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Abstract: Unmanned aerial vehicle-based remote sensing technology has recently been widely
applied to crop monitoring due to the rapid development of unmanned aerial vehicles, and these
technologies have considerable potential in smart agriculture applications. Field phenotyping using
remote sensing is mostly performed using unmanned aerial vehicles equipped with RGB cameras
or multispectral cameras. For accurate field phenotyping for precision agriculture, images taken
from multiple perspectives need to be simultaneously collected, and phenotypic measurement errors
may occur due to the movement of the drone and plants during flight. In this study, to minimize
measurement error and improve the digital surface model, we proposed a collaborative driving
system that allows multiple UAVs to simultaneously acquire images from different viewpoints. An
integrated navigation system based on MAVSDK is configured for the attitude control and position
control of unmanned aerial vehicles. Based on the leader–follower-based swarm driving algorithm
and a long-range wireless network system, the follower drone cooperates with the leader drone to
maintain a constant speed, direction, and image overlap ratio, and to maintain a rank to improve their
phenotyping. A collision avoidance algorithm was developed because different UAVs can collide
due to external disturbance (wind) when driving in groups while maintaining a rank. To verify and
optimize the flight algorithm developed in this study in a virtual environment, a GAZEBO-based
simulation environment was established. Based on the algorithm that has been verified and optimized
in the previous simulation environment, some unmanned aerial vehicles were flown in the same
flight path in a real field, and the simulation and the real field were compared. As a result of the
comparative experiment, the simulated flight accuracy (RMSE) was 0.36 m and the actual field flight
accuracy was 0.46 m, showing flight accuracy like that of a commercial program.

Keywords: multiple UAVs; remote sensing; collaborative driving; field phenotyping; synchro-
nized motion

1. Introduction

Owing to the recent breakthrough in unmanned aerial vehicles (UAVs) or drones,
their applications in the agricultural field, such as in crop monitoring, detection of crop
diseases, digital surface modeling (DSM), sowing, spraying, irrigation, and mapping,
have significantly reduced working hours and labor requirements, greatly improving the
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efficiency of agricultural work. In particular, they are widely used for remote sensing [1,2].
Currently, remote sensing in the agricultural field mainly involves remote exploration using
a single UAV system [3–5], mapping [6–9], monitoring [10,11], and DSM [12,13]. The remote
sensing process varies depending on the features (characteristics) of crops, the cultivation
environment, and the exploration purpose; however, it mostly uses ortho-images obtained
using red–green–blue (RGB) cameras and multi-spectral cameras. After performing image
registration based on the ortho-images captured by the UAV along the image acquisition
path, a post-processing process (which involves calculating the normalized difference
vegetation index (NDVI), the carotenoid reflectance index (CRI), the normalized difference
red edge index (NDRE), etc.) is used according to the purpose. The agricultural UAV
market is growing rapidly, and many commercial UAVs have been released. Major UAV
companies include DJI, Parrot, Precisionhawk, and AGEagle, and they are developing
products for a variety of agricultural solutions [5]. Most of the UAVs used for image
acquisition utilize a multi-rotor (quadcopter or hexacopter) as the main platform, and an
appropriate UAV is chosen based on the total payload and sensors attached [14]. Most
commercial UAVs are controlled using a ground-installed flight control system called a
ground control station (GCS). It coordinates and controls all commands sent to the UAV,
as well as all data received from the UAV, and controls all conditions before, during,
and after the flight. Commercial GCSs include open-source-based MissionPlanner and
QgroundControl [15]. The GCS supported by a UAV varies depending on the flight control
(FC) firmware installed in the UAV, and the commercial GCS also changes according to
the FC selected by the user. MissionPlanner, which supports only ArduPilot and operates
only on Windows-based systems, is suitable for professional use. QgroundControl has the
advantage that it supports both ArduPilot and PX4, operates not only on Windows but also
on most other operating systems (Linux, iOS, Android, etc.), and can be easily operated,
even by beginners.

In general, UAVs are widely used for farm work, such as crop monitoring, control,
and sowing, which are required for agriculture. As UAVs use batteries as their main power
source, a single UAV has limited operating time, taking considerable time to cover large
areas. Multiple images taken from different directions are required for the precision maps
used in precision agriculture, and field phenotyping requires high accuracy [16]. Thus, the
use of multiple drones rather than a single drone is more efficient for acquiring images
of a large area in a short period of time [17]. Nevertheless, the commercial programs
currently controlling UAVs are often developed based on single-center flight control. Even
when multiple UAVs can be controlled, these programs usually do not provide real-time
synchronized control and independent flight control. Research is underway to solve this
problem and enable a large number of UAVs to fly in groups [18,19]; moreover, research
has been actively conducted for the cluster flight of a large number of UAVs in agriculture.
Ju and Son used seven measurement indices (total time, setup time, flight time, battery
consumption, inaccuracy of land, haptic control effort, and coverage ratio) to evaluate
the performance of single and multiple UAVs during agricultural work, and proved that
the multi-UAV system is more efficient than the single UAV system (total flight time
improved by 18.1%, battery consumption reduced by 59.8%, coverage area increased
by 200%, etc.) [20]. Barrientos et al. subdivided a large area of agricultural land using
multiple UAVs and applied an efficient flight strategy, suggesting the application to real
large agricultural lands through real field flight experiments [21]. A more complex control
system is required for controlling multiple UAVs compared to a single UAV, and various
constraints must be considered. The basic flight control for multiple UAVs is the same as for
a single UAV, using a computer or remote controller with appropriate flight control software,
such as GCS. The development of multiple path generation and multiple UAV collaborative
driving algorithms is necessary to enable multiple UAVs to fly simultaneously. Several
studies have been conducted on the efficient path planning and reliable flight control of
multiple UAVs. Roberge et al. demonstrated that applying a genetic algorithm and a
particle swarm optimization algorithm to a multi-core CPU allows UAV path planning
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within 10 s [22]. Gu et al. combined a wireless sensor network and multiple UAVs to
enable efficient collaborative operation, and proposed a method for recognizing objects
and locations using multiple UAVs [23]. Lee et al. performed multi-UAV control using the
robot operating system (ROS) global positioning system (GPS) waypoint tracking package
and a centralized task allocation network system. To overcome the battery limitations of a
single UAV, this system was developed to enable multiple UAVs to take turns and complete
continuous flight missions [24].

