults are limited to

those that can be readily simulated without causing actual damage to the robots. The parts

being assembled are 3D-printed plastic parts, which are inexpensive, and intentionally

defective parts can be readily fabricated. Quality inspection is carried out at each robot

cell, and only correctly assembled parts are passed on to the next robot. The system-level

performance of the robots was evaluated by their individual OEE metric, while the overall

performance of the assembly line was measured by the production throughput (TH). The

Vibration and
temperature
sensor

U-channel with
parts waiting to
be assembled

Top part inventory
holding and part
assembly fixture

Proximity
Sensor

Figure 6. (a) Detailed view of a robot station. (b) Ten sample assembly parts, 5 on the left and 5 on
the right, at various assembly states starting from empty assembly on top (base-brick only), followed
by base-brick with one top-brick attached, base-brick with two top-bricks attached, and up to fully
assembled at the bottom of the picture.

Table 1. Robotic assembly-line faults.

Part Defect Type Quality Category Failure Implementation

Part (Top-Brick) Dimension Out of
Specification (PDOS) Quality Fault Print top-brick with

out-of-specification dimensions
Incorrect Part (Top-Brick)

Placement (IPP) Quality Fault Place top-brick such that it does not
completely fit inside fixture

Parts (top-brick) out of
Stock (POOS) Quality Fault Remove top-brick from the part fixture

Sensors 2022, 22, 1430 13 of 24

Table 1. Cont.

Machine Failure Event Category Failure Implementation

Compressed Air Fault (CAF) Machine Fault Turn off the compressed air supply
switch to the robot

Controller Fault (CF) Machine Fault Stop the robot program

Low Performance (LP) Machine Fault Reduce the speed of the robot
in the program

5.1. Digital Twin Development

The DT model was implemented by using co-simulation of Simio DES software and
RobotStudio simulator (ABB Robot OEM software). A schematic of the co-simulation
approach with the data exchange and processing is shown in Figure 7. The unit-level
model for each individual robot was created in RobotStudio, which interfaces directly
with the physical robots’ controllers to form a cyber–physical system (CPS) and supports
bidirectional data exchange. Data collected from the robot controller include robot tool-
position data, proximity sensor data, and values of the digital output signals specified in the
robot’s RAPID code. RobotStudio was also used for process-level offline simulations and
generation of the robot’s RAPID program at the process-design stage, and also as a feedback
mechanism for updating the robot’s program during production. RobotStudio simulator
software is exactly the same as the software in the physical robot’s controller and, thus, can
mimic its exact behavior. Sensor and qualitative data were collected during the run. The
qualitative data were generated every time a fault event occurred by manually documenting
the fault name, as well as its resulting effect. The system-level modeling, which involves
the interaction between all robots as an assembly line, was modeled in Simio. All process-
level data were used as input to the DES model in the form of events, their characteristics
(i.e., failure events and their effects), and process parameter distribution estimates.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 25

Figure 7. Schematic of co-simulation approach to actualize the DT model showing data-processing

techniques used and communication between physical and virtual objects.

A screenshot of the 2D view of the robotic assembly line DT model in Simio DES software

is presented in Figure 8. Each robot is modeled using a Simio server object and has a Simio

source object connected to it that supplies it top-bricks and a sink object where defective

assemblies are routed. Robot 1 has an additional source for base bricks, while Robot 4 has an

additional sink where fully assembled parts are routed to.

Figure 8. Two-dimensional view of the experimental robotic assembly line digital twin model in

Simio.

Virtual Layer

Physical Layer (ABB Robots)

Information Processing Layer

Events and process

parameters i.e. fault

events and their

characteristics,

processing times,

part travel times,

etc.

RobotStudio (ABB Robot

OEM software)

Simulator for equipment

level simulation and Cyber

Physical System enabler

Simio

Discrete Event

Simulation software

for factory level

simulation

Decision i.e.

Update Robot’s

Rapid code to

reduce or increase

robot speed, etc.

Vibration

Sensor
Data

Fault modes and

their effects, along

with time between

occurrences and

mean duration

K-means ML

Algorithm

NLP human-in-the-

loop data tagging
Maintenance

log data

Data from the robot controller i.e. Robot position

data, signals data, proximity sensor data, etc.

Feedback to Robot i.e. Updated

robot rapid program code

Time Computation

Figure 7. Schematic of co-simulation approach to actualize the DT model showing data-processing
techniques used and communication between physical and virtual objects.

Sensors 2022, 22, 1430 14 of 24

A screenshot of the 2D view of the robotic assembly line DT model in Simio DES
software is presented in Figure 8. Each robot is modeled using a Simio server object and
has a Simio source object connected to it that supplies it top-bricks and a sink object where
defective assemblies are routed. Robot 1 has an additional source for base bricks, while
Robot 4 has an additional sink where fully assembled parts are routed to.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 25

Figure 7. Schematic of co-simulation approach to actualize the DT model showing data-processing

techniques used and communication between physical and virtual objects.

A screenshot of the 2D view of the robotic assembly line DT model in Simio DES software

is presented in Figure 8. Each robot is modeled using a Simio server object and has a Simio

source object connected to it that supplies it top-bricks and a sink object where defective

assemblies are routed. Robot 1 has an additional source for base bricks, while Robot 4 has an

additional sink where fully assembled parts are routed to.

Figure 8. Two-dimensional view of the experimental robotic assembly line digital twin model in

Simio.

Virtual Layer

Physical Layer (ABB Robots)

Information Processing Layer

Events and process

parameters i.e. fault

events and their

characteristics,

processing times,

part travel times,

etc.

RobotStudio (ABB Robot

OEM software)

Simulator for equipment

level simulation and Cyber

Physical System enabler

Simio

Discrete Event

Simulation software

for factory level

simulation

Decision i.e.

Update Robot’s

Rapid code to

reduce or increase

robot speed, etc.

Vibration

Sensor
Data

Fault modes and

their effects, along

with time between

occurrences and

mean duration

K-means ML

Algorithm

NLP human-in-the-

loop data tagging
Maintenance

log data

Data from the robot controller i.e. Robot position

data, signals data, proximity sensor data, etc.

Feedback to Robot i.e. Updated

robot rapid program code

Time Computation

Figure 8. Two-dimensional view of the experimental robotic assembly line digital twin model in Simio.

5.1.1. Qualitative Data Analytics

Failure modes were extracted from the CAPA and MWO data, both of which are
written in natural language. This manual documentation method by human operators
usually introduces some errors, such as abbreviations, misspellings, and missing data.
Moreover, the natural language format includes many irrelevant words and, thus, needs
to be converted to a structured format. The NLP technique proposed in Reference [68]
was utilized to structure the data to convert them to an easy-to-process cause-and-effect
format. An example of two fault incidents entries is presented in Table 2, showing the raw
format followed by the structured format. The NLP technique was first used to extract
the keywords from the text and the misspellings corrected. Finally, a preferred label was
added to identify common events that were documented using different words, such as
the incidents in Table 2. The structured incidents were then modeled as events in the DT
model, such as “controller_fault”, an event that causes the robot to be down. The downtime
duration was also estimated from the data by subtracting the date and time recorded in the
“Date Opened” field from that documented in the “Resolution Date” field. For log entries
with missing dates, the downtime was estimated by using the vibration sensor data instead,
such as for INC002 in Table 2. The MWO data are connected live to the DT, such that new
events can be continuously updated in the DT.