In general, in the case of UAVs applied to agriculture, scanning is carried out over a
large area. Such remote sensing can be used to accelerate the arduous process of performing
crop inventory and yield estimates for large areas. Area sizes typically used for remote
sensing in agriculture, ranging from 5 to 10 hectares, are used for remote sensing and gen-
erating field phenotypes [25]. However, they have difficulties in providing high accuracy
for key phenotypic characteristics, such as stem diameter, leaf angle, crop height, and leaf
area index (LAI), as a result of the low spatial resolution of the data due to flight height. To
solve this issue, phenotyping studies based on unmanned ground vehicles (UGVs) are in
progress. Young et al. measured corn height and stem width using a stereo camera and a
time-of-flight depth sensor mounted on a UGV. The field phenotyping showed a measure-
ment error of 15% for the plant height and 13% for the plant stem width [26]. Madec et al.
conducted a comparative experiment on the plant phenotypic characteristics observed by a
UGV equipped with light detection and ranging (LiDAR) and a UAV equipped with RGB
cameras. Although LiDAR showed higher phenotyping accuracy due to spatial resolution
differences (LiDAR (3–5 mm), RGB (10 mm)), both LiDAR (UGV) and RGB (UAV) showed
a high correlation with respect to plant height [27]. As UGVs can perform capturing un-
der the canopy, important data, such as crop height and stem diameter, can be acquired
throughout the development stage of the crop [28]. Manish et al. generated a mobile
mapping system using a UGV. The developed UGV was equipped with LiDAR and RGB
cameras, along with global navigation satellite system (GNSS)/inertial navigation system
(INS) devices to align and project each coordinate system. A comparative experiment using
a UAV and PhenoRover was also conducted to compare the accuracies. The accuracy of
the point cloud generated in the UGV was ±5–8 cm, similar to that of the control group
(UAV, PhenoRover), and the developed UGV showed a relatively low noise level during
data collection, being able to capture individual plants [29].

Many studies have been conducted on measuring field phenotypes (crop height) using
drone-based remote sensing. Christiansen et al. created a point cloud by combining the
GNSS and an inertial measurement unit with LiDAR data. The created point cloud was
mapped and analyzed using the functions of ROS and Point Cloud Library. Based on
the analyzed crop height and volume, it was possible to estimate crop yield and nitrogen
concentration [7]. Torres-Sánchez et al. collected images at flight altitudes of 50 m and 100
m to generate a DSM. As a result of image acquisition and accuracy analysis with different
front and side overlaps for each altitude, it was possible to achieve 95% accuracy and
85% time saving by using 95% of front overlap and 60% of side overlap at a 100 m flight
altitude [30]. Holman et al. collected images using a UAV equipped with an RGB camera
and reconstructed the three-dimensional (3D) terrain through structure from motion (SfM).
The height accuracy of the crop was R2 ≥ 0.92, and the root means square error (RMSE) ≤
0.07 m, showing high accuracy. When compared to terrestrial LiDAR (terrestrial LiDAR
accuracy: R2 = 0.97, RMSE = 0.027 m) for comparative experiments, although the SfM
method using RGB did not show as high a level of accuracy as that of LiDAR, it seemed
more suitable in terms of time and cost effectiveness for the wide areas of agricultural sites
because LiDAR is expensive and requires a long scan time [31]. However, measurement
errors may occur as the SfM method generates high-resolution 3D topography or field
phenotyping from high-resolution images. Inaccurate GPS positioning accuracy [32] and
plant movement due to wind or the rotor movement of UAVs [33] are considered to
be the main causes of errors. To reduce measurement error and minimize the effect of
the disturbance, images should be simultaneously acquired from multiple perspectives.
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However, the commonly used commercial GCS programs simply assign the pre-designed
missions to single and multiple UAVs for images collected from a single perspective. As the
UAVs are operated independently to complete the designated mission areas, it is impossible
to acquire images simultaneously from multiple perspectives by collaborating with the
multiple UAVs to obtain high-precision field phenotypes.

Many studies are underway to reconstruct the 3D phenotype models of crops using
images taken from multiple perspectives [34–38], as they result in higher accuracy than by
using images taken from a single angle, allowing the measurement of major organs of the
crop (leaf area, plant height, crown area, calyx size, etc.) required for crop monitoring. Zhu
et al. observed the morphological changes (plant height, plant length, plant width, crown
height, crown area, etc.) of soybean plants based on low-cost 3D reconstruction technology,
and the correlation coefficient obtained was significantly higher than 0.98, indicating high
accuracy [34]. He et al. used strawberry images taken from multiple angles (360◦), and
rapidly obtained a quantitative phenotypic analysis of external strawberry traits, such as
height, length, width, and the calyx size of strawberries [36]. Zermas et al. created a 3D
point cloud using high-resolution RGB images collected from multiple angles (circular
orbits) using a UAV and a portable camera, and measured the LAI, individual, and average
plant height, leaf angle with respect to the stem, and leaf length. To overcome the limitations
of two-dimensional (2D) images, a 3D point cloud was reconstructed by capturing images
from multiple perspectives, which allowed the measurement of the main parts of the
plant in detail with excellent accuracy (LAI accuracy of 92.48%, plant height accuracy of
89.2%, and leaf length accuracy of 74.8%) [38]. High-resolution images taken from multiple
perspectives are required to improve the 3D model (phenotype) measurement accuracy
and measure the major organs of crops.

This study aimed at developing a system for the collaborative driving of multiple
UAVs to improve the accuracy of field phenotyping using UAV-based agricultural remote
sensing, thus optimizing the cost, efficiency, and productivity, while reducing the impact
on the external environment. The specific purposes of this study were: (1) to design, build,
and test multiple UAVs; (2) to develop an algorithm to enable the collaborative driving
of multiple UAVs; and (3) to verify the multiple UAV collaborative driving algorithm
thus developed and optimize the variables, with a comparative verification experiment
conducted by comparing it with the commercial GCS system in the simulation environment
and the real world.

2. Materials and Methods

In this study, two unmanned aerial vehicles were produced, and a cooperative driving
algorithm and collision avoidance algorithm were developed for stable swarm flight to
improve phenotyping. After optimizing and verifying a number of unmanned aerial
vehicles to which the developed algorithm is applied in the simulation environment, the
same algorithm was applied in the real field to compare the simulation and real-world
performance. In addition, a performance comparison with commercial programs was
conducted. Flight accuracy and total flight time were used as indicators for algorithm
evaluation and performance comparison.

2.1. System Architecture and Principles
2.1.1. UAV

Figure 1 shows the overall structure of the system. The UAV uses a hexacopter as
a base and is equipped with a flight control (Pixhawk 4, Holybro, Hongkong, China) to
control aircraft attitude and flight, a GPS (Neo-M8N GPS, Ublox, Thalwil, Switzerland)
to receive location information, an ECS (MR-X3, PolyTronics, Taiwan, China) to control
rotor speed and direction, and three motors (S2312-920KV, PolyTronics, Taiwan, China)
each for clockwise (CW) and counterclockwise (CCW). The GCS (PC) and each UAV are
connected wirelessly by radio (Telemetry Radio V3 433Mhz, Holybro, Hongkong, China),
and different IDs are assigned to prevent crosstalk. As for the battery (HBZ-B 4200 mAh
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4S 35C, HBZ-B, Shijiazhuang, China), a Lipo 4S 4200 mAh is attached considering the
payload and flight time. With all the equipment mounted, the maximum flight time is
approximately 12 min.
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2.1.2. MAVLink Router

The UAV’s status information, location/attitude information, and control commands
are transmitted and received between each UAV and the GCS (PC) through wireless commu-
nication (telemetry radio). Because telemetry radio supports only universal asynchronous
receiver–transmitters (UART; serial communication), parallel communication is difficult.
To use the UAV monitoring and control programs simultaneously in this study, the UART
communication was changed to user data protocol (UDP) communication using the micro
air vehicle link (MAVLink) router. MAVLink is a protocol for communicating with small,
unmanned devices and different internal components within itself, and provides reliable
data exchange [39]. The transmission rate of UART was 57,600 bps, and a total of four IP
addresses (192.168.10.1, 192.168.10.2, 192.168.11.1, 192.168.11.2) were allocated and used.

2.1.3. Ground Control Station (GCS)

The GCS developed in this study receives the status and location information of the
UAV through wireless communication (radio receiver), and converts the transmitted and
received information into the UDP format through the MAVLink router. Each UAV is given
a unique IP address and a port number, and each UAV’s status and location information
are transmitted through the UDP based on the MAVLink protocol. The GCS developed
based on MAVSDK uses the received location and status information of the UAV received
via the UDP to implement and operate real-time UAV monitoring, the collaborative driving
of multiple UAVs, and the avoidance algorithm. GCS development and operation were
constructed in the Ubuntu 18.04.6 environment, and it was confirmed that GCS and UAV
were wirelessly connected to each other for monitoring and control. Figure 2 shows the
overall system structure, including the GCS. The GCS program developed in this study
was written in Python (3.6.9), based on the MAVLink protocol.
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2.2. Multiple Path Generation Algorithms