Table 2. Example of two maintenance log failure incidents in both raw and structured formats.

Input Field Raw Data Structured
Data Raw Data Structured

Data

Incident ID INC001 INC001 INC002 INC002

Asset ID Rob001 Rob001 Rob001 Rob001

Equipment Name Robot 1 Robot 1 Robot 1 Robot 1

Date Opened 31 March 2021
10:41AM

31 March 2021
10:41AM

1 April 2021
04:21PM

1 April 2021
04:21PM

Problem Description The robot is not
turnin on. robot_is_down Robot will not

switch on robot_is_down

Sensors 2022, 22, 1430 15 of 24

Table 2. Cont.

Input Field Raw Data Structured
Data Raw Data Structured

Data

Resolution Status Closed Closed Closed Closed

Resolution Notes Robot controller
is fualty. controller_fault Controller is

not booting. controller_fault

Resolution Date 31 March 2021
11:41AM

31 March 2021
11:41AM

5.1.2. Automatic Estimation of Cycle Time, Part Restocking Time, and Part Travel Time

The sensor data were used to automatically estimate cycle time, time to restock parts
onto the robot fixture, the time for a part to travel from one robot cell to the other, and
lastly the downtime of each machine. All of these estimations (except for the downtime
estimation) were carried out by inserting code to activate a signal at specific locations in
the robots’ RAPID program. RobotStudio software’s signal analyzer was used to collect
the digital output signals used for these calculations. To implement the automatic process
time update, a digital output signal of the robot was programmed to turn on for 1 s at the
beginning and end of the robot RAPID program. The output data contain the value of
the signal (0 or 1) and the corresponding time when the value was logged. The estimated
processing time was obtained by subtracting the end time stamp from the beginning time
stamp. This processing time was highly repeatable, because the robot programs always end
and start in the home position and were more accurate (had less variance) than the values
obtained by using a stopwatch. The part restocking time estimation was implemented by
setting another digital output signal to turn on for 1 s at the end of the batch, as well as at
the beginning of the batch. The time between this signal coming on (having a value of 1) is
used as the estimate for the load time (the shorter time duration) and batch time (the longer
time duration). These estimates are the natural parameter estimates, i.e., when the robots
were healthy, and downtimes will inflate their values.

Similarly, the part travel time between stations was estimated by setting a digital
output signal to turn on for 1 s when a robot opens its jaw to drop a part on the U-channel
rail. Provided that the U-channel is empty and has no parts on it, the difference between
the time the U-channel’s proximity switch activates and the time the robot’s jaw closed
is an estimate of the part travel time between robot stations. This estimation only works
out when the U-channel is empty, i.e., when there are no parts queuing between stations.
Moreover, this estimation is only possible because the distance between the stations are
short, such that the time to process a part is much less than the time it takes to travel
between stations. Whenever there is a queue between stations, the signal for the jaw-
opening time stamp and the proximity sensor will both be active at the same time, and the
difference will be zero. This provides a way of checking the validity of the estimate.

5.1.3. Automatic Estimation of Downtime

An automatic estimation of the downtime from the vibration sensor data was im-
plemented using K-means clustering, an unsupervised ML algorithm implemented in a
semi-supervised manner. K-means partitions the data into k mutually exclusive clusters [72].
Euclidean distance was used as the clustering distance metric. The vibration sensor data
were clustered into two groups to represent the high-vibration versus low-vibration states,
where the low-vibration state corresponds to when the machine is off and the relatively
high vibration corresponds to the machine-on state. The data cover a period when the
robots are in a healthy state (no known underlying faults); thus, an increase in vibration,
in this case, is only due to the robot being in use. The sensors used are industrial-grade
accelerometer programmed to collect data every minute at 24 kHz sampling frequency. The
per-minute sampling time is set by the sensor OEM and cannot be changed. This means

Sensors 2022, 22, 1430 16 of 24

that the resolution of the output time is 1 min, which is not a problem, as downtimes are
usually in hours or days.

A simple illustration of automatic downtime estimation using an hour of vibration
data is presented in Figure 9. A plot of the raw x-axis and y-axis peak vibration velocity
data is shown in Figure 9a, while the clustering result of the raw data is shown in Figure 9b,
where Clusters 1 and 2 correspond to low- and high-vibration states, respectively. From
the graph, we can see that production began at the 28th min mark and ended at the 47th
min mark, with some periods of starvation in between. Using the clustering data, the Total
Sensor Downtime can be estimated as 50 min. An estimation of the starvation time from
the proximity sensor data is 10 min. The total estimated downtime from using Equation (2)
is 40 min. The recorded downtime using a stop watch was 39.4 min. When rounded up to
the nearest minute, the results are the same.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 25

(a) (b)

Figure 9. One hour of raw vibration sensor data and the resulting clusters after clustering for

automatic estimation of downtime for a single robot: (a) x-axis and y-axis peak vibration velocity;

(b) resulting clusters from applying clustering algorithm to the raw vibration data in (a), where

clusters 1 and 2 correspond to low (off state) and high (on state) vibration states, respectively.

An automatic update of downtime can be useful in some cases where the resolution

date is missing in the maintenance log data, such as in INC002 in Table 2. The time stamps

of the vibration data and the date maintenance log incident was opened can be matched

to determine when the robot was back up running. In Figure 9, the zero time, which is the

time the robot entered a downtime state, corresponds to the time INC002 was opened,

which is 4:21 p.m. (see Date Opened row in Table 2). Using Figure 9, we see that the

estimate of the missing resolution date is 28 min after the incident was opened, resulting

in a resolution date of 4:49 p.m.

5.2. Digital Twin Validation

To ensure that the robotic assembly DT model accurately represents its physical twin,

several verification and validation approaches were utilized. The equipment-level model

using the RobotStudio ABB robot simulator contains the same software as the physical

ABB robots, so the equipment-level dynamics are the same in a healthy robot state. We,

thus, focus the validation on the factory-level model in Simio, which also models the robot

faulty states. We start by visually verifying the simulation by watching it run to ensure

the logic is implementing correctly. The model was then validated by comparing its

output data to that of the physical assembly line. Because fault events occur randomly,

OEE and cell part throughput data from 100 runs were compared to see if there is

statistically significant difference between their means at a 95% confidence level. The null

hypothesis is that the true difference in means is equal to zero for each KPI. From the two-

sample t-test results presented in Table 3, the p-values are all greater than 0.05, meaning

that there is no statistically significant difference between the means of the KPIs obtained

from the DT model versus the physical assembly line.

Table 3. Two-sample t-test results at 95% confidence level for difference in means of KPIs obtained

from digital twin model and physical twin for model validation.