In the operation of multiple UAVs, a unique flight path must be generated for each
UAV. Many variables (flight altitude, camera specifications, field coordinates, and overlap
ratio) must be considered to generate flight paths that are optimized for the image acqui-
sition area and multiple UAVs. To create a waypoint, the image size and overlap ratio
among both forward and side directions were considered, as shown in Figure 3a, and the
field area was calculated based on the UTM coordinates, as shown in Figure 3b. Finally,
the geometrical correlation between camera specifications and flight altitude was also
considered, as shown in Figure 3c. Figure 4 shows the flowchart of the path generation. The
camera’s specifications (Sw, FR, Ih, Iw) and the flight height (H) are input to determine the
ground sample distance (GSD) and the actual image capture size on the ground (Dw, Dh)
(Equations (1)–(3)). The overlap ratio and GSD are used to calculate the spacing between
waypoints (Px, Py) (Equations (4) and (5)). When the coordinates (Nn, En) of the actual
image acquisition location are entered, the slope (θ) of the coordinates is calculated, and the
waypoints (Wpx_(n), Wpy_(n)) are generated (Equations (6)–(7)). When the entire flight path
of one UAV is generated, it is copied laterally based on the flight spacing to generate the
flight paths of multiple UAVs. The universal transverse Mercator (UTM) coordinate system
is used for all flight paths. Table 1 shows the input variables used in the multi-travel path
generation algorithm developed in this study.

GSD =
Sw × H × 100

FR × Iw
(1)

Dw =
GSD × Iw

100
(2)

Dh =
GSD × Ig

100
(3)

Px = Dw ×
(

1 − Overlap f

)
(4)

Py = Dh × (1 − Overlaps) (5)

θ = tan−1
(

N2 − N1

E2 − E1

)
(6)

Wpx_(n+1) = Wpx_n +
[
(Px × cos θ)−

(
Py × sin θ

)]
(7)

where Wpxn , Wpyn is the flight path point (X,Y) of UAV (m), Overlap f and Overlaps are
front and side image overlaps (%), respectively, Px, Py are waypoint point X,Y intervals (m),
Sw is the sensor width of the camera (mm), FR is the focal length of the camera (mm), H
is the flight height (mm), Ih and Iw are the image height and width (pixels), respectively,
GSD is the ground sampling distance (cm/pixel), Dw and Dh are the width and height of a
single image footprint on the ground (m), respectively, θ is the slope of the coordinates (◦),
and Nn, En are image acquisition area vertex coordinates (m).
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Table 1. Input variables required for path generation.

Input Variables Values

Site area 641 m2

Flight altitude 20 m
Overlap (side, front) 75%

Distance between UAV 3 m
Flight speed 4.0 m/s
Image size 3280 × 2464 pixels

Camera focal length 3.04 mm
Camera sensor size 4.6 mm

2.3. Multiple UAV Collaborative Driving Algorithm

Multiple UAVs fly by following individually entered flight paths. The developed
collaborative driving algorithm facilitates the following mechanism: the location infor-
mation of each UAV is synchronized with the GCS; therefore, if external environmental
factors (wind) or flight latencies of other UAVs occur, the UAVs can overcome them and fly
according to the set paths while maintaining a certain distance and altitude. Figure 5 shows
the overall flowchart for the flight. When the program starts, the path generated for each
UAV is read. If the flight path reading is completed normally, it is checked as to whether the
communication connection with each UAV has been established normally. If the wireless
connections have been established normally, each UAV takes off sequentially. After takeoff,
each UAV moves to the first waypoint sequentially. If UAV 1 satisfies Condition (1) and
UAV 2 in the same row satisfies Condition (1) at the same time, new paths are updated for
them simultaneously. Multiple UAVs update paths consecutively, and when they fly to the
last waypoint, the flight ends, and they return automatically to the home location and land.
Through the collaborative driving algorithm, the UAVs can simultaneously acquire the
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images required for field phenotyping by waiting for other UAVs and updating waypoints
simultaneously, as shown in Figure 6.

Condition 1. Current location of UAV–target waypoint location ≤ LBO (lateral boundary offset).
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2.3.1. Driving Waypoint Update

The path needs to be updated for the UAV to fly along the path to the last waypoint
while updating the waypoints. Waypoint updates are included in the algorithm for multiple
UAVs. As shown in Figure 7, the UAV approaches a waypoint as the target, and if it reaches
the lateral boundary offset (LBO), it updates a new waypoint and continues following the
path. The GCS calculates the relative distance between the waypoint and the UAV in real
time and updates the path.
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2.3.2. Collision Avoidance

The collision avoidance function of a general commercial unmanned aerial vehicle is
designed mainly for obstacles. However, the risk of collision is very high because multiple
UAVs fly in close proximity as a swarm along the crop row. Usually, the possibility of
collision is small, but considering the possibility of two UAVs colliding due to external
disturbance (wind) or GPS error, an algorithm to eliminate the risk was developed and
applied in the collaborative driving of multiple UAVs: it avoids collision automatically
when two UAVs are close enough to collide with each other. Figure 8 shows the flowchart
of the collision avoidance algorithm. If the distance between two UAVs is closer than that
of the flight plan, a collision warning is sent to the user, and then the altitude of UAV 1 is
lowered by 5 m to that of UAV 2. Once UAV 1 descends the altitude, it moves to the left by
2 m and to the rear by 2 m from the current position of UAV 2. After moving, UAV 1 lands
first, followed by UAV 2.
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2.4. Flight Simulation
2.4.1. Flight Simulation Configuration