KPI
Mean for Digital Twin

Model

Mean for Physical

Assembly Line
p-Value

Robot 1 OEE 0.9441 0.9345 0.9206

Robot 2 OEE 0.9112 0.9123 0.9247

Robot 3 OEE 0.9115 0.9110 0.9992

Robot 4 OEE 0.9087 0.9099 0.8736

Cell Throughput 101.171 101.209 0.8769

Figure 9. One hour of raw vibration sensor data and the resulting clusters after clustering for
automatic estimation of downtime for a single robot: (a) x-axis and y-axis peak vibration velocity;
(b) resulting clusters from applying clustering algorithm to the raw vibration data in (a), where
clusters 1 and 2 correspond to low (off state) and high (on state) vibration states, respectively.

An automatic update of downtime can be useful in some cases where the resolution
date is missing in the maintenance log data, such as in INC002 in Table 2. The time stamps
of the vibration data and the date maintenance log incident was opened can be matched
to determine when the robot was back up running. In Figure 9, the zero time, which is
the time the robot entered a downtime state, corresponds to the time INC002 was opened,
which is 4:21 p.m. (see Date Opened row in Table 2). Using Figure 9, we see that the
estimate of the missing resolution date is 28 min after the incident was opened, resulting in
a resolution date of 4:49 p.m.

5.2. Digital Twin Validation

To ensure that the robotic assembly DT model accurately represents its physical twin,
several verification and validation approaches were utilized. The equipment-level model
using the RobotStudio ABB robot simulator contains the same software as the physical
ABB robots, so the equipment-level dynamics are the same in a healthy robot state. We,
thus, focus the validation on the factory-level model in Simio, which also models the robot
faulty states. We start by visually verifying the simulation by watching it run to ensure the
logic is implementing correctly. The model was then validated by comparing its output
data to that of the physical assembly line. Because fault events occur randomly, OEE
and cell part throughput data from 100 runs were compared to see if there is statistically
significant difference between their means at a 95% confidence level. The null hypothesis is
that the true difference in means is equal to zero for each KPI. From the two-sample t-test
results presented in Table 3, the p-values are all greater than 0.05, meaning that there is

Sensors 2022, 22, 1430 17 of 24

no statistically significant difference between the means of the KPIs obtained from the DT
model versus the physical assembly line.

Table 3. Two-sample t-test results at 95% confidence level for difference in means of KPIs obtained
from digital twin model and physical twin for model validation.

KPI Mean for Digital
Twin Model

Mean for Physical
Assembly Line p-Value

Robot 1 OEE 0.9441 0.9345 0.9206
Robot 2 OEE 0.9112 0.9123 0.9247
Robot 3 OEE 0.9115 0.9110 0.9992
Robot 4 OEE 0.9087 0.9099 0.8736

Cell Throughput 101.171 101.209 0.8769

5.3. Bayesian Network Training
5.3.1. Structure Learning

The first step in the BN training was to carry out an experiment on the real robot
assembly line to determine the ground truth DAG, using the proposed SIA. The values of
the two KPIs (OEE and TH) for the system-level faults were discretized according to the
levels in Table 4, and the states of all equipment faults are binary, i.e., active or not active.
Because fault nodes trigger upper-level faults, the experimentation began by activating
each fault node and observing the values of the other variables in the model. For instance,
activating the R1_POOS (Robot 1 parts out of stock) fault was implemented by removing
top-bricks from the robot’s fixture, resulting in a defective assembly (the robot did not
recognize that there were no top-bricks, so it kept on assembling defective parts). This, in
turn, reduced the OEE value of Robot 1 (R1_OEE), due to the reduction in the number of
good parts produced. Correspondingly, the states of Robot 2 OEE (R2_OEE), Robot 3 OEE
(R3_OEE), Robot 4 OEE (R4_OEE), and TH also changed.

Table 4. Throughput and OEE KPIs discretization levels.

KPI Low (L) Typical (TP) World Class (WC)

OEE Low ≤ 0.4 0.4 < TP < 0.85 WC ≥ 0.85
Throughput (TH) LTH ≤ 60 60 < TPTH < 80 WCTH ≥ 80

Once all of Robot 1’s faults were intervened upon, R1_OEE was intervened upon
next. Because R1_OEE is a system-level fault, its value cannot be changed directly, but
the underlying causes of quality, availability, or performance can be altered. Because of
edges R1_POOS to R1_OEE, R1_POOS to R2_OEE, and R1_OEE to R2_OEE, a second
parent-confirmation intervention step was required to verify if R1_POOS is a direct parent
of R2_OEE. The second intervention was carried out by clamping the values of R1_POOS
and R1_OEE at the same time, and observing if both variables still influence R2_OEE.
Physically, a condition exists where R1_POOS can be made conditionally independent of
R2_OEE. This condition can be implemented by feeding assembled parts to Robot 1, such
that, despite being in a “parts out of stock” state, the output is still high. Viewing this from
the Markov assumption perspective, if we observe the value of R1_OEE, we can predict
the states of R2_OEE, meaning that observing R1_OEE blocks the path from R1_POOS to
R2_OEE. Therefore, the path from R1_POOS to R2_OEE does not exist and is removed.
After completing the intervention on all variables using the physical robot assembly line,
the resulting DAG is presented in Figure 10. From the DAG, it can be seen that the effect
of each robot fault is local (does not extend to other robots). Next, the intervention was
carried out by using the DT model instead and the resulting DAG matched exactly the one
obtained from intervention on the real physical robots, verifying our hypothesis that a DT
model can be used to learn the correct DAG structure of a BN via experimentation.

Sensors 2022, 22, 1430 18 of 24Sensors 2022, 22, x FOR PEER REVIEW 19 of 25

Figure 10. BN DAG learned from intervention on the physical experimental robotic assembly line,

where R1, R2, R3, and R4 correspond to Robots 1, 2, 3, and 4 respectively. The fault acronyms are as

presented in Table 1.

Table 5. Comparison of heuristic search structure learning algorithms, using SHD value. Lower

SHD value is better.

 Score-Based Algorithm Constraint-Based Algorithms

Data Hill Climb Tabu Search Grow–Shrink PC

Small dataset from

physical line (100 Rows)

45 45 23 23

Data generated from

digital twin (10,000 rows)

55 55 13 21

To evaluate the effect of sample size on the accuracy of the DAG, the data generated

from the DT model were used to plot a data size versus SHD value. A subset of the whole

data (a total of 10,000) was randomly sampled, starting with 200 rows and in increments

of 200 until all the data were sampled. The Grow–Shrink algorithm was used in this

analysis, because it performed the best out of all the data-driven algorithms tested.

Because the subset was randomly sampled from the whole dataset, the resulting DAG will

vary each time, depending on which particular data points were selected. Thus, 20

different samples were randomly drawn per data size, and the average, minimum, and

maximum SHD values were computed. As it can be observed in Figure 11, the average

SHD value reduces as the data size increases.

Figure 11. Effect of data size on the DAG obtained by using Grow–Shrink heuristic search BN

learning method.