The developed algorithms were verified, and a virtual environment was constructed
that could conduct a number of unmanned aerial vehicle simulation flight experiments
under various conditions. GAZEBO 9, an open-source robot simulator, was used for the
simulation environment. Figure 9 shows the overall structure of the simulation. The
GAZEBO environment includes a virtual map and a UAV model, and the plug-ins required
for the real operation of the UAV are additionally installed. The simulator (GAZEBO)
and the software-in-the-loop (SITL) are interlinked and communicate using the MAVLink.
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The most commonly used UDP is utilized for MAVLink communication. The simulated
location information and real-world location information can be linked with each other,
and MAVLink-based commands can be used to control the actual movement and flight
control of the UAV using PX4 SITL. At the same time, the developed GCS can be connected
to enable monitoring and to apply the developed algorithms. Furthermore, multiple
commercial GCSs can also be connected. All status information is saved in a flight log for
each UAV. The flight log is used later in the optimization task of the algorithms.
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2.4.2. Check and Optimize the Developed Algorithm

The algorithm (multiple path generation, collaborative driving of multiple UAVs,
and collision avoidance) developed in this study was checked and optimized. As the
multiple-path generation algorithm and the collaborative driving algorithm of multiple
UAVs are operated in conjunction, they were checked and optimized together. Optimization
was performed for the size of the LBO and the maximum flight speed, which have the
greatest influences on the driving algorithm. For the collision avoidance algorithm, virtual
collision paths were generated to check whether the UAVs operate normally according to
the algorithm.

2.4.3. LBO Optimization

The size of the LBO is the variable that has the greatest influence on the waypoint
updates. If the LBO is large, the waypoint is updated quickly, but the flight location error
would be large, as the path is updated far away from the waypoint. In contrast, if the size
of the LBO is small, the waypoint update takes more time, but the location error is small
because the path is updated close to the waypoint. Because it is difficult to fly under the
same conditions every time in the field, the LBO size was set to 0.2 m intervals in three
steps (0.2, 0.4, 0.6) in the flight simulation environment, and the flight log was analyzed
after completing the flight. Then, the size of the LBO was selected considering the total
flight time and position error.

2.4.4. Flight Speed Optimization

The maximum flight speed is a variable that affects the path updates, such as the LBO,
as well as the total flight time. An appropriate maximum flight speed needs to be set based
on the distance interval between the waypoints. Basically, the UAV decelerates the flight
speed as it approaches the waypoint. However, if the maximum flight speed is too high,
the deceleration time will be high and the UAV will pass by the waypoint, resulting in
a loss of flight time. In contrast, if the maximum flight speed is too low, the total flight
time will increase, resulting in reduced flight efficiency. In the simulation environment, the
maximum flight speed was set at an interval of 2.0 m/s in three steps (1.0, 3.0, 5.0), and the
flight log was analyzed after the flight was completed. After that, the optimum maximum
flight speed was selected in consideration of flight position error and total flight time.
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2.4.5. Avoidance Algorithm Verification

Conducting a collision experiment with the initially developed collision avoidance
algorithm in a real-world environment would involve a very high level of risk. Hence, the
algorithm was firstly tested in the developed simulation environment. Multiple UAVs were
configured to fly normally along the paths and then collide with other UAVs by arbitrarily
modifying the paths. Here, the flight logs of multiple UAVs recorded in the simulation
were analyzed to check whether they avoided collisions normally and returned and landed
at home according to the collision avoidance algorithm.

2.5. Field Test
2.5.1. Long-Distance Wireless Communication Latency

Communication latency is unavoidable in long-distance wireless communication.
Therefore, the experiments were conducted on long-range wireless communication between
GCS and UAV in real field environment. In this study, a Telemetry Radio V3 433Mhz
(the same communication device used in this study) and an additional microcontroller
were attached to the UAV to measure the loss rate and latency in radio communication.
Figure 10 shows the structure of the communication latency measurement system. The
microcontroller automatically generates an arbitrary virtual message based on the MAVLink
v1 frame. The virtual message is written as a random string with a size of 130 bytes. The
generated message is transmitted to the telemetry radio through UART, and it is then sent
wirelessly to the receiving telemetry radio connected to the PC. The virtual message is sent
in a constant transmission cycle (100 ms) using the timer interrupt of the microcontroller,
and the receiver (PC) receives it while recording the time. The latency time is calculated
by using Equation (8). The communication delay can be calculated by subtracting the
transmission cycle from the difference between the time of receiving the previous data and
the time of receiving the next data. The measurement experiment was conducted in an
open field (a lot in front of the College of Agriculture and Life Sciences, Kangwon National
University) with the measurement device-attached UAV hovering at an altitude of 30 m.
The communication latency time was calculated as a 10 s average of the latency time.

Latency (ms) = (After data reception time − Previous data reception time)− 100 ms (8)
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2.5.2. Multiple UAV Collaborative Driving Algorithm Verification

The flight experiment was conducted by applying the multiple-path generation al-
gorithm and the collaborative driving algorithm of multiple UAVs—which were checked
and optimized in advance through simulations—to the real field. The experiment was
conducted on the sports field (open field) of the Kangwon National University Medical
School, and Table 2 shows the experimental conditions and flight parameters. The saved
flight log was analyzed after the completion of the entire flight. The flight trajectory and
flight altitude information were extracted from the flight log and compared to the generated
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multiple flight paths (Figure 11). For flight (location) accuracy analysis, the straight flight
sections, excluding the rotating flight sections, were analyzed with RMSE (Equation (9)).