R4
OEE

R4
POOS

R4
IPP

R4
CAF

R4
PDOS

R4
LP

R4
CF

R1
OEE

R1
POOS

R1
IPP

R1
CAF

R1
PDOS

R1
LP

R1
CF

R2
OEE

R2
POOS

R2
IPP

R2
CAF

R2
PDOS

R2
LP

R2
CF

R3
OEE

R3
POOS

R3
IPP

R3
CAF

R3
PDOS

R3
LP

R3
CF

TH

Figure 10. BN DAG learned from intervention on the physical experimental robotic assembly line,
where R1, R2, R3, and R4 correspond to Robots 1, 2, 3, and 4 respectively. The fault acronyms are as
presented in Table 1.

To evaluate the performance of data-driven structure learning methods, 10,000 rows
of sample data were generated from the DT model. The total sample size of data collected
from the real system is about 100 rows of data, and this is very small. The BN models were
created by using the bnlearn package [28] in R. Several data-driven learning algorithms
were implemented, and their accuracy was compared by using structural hamming distance
(SHD) metric, as shown in Table 5. SHD is a non-negative metric that counts the number
of arcs that are different between the estimated DAG and the true DAG. Smaller values
indicate a learned DAG with only a few incorrect edges, and a value of zero indicates
that the learned DAG is the same as the true DAG. The Grow–Shrink constraint-based
algorithm had the lowest SHD value of 13, and none of the methods was able to reproduce
the correct DAG. This confirms the already-known limitation of heuristic search methods.

Table 5. Comparison of heuristic search structure learning algorithms, using SHD value. Lower SHD
value is better.

Score-Based Algorithm Constraint-Based Algorithms

Data Hill Climb Tabu Search Grow–Shrink PC

Small dataset from physical
line (100 Rows) 45 45 23 23

Data generated from digital
twin (10,000 rows) 55 55 13 21

To evaluate the effect of sample size on the accuracy of the DAG, the data generated
from the DT model were used to plot a data size versus SHD value. A subset of the whole
data (a total of 10,000) was randomly sampled, starting with 200 rows and in increments of
200 until all the data were sampled. The Grow–Shrink algorithm was used in this analysis,
because it performed the best out of all the data-driven algorithms tested. Because the
subset was randomly sampled from the whole dataset, the resulting DAG will vary each
time, depending on which particular data points were selected. Thus, 20 different samples
were randomly drawn per data size, and the average, minimum, and maximum SHD
values were computed. As it can be observed in Figure 11, the average SHD value reduces
as the data size increases.

Sensors 2022, 22, 1430 19 of 24

Sensors 2022, 22, x FOR PEER REVIEW 19 of 25

Figure 10. BN DAG learned from intervention on the physical experimental robotic assembly line,

where R1, R2, R3, and R4 correspond to Robots 1, 2, 3, and 4 respectively. The fault acronyms are as

presented in Table 1.

Table 5. Comparison of heuristic search structure learning algorithms, using SHD value. Lower

SHD value is better.

 Score-Based Algorithm Constraint-Based Algorithms

Data Hill Climb Tabu Search Grow–Shrink PC

Small dataset from

physical line (100 Rows)

45 45 23 23

Data generated from

digital twin (10,000 rows)

55 55 13 21

To evaluate the effect of sample size on the accuracy of the DAG, the data generated

from the DT model were used to plot a data size versus SHD value. A subset of the whole

data (a total of 10,000) was randomly sampled, starting with 200 rows and in increments

of 200 until all the data were sampled. The Grow–Shrink algorithm was used in this

analysis, because it performed the best out of all the data-driven algorithms tested.

Because the subset was randomly sampled from the whole dataset, the resulting DAG will

vary each time, depending on which particular data points were selected. Thus, 20

different samples were randomly drawn per data size, and the average, minimum, and

maximum SHD values were computed. As it can be observed in Figure 11, the average

SHD value reduces as the data size increases.

Figure 11. Effect of data size on the DAG obtained by using Grow–Shrink heuristic search BN

learning method.

R4
OEE

R4
POOS

R4
IPP

R4
CAF

R4
PDOS

R4
LP

R4
CF

R1
OEE

R1
POOS

R1
IPP

R1
CAF

R1
PDOS

R1
LP

R1
CF

R2
OEE

R2
POOS

R2
IPP

R2
CAF

R2
PDOS

R2
LP

R2
CF

R3
OEE

R3
POOS

R3
IPP

R3
CAF

R3
PDOS

R3
LP

R3
CF

TH

Figure 11. Effect of data size on the DAG obtained by using Grow–Shrink heuristic search BN
learning method.

5.3.2. Parameter Learning

Lastly, MLE was used to fit parameters to the learned DAG. Due to size limitation, a
partial view of the BN DAG structure and CPT is presented in Figure 12, showing only
Robot 4 OEE node and its parents and child. Using the BN model, we can compute
the probabilities of events conditioned on other events. For example, the probability of
observing WC throughput, given that controller fault is active in Robot 4, is 0.605. The
probability of the same event, given that controller fault is active in Robot 3 instead,
is 0.695, and the probability increases to 0.744, given that the controller fault is active
in Robot 1. This progressive increase in probability is a result of how the impact of
upstream machine on a downstream machine can progressively reduce in a serial line.
Likewise, the probability of observing typical OEE in Robot 4, given that R1_CAF is
active—that is, Pr(R4_OEE = TP|R1CAF = Yes)—is 0.446, while the probability of the
reverse (i.e., Pr(R1_CAF = Yes|R4_OEE = TP) is 0.066.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 25

5.3.2. Parameter Learning

Lastly, MLE was used to fit parameters to the learned DAG. Due to size limitation, a

partial view of the BN DAG structure and CPT is presented in Figure 12, showing only

Robot 4 OEE node and its parents and child. Using the BN model, we can compute the

probabilities of events conditioned on other events. For example, the probability of

observing WC throughput, given that controller fault is active in Robot 4, is 0.605. The

probability of the same event, given that controller fault is active in Robot 3 instead, is

0.695, and the probability increases to 0.744, given that the controller fault is active in

Robot 1. This progressive increase in probability is a result of how the impact of upstream

machine on a downstream machine can progressively reduce in a serial line. Likewise, the

probability of observing typical OEE in Robot 4, given that R1_CAF is active—that is,

𝑃𝑟(𝑅4_𝑂𝐸𝐸 = 𝑇𝑃|𝑅1𝐶𝐴𝐹 = 𝑌𝑒𝑠)—is 0.446, while the probability of the reverse (i.e.,

𝑃𝑟(𝑅1_𝐶𝐴𝐹 = 𝑌𝑒𝑠|𝑅4_𝑂𝐸𝐸 = 𝑇𝑃) is 0.066.

Figure 12. BN DAG and CPT showing Robot 4 OEE node, its parents, and child.