RMSE =

√
1
n

n

∑
i=1

( fi − oi)
2 (9)

where f is the predicted value (m), o is the actual value (m), and n is the total sample size.

Table 2. Field experiment conditions and variables.

Description Contents

Wind direction South-west
Wind speed 1.0 m/s

Atmospheric temperature 30.0 ◦C
LBO 0.4 m

Maximum flight speed 3.0 m/s
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2.5.3. Collision Avoidance Algorithm Verification

The flight experiment was conducted by applying the collision avoidance algorithm,
which was verified in advance via simulation, to the real field. To perform collision
verification arbitrarily, the collision path was generated as shown in Figure 12. The fourth
waypoint was modified arbitrarily so that two UAVs would be close to each other within
2 m. The place of the experiment was the sports field (open field) of the Kangwon National
University Medical School, and Table 3 shows the experimental conditions and flight
parameters. After the collision avoidance flight was completed, the saved flight logs were
analyzed. Flight trajectories and flight altitude information were extracted from flight
records to determine whether the avoidance proceeded normally according to the collision
avoidance algorithm.

Table 3. Field experiment conditions and variables.

Description Contents

Wind direction North-east
Wind speed 3.7 m/s

Atmospheric temperature 28.6 ◦C
LBO 0.4 m

Collision recognition distance 2.5 m
Maximum flight speed 3.0 m/s
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2.5.4. Comparison with Existing Commercial Programs (GCS)

Currently, an improved QgroundControl is being developed that enables more efficient
mission planning than the existing commercial program (QgroundControl) and allows
operators to build complex missions [40]. In general, to perform autonomous flight and
image acquisition using the commonly used commercial GCS programs (QgroundControl
and MissionPlanner), flight parameters, such as field coordinates, camera specifications,
flight altitude, flight speed, and image overlap ratio, should be manually input to the
GCS programs in consideration of the GSD, flight time, etc. The flight parameters are
often changed according to the user’s needs for the image acquisition, rather than for the
well-parameterized values in the GCS program during the UAV flights. However, in this
study, programs and algorithms were developed to implement essential functions, such
as stopping during flights and waiting for different UAVs, to improve phenotyping or
collision avoidance. Additionally, since many users generally use the existing programs
the most, only the program developed in this study and the commercial program were
compared with the same flight parameters. To compare the driving performance between
the developed GCS and an existing commercial program, a flight comparison experiment
was conducted by using the same flight path in the developed GCS and commercial GCS
(QgroundControl). All flight parameters (flight altitude, maximum flight speed, LBO size,
etc.) were set the same, and because the commercial GCS lacked the collaborative driving
function, only a single UAV was used in the comparative experiment. The commercial GCS
performed unmanned flight in mission mode by inputting the flight path in the UAV in
advance. The developed GCS, on the other hand, performed unmanned flight by applying
the collaborative driving algorithm. After the flight was completed, the flight log was
analyzed, and each flight trajectory (accuracy) and flight time were compared.

2.5.5. Comparison between Real and Simulated Environments

A comparative experiment was conducted for the cooperative operation of multiple
UAVs in a flight simulation environment and in a real field. The simulation was configured
to be as similar to the real field experiment as possible by adding an operation latency
corresponding to the actual measured wireless communication latency time. All flight
parameters, including the optimal flight parameters (LBO, maximum flight speed) found
earlier, and multiple flight paths were set using the same conditions (Table 4). After
completing all flights, the flight log and actual site recorded in the simulation were analyzed
to investigate the flight time and flight trajectory (accuracy).
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Table 4. Simulation and real field comparison experimental variables.

Description Values

Flight altitude 20 m
Overlap (side, front) 75%

Distance between UAVs 3 m
LBO 0.4 m

Flight speed 4.0 m/s
Image size 3280 × 2464 pixels

Camera focal length 3.04 mm
Camera sensor size 4.6 mm

3. Results and Discussion
3.1. Results of Multiple Path Generation Algorithms

Multiple paths were generated with the multiple-path generation algorithm developed
in this study. Prior to flying, all parameters required for the flight path generation were
input to generate a path for each UAV. Figure 13 shows the flight paths used in the algorithm
verification and field experiment conducted in this study. Multiple paths were generated
with 20 waypoints, a waypoint interval of 5 m, a total flight distance of 110 m, and a
coordinate slope of 17.8◦ for each UAV. All waypoints were generated above the sports
field of the Kangwon National University Medical School, and the UTM coordinates of
Zone 52S were used.
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3.2. Results of Flight Simulation
3.2.1. Multiple UAV Collaborative Driving Algorithm Optimization