To evaluate the effect of the DT model’s accuracy on the BN model learned by using

it, the DT model’s faults’ MTTF parameters were varied, and synthetic data were

generated (see Table 6). Experiment 2 is the baseline model, and the other experiments

involve reducing or increasing the exponentially distributed MTTF parameter. Ten

thousand rows of data were generated for each experiment, and the data were used to

train a BN model by using the Grow–Shrink heuristic search method. From the result, it

can be seen that reducing the time to failure (Experiment 1) resulted in a better BN

structure (lower SHD score) and increasing it resulted in a worse BN structure

(Experiments 3 and 4). This is not surprising, as reducing the time to failure increases the

fault occurrence frequency, thus increasing the balance of the data’s healthy class versus

faulty class. However, learning the BN DAG by using our SIA is not affected by the failure

frequency. In the case of the parameters learned, the Kullback–Leibler (KL) divergent

score was used to evaluate the accuracy. A lower KL score is better, and a value of zero

means that the parameters are the same as that of the baseline. From the KL result,

changing the MTTF changes the learned parameters, but further studies are needed to

qualify its sensitivity to the DT model’s parameters.

Figure 12. BN DAG and CPT showing Robot 4 OEE node, its parents, and child.

Sensors 2022, 22, 1430 20 of 24

To evaluate the effect of the DT model’s accuracy on the BN model learned by using it,
the DT model’s faults’ MTTF parameters were varied, and synthetic data were generated
(see Table 6). Experiment 2 is the baseline model, and the other experiments involve
reducing or increasing the exponentially distributed MTTF parameter. Ten thousand rows
of data were generated for each experiment, and the data were used to train a BN model
by using the Grow–Shrink heuristic search method. From the result, it can be seen that
reducing the time to failure (Experiment 1) resulted in a better BN structure (lower SHD
score) and increasing it resulted in a worse BN structure (Experiments 3 and 4). This is not
surprising, as reducing the time to failure increases the fault occurrence frequency, thus
increasing the balance of the data’s healthy class versus faulty class. However, learning
the BN DAG by using our SIA is not affected by the failure frequency. In the case of
the parameters learned, the Kullback–Leibler (KL) divergent score was used to evaluate
the accuracy. A lower KL score is better, and a value of zero means that the parameters
are the same as that of the baseline. From the KL result, changing the MTTF changes
the learned parameters, but further studies are needed to qualify its sensitivity to the
DT model’s parameters.

Table 6. Evaluation of the effect of DT model accuracy on the resulting structure learned by using
Grow–Shrink heuristic structure learning method and parameters learned by using MLE.

Experiment
Mean of the Exponentially Distributed
Time-to-Failure for Each Fault (Hours) SHD Score KL Score

CAF CF PDOS IPP POOS LP

1 25 50 3.5 12 20 3 9 173.47
2 (baseline) 50 100 7 24 40 6 13 baseline

3 100 200 14 48 80 12 16 292.07
4 200 400 28 96 120 24 21 193.47

6. Discussion

A key distinction between DT and other advanced simulation models, such as digital
shadows and information systems, is the DT’s automated bidirectional data exchange
between the physical system and its twin [73]. The automatic DT parameter estimation
approaches that were proposed are used to continuously update the DT model to keep
the parameters up-to-date with its physical counterpart. New failure modes are also up-
dated when they emerge by including their characteristics (i.e., effects, MTTF, and MTTR).
Likewise, the simulator software can be used to update the physical robots’ program, thus
completing the two-way information exchange requirement of a DT model. Continuous
updating can also be extended to the BN model to keep it current by retraining it peri-
odically to ensure up-to-date representativeness to maintain or improve its diagnostics
accuracy. The automatic retraining of BN model using DT model will be part of future
work. Although only non-invasive faults were considered in the experimental test-bed to
avoid physically damaging the robots, the same modeling approach carries over to invasive
faults as well. Implementing the DT model by using co-simulation of existing mature
software potentially eliminates the time-consuming task of building one from scratch,
and more importantly demonstrates the scalability of the proposed approach to industrial
applications. Moreover, using the equipment OEM simulator ensures better representation
of the physical twin in terms of overall behavior. Increasingly, OEMs are providing such
equipment simulators which can be leveraged in DT modeling. A DT model engineered
by using this approach will, however, be limited to the capabilities provided by the OEM
simulator software. Because the scope of this research is fault diagnostics modeling rather
than prognostics, we assume a binary health state of healthy and unhealthy, and we do not
consider equipment degradation resulting from equipment wear and tear.

Although BN has been used to develop DT models [56–58], we propose SIA to train
BN by using the DT model in this work. The BN model structure (DAG) learned from
carrying out intervention in the DT model is quite robust to deviations in the DT model

Sensors 2022, 22, 1430 21 of 24

parameters (i.e., deviations in fault frequency of occurrence), as it depends more on the
flow of parts in the factory rather than on the values of the parameters. This is, however,
not the case for data-driven heuristic search methods for BN structure learning. Deviations
in the DT model parameters will have more effect on the BN model parameters learned
and need to be investigated in the future.

7. Conclusions and Future Work

Early research in digital twin (DT), which used to be called virtual system, studied
real-time decision-making by using such approaches for production and maintenance
scheduling [74–77]. In this paper, we explored a way to leverage DT to train a Bayesian
network (BN), addressing key limitations of the current approaches in training BNs, includ-
ing insufficient and imbalance-class data, the high cost of carrying out intervention on the
factory floor, and the subjective nature of expert elicitation. Our proposed approach was
validated by using an experimental assembly cell consisting of four industrial robots that
were engineered using co-simulation of original equipment manufacturer simulator and
discrete-event simulation model. The BN structure obtained via carrying out an interven-
tion in the DT model was identical to that obtained from intervening on the experimental
assembly cell, thus validating the use of DT model for carrying out intervention for BN
structure learning in this instance. The Structural Intervention Algorithm proposed in
this paper uses an Influence Discovery step to first detect all possible directed edges, fol-
lowed by a Parent Confirmation step to distinguish between a parent and an ancestor. It
should be emphasized that, here, the SIA exploits the causal relationship between variables
to implicitly prune the search space, which can be a significant advantage in learning
large BNs.

In regard to future avenues of research—being that the proposed approach was
validated using an experimental robotic assembly line—implementing the DT model
in real manufacturing plant is a next step. Moreover, the application of small dataset
parameter learning methods, such as qualitative maximum a posteriori (QMAP) to BN
models containing both factory-level and equipment-level manufacturing fault types, need
to be studied. The sensitivity of the learned BN parameters to deviations in the DT model
parameters also needs to be evaluated. Furthermore, the effect of discretization levels on
the BN structure learning algorithm should be pursued. Another fruitful area of future
work would be to explore the computational tractability of the SIA algorithms for large
BNs, along with techniques to prune search space in the Parent Confirmation step. Lastly,
given that more data can sometimes hurt the model and a large amount of data can be
generated from a DT model, identifying a method to determine the optimal amount of
synthetic data samples to generate for maximum performance of the structure learning and
parameter learning algorithms is desired.

Author Contributions: Conceptualization, V.P.; methodology, software, validation, and formal
analysis; writing—original draft preparation, T.A.; writing—review and editing, V.P.; supervision,
V.P.; project administration, V.P.; funding acquisition, V.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded, in part, by NIST cooperative agreement with Penn State Univer-
sity, grant number 70NANB14H255, and the APC is funded by Penn State.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Authors are grateful to Simio for providing discrete-event simulation software
and KCF Technologies for providing IoT sensors used in the experimental testbed.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 1430 22 of 24

References
1. Arora, R. 2021 Digital Transformation Assessment. Available online: https://www.ibm.com/downloads/cas/MPQGMEN9

(accessed on 9 November 2021).
2. Nguyen, D.T.; Duong, Q.B.; Zamai, E.; Shahzad, M.K. Fault diagnosis for the complex manufacturing system. Proc. Inst. Mech.

Eng. Part O J. Risk Reliab. 2016, 230, 178–194. [CrossRef]
3. Kegg, R.L. One-Line Machine and Process Diagnostics. CIRP Ann. 1984, 33, 469–473. [CrossRef]
4. Brundage, M.P.; Kulvatunyou, B.; Ademujimi, T.; Rakshith, B. Smart Manufacturing Through a Framework for a Knowledge-

Based Diagnosis System. In Proceedings of the ASME 2017 International Manufacturing Science and Engineering Conference,
Los Angeles, CA, USA, 4–8 June 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 50749.

5. Scholten, B. Integrating ISA-88 and ISA-95. In Proceedings of the ISA EXPO 2007, Houston, TX, USA, 2–4 October 2007;
International Society of Automation (ISA): Houston, TX, USA, 2007; p. 13.

6. ISO 22400-1; Automation Systems and Integration—Key Performance Indicators (KPIs) for Manufacturing Operations
Management—Part 1: Overview, Concepts and Terminology. ISO: Geneva, Switzerland, 2011.

7. ISO 22400-2; Automation Systems and Integration—Key Performance Indicators (KPIs) for Manufacturing Operations
Management—Part 2: Definitions and Descriptions of KPIs. ISO: Geneva, Switzerland, 2014.

8. Khan, H.A.; Ademujimi, T. Development of novel hybrid manufacturing technique for manufacturing support structures free
complex parts. In Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference, Erie, PA,
USA, 10–14 June 2019; American Society of Mechanical Engineers: New York, NY, USA, 2019; Volume 1, pp. 1–7.

9. Smith, D.; Veitch, B.; Khan, F.; Taylor, R. Understanding industrial safety: Comparing Fault tree, Bayesian network, and FRAM
approaches. J. Loss Prev. Process Ind. 2017, 45, 88–101. [CrossRef]

10. Lee, D.; Pan, R. Predictive maintenance of complex system with multi-level reliability structure. Int. J. Prod. Res. 2017, 55,
4785–4801. [CrossRef]

11. Ademujimi, T.T.; Brundage, M.P.; Prabhu, V.V. A Review of Current Machine Learning Techniques Used in Manufacturing
Diagnosis. In IFIP Advances in Information and Communication Technology; Springer International Publishing: Berlin/Heidelberg,
Germany, 2017; pp. 407–415.

12. Li, J.; Liu, K.; Xian, X. Causation-based process monitoring and diagnosis for multivariate categorical processes. IISE Trans. 2017,
49, 332–343. [CrossRef]

13. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA, USA, 2009;
ISBN 9780262013192.

14. Eberhardt, F. Causation and Intervention; Carnegie Mellon University: Pittsburgh, PA, USA, 2007.
15. Modoni, G.E.; Caldarola, E.G.; Sacco, M.; Terkaj, W. Synchronizing physical and digital factory: Benefits and technical challenges.

Procedia CIRP 2019, 79, 472–477. [CrossRef]
16. Jain, S.; Narayanan, A.; Lee, Y.-T.T. Comparison of data analytics approaches using simulation. In Proceedings of the 2018 Winter

Simulation Conference (WSC), Gothenburg, Sweden, 9–12 December 2018; pp. 1084–1095.
17. Jain, S.; Narayanan, A.; Lee, Y.-T.T. Infrastructure for Model Based Analytics for Manufacturing. In Proceedings of the 2019 Winter

Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019; IEEE: New York, NY, USA, 2019; Volume 2019,
pp. 2037–2048.

18. Tolio, T.; Sacco, M.; Terkaj, W.; Urgo, M. Virtual Factory: An Integrated Framework for Manufacturing Systems Design and
Analysis. Procedia CIRP 2013, 7, 25–30. [CrossRef]

19. Hyttinen, A.; Eberhardt, F.; Hoyer, P. Experiment Selection for Causal Discovery. J. Mach. Learn. Res. 2013, 14, 3041–3071.
20. VanDerHorn, E.; Mahadevan, S. Digital Twin: Generalization, characterization and implementation. Decis. Support Syst. 2021,

145, 113524. [CrossRef]
21. Magnanini, M.C.; Tolio, T.A.M. A model-based Digital Twin to support responsive manufacturing systems. CIRP Ann. 2021, 70,

353–356. [CrossRef]
22. Karray, M.H.; Ameri, F.; Hodkiewicz, M.; Louge, T. ROMAIN: Towards a BFO compliant reference ontology for industrial

maintenance. Appl. Ontol. 2019, 14, 155–177. [CrossRef]
23. Ameri, F.; Yoder, R.; Zandbiglari, K. SKOS Tool: A Tool for Creating Knowledge Graphs to Support Semantic Text Classification.

In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Novi Sad, Serbia,
30 August–3 September 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 263–271.

24. Li, J.; Shi, J. Knowledge discovery from observational data for process control using causal Bayesian networks. IIE Trans. 2007, 39,
681–690. [CrossRef]

25. Pearl, J. Causality: Models, Reasoning and Inference; Cambridge University Press: New York, NY, USA, 2009; ISBN 978-0-521-89560-6.
26. Chickering, D.M.; Heckerman, D.; Meek, C. Large-Sample Learning of Bayesian Networks is NP-Hard. J. Mach. Learn. Res. 2004,

5, 1287–1330.
27. Gámez, J.A.; Mateo, J.L.; Puerta, J.M. Learning Bayesian networks by hill climbing: Efficient methods based on progressive

restriction of the neighborhood. Data Min. Knowl. Discov. 2011, 22, 106–148. [CrossRef]
28. Scutari, M. Learning Bayesian Networks with the bnlearn R Package. J. Stat. Softw. 2010, 35, 1–22. [CrossRef]
29. Spirtes, P.; Glymour, C.; Scheines, R. Causation, Prediction and Search; MIT Press: New York, NY, USA, 2001.
30. Margaritis, D. Learning Bayesian Network Model Structure from Data; Carnegie Mellon University: Pittsburgh, PA, USA, 2003.

https://www.ibm.com/downloads/cas/MPQGMEN9
http://doi.org/10.1177/1748006X15623089
http://doi.org/10.1016/S0007-8506(16)30007-5
http://doi.org/10.1016/j.jlp.2016.11.016
http://doi.org/10.1080/00207543.2017.1299947
http://doi.org/10.1080/0740817X.2016.1241455
http://doi.org/10.1016/j.procir.2019.02.125
http://doi.org/10.1016/j.procir.2013.05.005
http://doi.org/10.1016/j.dss.2021.113524
http://doi.org/10.1016/j.cirp.2021.04.043
http://doi.org/10.3233/AO-190208
http://doi.org/10.1080/07408170600899532
http://doi.org/10.1007/s10618-010-0178-6
http://doi.org/10.18637/jss.v035.i03

Sensors 2022, 22, 1430 23 of 24

31. Tsamardinos, I.; Aliferis, C.F.; Statnikov, A. Algorithms for Large Scale Markov Blanket Discovery. In Proceedings of the FLAIRS
conference, St. Augustine, FL, USA, 12–14 May 2003; Volume 2, pp. 376–380.