Variable optimization for the multiple UAV collaborative driving algorithm was
performed in the simulation environment developed for this experiment. In the variable
optimization, nine variable combinations were used, with three levels (1, 3, and 5) of speed
(m/s) and three levels (0.2, 0.4, and 0.6) of LBO (m). As shown in Figure 14, the flight
accuracy increased with a decrease in the LBO size. As shown in Figure 15, the flight time
decreased with an increase in the maximum flight speed. First, the maximum flight speed
had the greatest effect on the total flight time, whereas the size of the LBO considerably
affected the flight accuracy. The variable combinations with the highest flight accuracy
were the LBO size of 0.2 m with a maximum flight speed of 1 m/s and the LBO size of 4.0 m
with a maximum flight speed of 3.0 m/s. The combination of variables with the shortest
total flight time (185 s) was the LBO size of 0.6 m with a maximum flight speed of 5 m/s,
although the flight accuracy was the lowest at 0.102 m. As the goal of the UAV operation in
this study was to collect images at an accurate location, priority was given to achieving
high flight accuracy. Considering the total flight time as a second priority, the combination
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of the LBO size of 0.4 m and a maximum flight speed of 3 m/s was selected as the optimal
combination of variables for achieving the highest flight accuracy with the shortest total
flight time.
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3.2.2. Results of Collision Avoidance Algorithm Verification

In the simulation environment, a large number of UAVs flew along a modified path,
and different UAVs were induced to randomly collide. As shown in Figure 16- 1©, the
collision avoidance algorithm operated normally before the collision, and the collision
was avoided. In the collision avoidance process, UAV 1 lowered the altitude as shown in
Figure 16- 2© and, as shown in the avoidance trajectory in Figure 17- 3©, UAV 2 moved to
the left and rear. Both UAVs safely returned to their home positions. In this experiment,
a collision situation was induced by modification, but UAVs may collide while flying
close to one another due to disturbance (wind) or unknown reasons during the operation
of multiple UAVs. Therefore, collision accidents could be prevented by applying the
developed collision avoidance algorithm. As a result of the collision test in the simulation
environment, the maximum proximity distance between UAVs was found to be 1.01 m,
although the collision avoidance detection distance was set to 2.0 m. The collision avoidance
latency may have been due to the inaccurate location of the UAV detected by the GPS
noise module installed in the simulation. Thus, improving the GPS noise and selecting an
appropriate collision distance according to GPS accuracy is necessary before applying it in
a real field.

3.3. Results of Field Test
3.3.1. Wireless Communication Latency

Figure 18 shows the results of the latency experiment for the wireless communication
between the UAV and the GCS. The average latency was 334 ms, and there was no loss
of wireless communication. When wireless communication between the UAV and the
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GCS was performed using MAVLink in a similar wireless communication experiment, the
wireless communication latency was 420 ms, with an average packet loss of 0.63% for a
communication distance of 20 m [31]. The average latency of 334 ms and the loss rate of 0%
shown in our communication latency experiment were sufficient for the remote control of
the UAV using MAVLink.
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3.3.2. Comparison between Simulation and Actual Field Tests

As a result of flight comparison experiments in the simulated environment and real
field with the optimized flight variables (an LBO size of 0.4 m and a maximum flight speed
of 3 m/s), the flight trajectory was as shown in Figures 19 and 20. As for the simulation, the
total flight time was 164 s and the flight accuracy was 0.06 m, whereas for the actual flight,
the total flight time was 185 s and the flight accuracy was 0.08 m (Table 5). The total flight
time used here was calculated as the total flight time of UAV 1 from the first waypoint to
the last waypoint, and the flight accuracy was extracted from a total of four straight-section
flights. When flying on the same path, the flight time was longer in real flight with a lower
flight accuracy than in the simulation environment. As there was no external disturbance
in the flight in the simulation environment, there was less shaking during the flight than
when flying in the actual field, leading to smooth waypoint updates as well as a shorter
total flight time. As the developed simulation reproduced the flight paths and tendencies
similar to flight experiments conducted in the actual field, it could be used as a tool to
verify the simulation flight and algorithm prior to the actual flight.
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Table 5. Flight performance comparison of simulation and actual field results.

Simulation Actual Field

Flight time 164 s 185 s
Flight accuracy 0.06 m 0.08 m

3.3.3. Collision Avoidance in the Actual Field

As a result of the collision avoidance verification experiment in the actual field, using
the collision avoidance algorithm verified in the simulation environment and the arbi-
trarily modified collision path, collision avoidance was normally performed, as shown in
Figure 21. The maximum proximity distance of the UAVs was 0.33 m, and the collision
avoidance response was delayed by 0.68 m compared to the simulation. As long-distance
communication latency occurred along with GPS position error in the actual field, collision
detection responded later than in the simulation. For a faster collision avoidance response,
a long-distance communication module with low latency and a real-time kinematic global
positioning system (RTK-GPS) with higher accuracy than general GPS seems necessary.
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3.3.4. Comparison of Existing Commercial and Developed Program Performance

Figure 22 shows the actual flight trajectories of the UAV to which the collaborative
driving algorithm developed in this study was applied and the UAV using the commercial
program. Although the flight trajectories appeared similar to each other, the flight accuracy
was measured to be high at 0.08 m for the UAV with the collaborative driving algorithm
applied. The trajectory of the UAV operated by the commercial program (QgroundControl)
was S-shaped, fluctuating up to 0.15 m or more from the original path, whereas the UAV
controlled by the developed program stably followed the waypoints (fluctuating up to
0.09 m from the reference path). The total flight time was shorter with the commercial
program, at 127 s, than with the developed program (Table 6). The commercial program
did not support collaborative driving, and the flight time was shorter than when using
collaborative driving as the UAV did not have to wait for other UAVs, and could simply
move on after updating the waypoints on its own. The autonomous flight of a number of
UAVs to which a multiple UAV collaborative driving algorithm was applied involved a
loss in flight time compared to the existing commercial programs. However, it seems more
suitable for capturing images to improve phenotyping, as two or more UAVs can operate
collaboratively and provide higher accuracy.
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Table 6. Comparison of simulation and actual field results.