32. MacAllister, A.; Kohl, A.; Winer, E. Using high-fidelity meta-models to improve performance of small dataset trained Bayesian
Networks. Expert Syst. Appl. 2020, 139, 112830. [CrossRef]

33. Verma, T.; Pearl, J. Equivalence and synthesis of causal models. In Proceedings of the Sixth Conference on Uncertainty in Artificial
Intelligence, Cambridge, MA, USA, 27–29 July 1990; Elsevier Science: New York, NY, USA, 1991; pp. 255–269.

34. Julia Flores, M.; Nicholson, A.E.; Brunskill, A.; Korb, K.B.; Mascaro, S. Incorporating expert knowledge when learning Bayesian
network structure: A medical case study. Artif. Intell. Med. 2011, 53, 181–204. [CrossRef]

35. Masegosa, A.R.; Moral, S. An interactive approach for Bayesian network learning using domain/expert knowledge. Int. J. Approx.
Reason. 2013, 54, 1168–1181. [CrossRef]

36. Xiao, C.; Jin, Y.; Liu, J.; Zeng, B.; Huang, S. Optimal Expert Knowledge Elicitation for Bayesian Network Structure Identification.
IEEE Trans. Autom. Sci. Eng. 2018, 15, 1163–1177. [CrossRef]

37. De, S.; Das, A.; Sureka, A. Product failure root cause analysis during warranty analysis for integrated product design and quality
improvement for early results in downturn economy. Int. J. Prod. Dev. 2010, 12, 235–253. [CrossRef]

38. Cheng, J.; Zhu, C.; Fu, W.; Wang, C.; Sun, J. An Imitation medical diagnosis method of hydro-turbine generating unit based on
Bayesian network. Trans. Inst. Meas. Control 2019, 41, 3406–3420. [CrossRef]

39. Panicker, S.; Nagarajan, H.P.N.; Mokhtarian, H.; Hamedi, A.; Chakraborti, A.; Coatanéa, E.; Haapala, K.R.; Koskinen, K. Tracing
the Interrelationship between Key Performance Indicators and Production Cost using Bayesian Networks. Procedia CIRP 2019, 81,
500–505. [CrossRef]

40. Ademujimi, T.; Prabhu, V. Fusion-Learning of Bayesian Network Models for Fault Diagnostics. Sensors 2021, 21, 7633. [CrossRef]
[PubMed]

41. Dey, S.; Stori, J.A. A Bayesian network approach to root cause diagnosis of process variations. Int. J. Mach. Tools Manuf. 2005, 45,
75–91. [CrossRef]

42. Lee, J.; Azamfar, M.; Bagheri, B. A unified digital twin framework for shop floor design in industry 4.0 manufacturing systems.
Manuf. Lett. 2021, 27, 87–91. [CrossRef]

43. Lee, J.; Bagheri, B.; Kao, H.-A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett.
2015, 3, 18–23. [CrossRef]

44. Aivaliotis, P.; Georgoulias, K.; Arkouli, Z.; Makris, S. Methodology for enabling digital twin using advanced physics-based
modelling in predictive maintenance. Procedia CIRP 2019, 81, 417–422. [CrossRef]

45. Wright, L.; Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci. 2020, 7, 13.
[CrossRef]

46. Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and
classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [CrossRef]

47. Errandonea, I.; Beltrán, S.; Arrizabalaga, S. Digital Twin for maintenance: A literature review. Comput. Ind. 2020, 123, 103316.
[CrossRef]

48. Biesinger, F.; Meike, D.; Kraß, B.; Weyrich, M. A digital twin for production planning based on cyber-physical systems: A Case
Study for a Cyber-Physical System-Based Creation of a Digital Twin. Procedia CIRP 2019, 79, 355–360. [CrossRef]

49. Tao, F.; Zhang, M.; Liu, Y.; Nee, A.Y.C. Digital twin driven prognostics and health management for complex equipment. CIRP
Ann. 2018, 67, 169–172. [CrossRef]

50. Redelinghuys, A.J.H.; Basson, A.H.; Kruger, K. A six-layer architecture for the digital twin: A manufacturing case study
implementation. J. Intell. Manuf. 2020, 31, 1383–1402. [CrossRef]

51. Dai, S.; Zhao, G.; Yu, Y.; Zheng, P.; Bao, Q.; Wang, W. Ontology-based information modeling method for digital twin creation of
as-fabricated machining parts. Robot. Comput. Integr. Manuf. 2021, 72, 102173. [CrossRef]

52. Zhang, C.; Xu, W.; Liu, J.; Liu, Z.; Zhou, Z.; Pham, D.T. A reconfigurable modeling approach for digital twin-based manufacturing
system. Procedia CIRP 2019, 83, 118–125. [CrossRef]

53. Zhuang, C.; Liu, J.; Xiong, H. Digital twin-based smart production management and control framework for the complex product
assembly shop-floor. Int. J. Adv. Manuf. Technol. 2018, 96, 1149–1163. [CrossRef]

54. Zhang, H.; Qi, Q.; Tao, F. A multi-scale modeling method for digital twin shop-floor. J. Manuf. Syst. 2022, 62, 417–428. [CrossRef]
55. Savolainen, J.; Urbani, M. Maintenance optimization for a multi-unit system with digital twin simulation: Example from the

mining industry. J. Intell. Manuf. 2021, 32, 1953–1973. [CrossRef]
56. Yu, J.; Song, Y.; Tang, D.; Dai, J. A Digital Twin approach based on nonparametric Bayesian network for complex system health

monitoring. J. Manuf. Syst. 2021, 58, 293–304. [CrossRef]
57. Alam, K.M.; El Saddik, A. C2PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems. IEEE

Access 2017, 5, 2050–2062. [CrossRef]
58. Li, C.; Mahadevan, S.; Ling, Y.; Choze, S.; Wang, L. Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin.