QgroundControl Developed Program

Flight time 127 s 185 s
Flight accuracy 0.2 m 0.08 m

4. Discussion

This paper developed a system for the cooperative driving of multiple UAVs to im-
prove the accuracy of on-site phenotyping and to reduce external environmental influences
when using UAV-based agricultural remote sensing. As depicted in Figure 20 and Table 5,
the collaborative driving algorithm was verified in the simulation environment and in the
actual field. A simulation flight accuracy of 0.06 m, a field flight accuracy of 0.08 m, a
simulated flight time of 164 s, and a field flight time of 185 s revealed a similarity between
the simulation results and the field results, demonstrating the reliability of the flight simula-
tion. Through collaborative flight, it was possible to fly while waiting for different delayed
UAVs, and a collision avoidance algorithm that could occur when flying in clusters was
developed and applied. There are many advantages of using multiple UAVs over a single
UAV, so research and development for application to various fields are active. Ju and Son
demonstrated that multiple UAVs are more efficient than single UAVs when using remote
sensing in agriculture. It can reduce the overall flight time, simultaneously reducing battery
consumption and increasing the required coverage area [20]. Gi et al. proposed a method
for effective collaborative operation by combining a wireless sensor network and multiple
UAVs and a method for recognizing objects and locations using multiple UAVs [23]. Paula
et al. proposed a new modular solution for the autonomous driving of multiple UAVs.
The platform can abstract control details completely, allowing inexperienced users to plan,
execute, and monitor complex missions with one or more UAVs. Furthermore, devices
such as parachutes and sirens could be added to UAVs and activated when abnormal
behavior is detected [41]. Yao et al. used an optimal mission assignment method and
multiple quadcopters to minimize the time required for spraying [42]. However, most of
the studies using a large number of UAVs have been developed to overcome the general
disadvantages of a single UAV (e.g., short flight time and coverage), and studies to improve
phenotyping are scarce. When acquiring images for field phenotyping with a single UAV,
if the object being measured moves or changes due to a change in lighting or wind, a
measurement error may occur during the 3D reconstruction process. If it is possible to
acquire images taken from multiple perspectives almost simultaneously (within 20 ms),
measurement errors during the reconstruction process can be reduced to solve this prob-
lem. This study was designed to enable cooperative driving while collecting crop images
from various perspectives almost simultaneously using multiple UAVs. Accordingly, it is
expected that field phenotyping can be improved, and the accuracy decrease caused by
external disturbances (e.g., light and wind) can be overcome. Taking images from multi-
ple perspectives while driving multiple UAVs simultaneously requires linking the image
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collection device with multiple UAVs. It is necessary to develop devices and programs
to allow multiple UAVs to simultaneously acquire images from multiple perspectives by
operating the cameras’ image-capturing triggers when all UAVs arrive at the waypoint in
the same row. Furthermore, additional verification experiments are required to determine
whether multi-perspective image acquisition using multiple UAVs helps to improve field
phenotyping accuracy by comparing the field phenotyping results for the same field based
on a single image taken from a single UAV and a multi-perspective image taken from
multiple UAVs. Additionally, the collision avoidance algorithm worked correctly, but when
MAVSDK was applied to the actual aircraft, the return command did not work correctly, so
it was replaced with a spot landing. The next plan is to solve this by replacing the FC and
changing the firmware to Ardupilot. Finally, additional research is needed to measure the
maximum distance of wireless communications for collaborative driving in a wider field,
and to take countermeasures when wireless communications are disabled.

5. Conclusions

To minimize phenotypic errors by allowing multiple UAVs to simultaneously acquire
images from different viewpoints and improve digital surface models, this study developed
a novel system for the cooperation of multiple UAVs to optimize the cost, efficiency, and
productivity, while reducing the impact on the external environment. The GCS developed in
this system communicated wirelessly with different UAVs using MAVLink, and the loss rate
and communication latency were 0% and 334 ms, respectively, which were similar to those
of the common wireless communication method of UAVs. A GAZEBO-based simulation
environment was developed to optimize the flight parameters of the collaborative driving
algorithm and conduct the preliminary verification experiment prior to the field test.
Through the simulation, the optimal parameter values (LBO: 0.4 m, flight speed: 3.0 m/s)
were calculated. In field experiments conducted based on these parameters, it was found
that two UAVs performed autonomous flight stably. The flight time and flight accuracy
of the developed GCS were 185 s and 0.08 m, respectively, which increased the flight time
by 58 s compared to the previous program (QgroundControl), but the flight accuracy was
improved by 60%. The collaborative driving system developed in this study facilitates
the collaborative driving of multiple UAVs, which cannot be performed by the existing
commercial programs. Furthermore, because different UAVs are synchronized and fly
autonomously by updating waypoints simultaneously, it is possible to acquire the images
required for field phenotyping from multiple perspectives simultaneously, which can
reduce errors in field phenotyping.
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