AIAA J. 2017, 55, 930–941. [CrossRef]
59. Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134.

http://doi.org/10.1016/j.eswa.2019.112830
http://doi.org/10.1016/j.artmed.2011.08.004
http://doi.org/10.1016/j.ijar.2013.03.009
http://doi.org/10.1109/TASE.2017.2747130
http://doi.org/10.1504/IJPD.2010.036389
http://doi.org/10.1177/0142331219826665
http://doi.org/10.1016/j.procir.2019.03.136
http://doi.org/10.3390/s21227633
http://www.ncbi.nlm.nih.gov/pubmed/34833709
http://doi.org/10.1016/j.ijmachtools.2004.06.018
http://doi.org/10.1016/j.mfglet.2021.01.005
http://doi.org/10.1016/j.mfglet.2014.12.001
http://doi.org/10.1016/j.procir.2019.03.072
http://doi.org/10.1186/s40323-020-00147-4
http://doi.org/10.1016/j.ifacol.2018.08.474
http://doi.org/10.1016/j.compind.2020.103316
http://doi.org/10.1016/j.procir.2019.02.087
http://doi.org/10.1016/j.cirp.2018.04.055
http://doi.org/10.1007/s10845-019-01516-6
http://doi.org/10.1016/j.rcim.2021.102173
http://doi.org/10.1016/j.procir.2019.03.141
http://doi.org/10.1007/s00170-018-1617-6
http://doi.org/10.1016/j.jmsy.2021.12.011
http://doi.org/10.1007/s10845-021-01740-z
http://doi.org/10.1016/j.jmsy.2020.07.005
http://doi.org/10.1109/ACCESS.2017.2657006
http://doi.org/10.2514/1.J055201

Sensors 2022, 22, 1430 24 of 24

60. Chen, Z.-S.; Zhu, B.; He, Y.-L.; Yu, L.-A. A PSO based virtual sample generation method for small sample sets: Applications to
regression datasets. Eng. Appl. Artif. Intell. 2017, 59, 236–243. [CrossRef]

61. Yang, J.; Yu, X.; Xie, Z.-Q.; Zhang, J.-P. A novel virtual sample generation method based on Gaussian distribution. Knowledge-Based
Syst. 2011, 24, 740–748. [CrossRef]

62. Lechler, T.; Sjarov, M.; Franke, J. Data Farming in Production Systems—A Review on Potentials, Challenges and Exemplary
Applications. Procedia CIRP 2020, 96, 230–235. [CrossRef]

63. Libes, D.; Lechevalier, D.; Jain, S. Issues in synthetic data generation for advanced manufacturing. In Proceedings of the
Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017;
IEEE: New York, NY, USA, 2017; pp. 1746–1754.

64. Feldkamp, N.; Bergmann, S.; Strassburger, S.; Schulze, T. Knowledge discovery and robustness analysis in manufacturing
simulations. In Proceedings of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017;
IEEE: New York, NY, USA, 2017; pp. 3952–3963.

65. Greasley, A.; Edwards, J.S. Enhancing discrete-event simulation with big data analytics: A review. J. Oper. Res. Soc. 2019, 72,
247–267. [CrossRef]

66. Jain, S.; Lechevalier, D.; Narayanan, A. Towards smart manufacturing with virtual factory and data analytics. In Proceedings
of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3–6 December 2017; IEEE: New York, NY, USA, 2017;
pp. 3018–3029.

67. Wang, Y.; Tao, F.; Zhang, M.; Wang, L.; Zuo, Y. Digital twin enhanced fault prediction for the autoclave with insufficient data.
J. Manuf. Syst. 2021, 60, 350–359. [CrossRef]

68. Sexton, T.; Brundage, M.P.; Hoffman, M.; Morris, K.C. Hybrid datafication of maintenance logs from AI-assisted human tags.
In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017;
IEEE: New York, NY, USA, 2017; pp. 1769–1777.

69. Lukens, S.; Naik, M.; Saetia, K.; Hu, X. Best Practices Framework for Improving Maintenance Data Quality to Enable Asset
Performance Analytics. In Proceedings of the Annual Conference of the PHM Society, Scottsdale, AZ, USA, 21–22 September 2019.

70. Mahlamäki, K. Impact of User Experience on the Quality of Manually Collected Maintenance Data; Aalto University: Espoo, Finland,
2021.

71. Hauser, A.; Bühlmann, P. Two optimal strategies for active learning of causal models from interventional data. Int. J. Approx.
Reason. 2014, 55, 926–939. [CrossRef]

72. Yiakopoulos, C.T.; Gryllias, K.C.; Antoniadis, I.A. Rolling element bearing fault detection in industrial environments based on a
K-means clustering approach. Expert Syst. Appl. 2011, 38, 2888–2911. [CrossRef]

73. Sepasgozar, S.M.E. Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart,
Sustainable Built Environment. Buildings 2021, 11, 151. [CrossRef]

74. Koomsap, P.; Shaikh, N.I.; Prabhu, V.V. Integrated process control and condition-based maintenance scheduler for distributed
manufacturing control systems. Int. J. Prod. Res. 2005, 43, 1625–1641. [CrossRef]

75. Hong, J.; Prabhu, V.V. Distributed Reinforcement Learning Control for Batch Sequencing and Sizing in Just-In-Time Manufacturing
Systems. Appl. Intell. 2004, 20, 71–87. [CrossRef]

76. Duffie, N.A.; Prabhu, V.V. Real-time distributed scheduling of heterarchical manufacturing systems. J. Manuf. Syst. 1994, 13,
94–107. [CrossRef]

77. Duffie, N.A.; Prabhu, V.V. Distributed system-level control of vehicles in a high-performance material transfer system. IEEE Trans.
Control Syst. Technol. 1995, 3, 212–217. [CrossRef]

http://doi.org/10.1016/j.engappai.2016.12.024
http://doi.org/10.1016/j.knosys.2010.12.010
http://doi.org/10.1016/j.procir.2021.01.156
http://doi.org/10.1080/01605682.2019.1678406
http://doi.org/10.1016/j.jmsy.2021.05.015
http://doi.org/10.1016/j.ijar.2013.11.007
http://doi.org/10.1016/j.eswa.2010.08.083
http://doi.org/10.3390/buildings11040151
http://doi.org/10.1080/13528160412331326487
http://doi.org/10.1023/B:APIN.0000011143.95085.74
http://doi.org/10.1016/0278-6125(94)90025-6
http://doi.org/10.1109/87.388129

	Introduction
	Background and Literature Review
	Bayesian Network Structure Learning
	Digital Twin
	Data Extension
	Digital Model for Data Generation

	Digital Twin Development
	Physical Layer
	Virtual Layer
	Data/Information-Processing Layer
	Qualitative Data Structuring Using Natural Language Processing
	Automatic Estimation of Processing Time, Batch Loading Time, and Part Travel Time
	Automatic Downtime Estimation

	Bayesian Network Training Using Digital Twin
	Digital Twin Model for Structure Learning
	Data Generation Using Digital Twin for DAG Learning
	Intervention Using Digital Twin for DAG Learning

	Digital Twin Model for Parameter Learning

	Experimental Test Bed
	Digital Twin Development
	Qualitative Data Analytics
	Automatic Estimation of Cycle Time, Part Restocking Time, and Part Travel Time
	Automatic Estimation of Downtime

	Digital Twin Validation
	Bayesian Network Training
	Structure Learning
	Parameter Learning

	Discussion
	Conclusions and Future Work
	References

