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Abstract: We consider the state estimation of a maneuvering target in 3D using bearing and elevation
measurements from a passive infrared search and track (IRST) sensor. Since the range is not observ-
able, the sensor must perform a maneuver to observe the state of the target. The target moves with
a nearly constant turn (NCT) in the XY-plane and nearly constant velocity (NCV) along the Z-axis.
The natural choice for the NCT motion is to allow perturbations in speed and angular rate in the
stochastic differential equation, as has been pointed out previously for a 2D scenario using range and
bearing measurements. The NCT motion in the XY-plane cannot be discretized exactly, whereas the
NCV motion along the Z-axis is discretized exactly. We discretize the continuous-time NCT model
using the first and second-order Taylor approximations to obtain discrete-time NCT models, and we
consider the polar velocity and Cartesian velocity-based states for the NCT model. The dynamic and
measurement models are nonlinear in the target state. We use the cubature Kalman filter to estimate
the target state. Accuracies of the first and second-order Taylor approximations are compared using
the polar velocity-based and Cartesian velocity-based models using Monte Carlo simulations. Nu-
merical results for realistic scenarios considered show that the second-order Taylor approximation
provides the best accuracy using the polar velocity or Cartesian velocity-based models.

Keywords: angle-only filtering in 3D; infrared search and track (IRST) sensor; maneuvering target
tracking; cubature Kalman filter (CKF); Itô stochastic differential equation

1. Introduction

Angle-only filtering in 2D and 3D finds many important applications in passive track-
ing [1–13]. The advantage of passive tracking over active tracking is that the presence of the
passive sensor cannot be detected by the target. Passive tracking arises in submarine track-
ing using a passive sonar [1,11], passive ranging using an infrared search and track (IRST)
sensor [2,4,5,8,12], passive radar tracking [4], satellite-to-satellite passive tracking [14],
video tracking [15], etc. In this paper, we focus on tracking an aircraft using an IRST sensor
on another aircraft. This problem is more difficult than the case where multiple sensors
are used. The bearings-only filtering (BOF) problem in 2D has been extensively studied,
and a vast number of publications exist in the research literature [1,10,16–19], Chapter 6
of [11,20]. However, research in the angle-only filtering (AOF) problem in 3D is limited
compared to that in the bearings-only filtering problem.

Observability is a major issue for the BOF problem in 2D [21] and AOF problem in
3D. In the 2D problem, a four or five-dimensional state is estimated from bearings-only
measurements for a non-maneuvering and maneuvering target, respectively. To observe the
state of the target, the sensor must perform maneuvers with a motion of higher order than
that of the target [18]. If a four-dimensional Cartesian state is used for the BOF problem
in 2D for a non-maneuvering target, it has been observed that the extended Kalman filter
(EKF) [22,23] diverges. Modified polar coordinates (MPC) [1,24,25] were formulated to
overcome the divergence of the EKF. The components of the MPC are bearing, bearing-rate,
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range-rate divided by range, and the inverse of range [1]. The first three components of
MPC are observable even before an ownship maneuver. MPC decouple the observable and
unobservable components of the state vector and provide improved performance of the
EKF. Use of MPC makes the dynamic model for the nearly constant velocity (NCV) model
nonlinear and complex, but the measurement model becomes linear. In addition to the EKF,
the unscented Kalman filter (UKF) [26], cubature Kalman filter (CKF) [27], Gaussian sum
filter (GSF) [28], particle filter (PF) [11], uncorrelated conversion based filter (UCF) [20], etc.
have also been applied to the BOF problem in 2D. In order to address the observability
problem, the multiple model-based range-parametrized (RP) EKF (RP-EKF) was proposed
by Peach [19] and Kronhamn [16]. In addition to the EKF, other filters can also be used in
the RP framework.

Most of the existing work on the angle-only filtering problem in 3D is for a non-
maneuvering target using the NCV model. The sensor must perform a maneuver to
observe the target state. For a non-maneuvering target, the EKF using the Cartesian state
for the AOF problem in 3D does not diverge [8], even though the filter diverges for the
corresponding BOF in 2D [11]. In analogy with the MPC in 2D, Stallard proposed the
modified spherical coordinates (MSC) in 3D [12,13]. The components of the MSC are
elevation, elevation-rate, bearing, bearing-rate times cosine of elevation, the inverse of
range, and range-rate divided by range. As in the case of MPC, the dynamic model for the
NCV motion using MSC is nonlinear and complex. However, the measurement model is
linear since bearing and elevation are components of MSC. The log spherical coordinates
(LSC) [29] can also be used as an alternate to the MSC. The first five components of the LSC
are the same as those of the MSC, but the inverse of range (sixth component) is replaced
by the logarithm of the range. Many studies have shown that the EKF using the MSC
(EKF-MSC) provides a better state estimation accuracy than the Cartesian EKF (CEKF) for
the NCV motion [2,12,13].

Starting with the work of Stallard, the EKF-MSC was used in [2,12,13,30]. Karlsson
and Gustafsson used the PF and compared the PF-based algorithms with the multiple
model-based range-parametrized EKF (RP-EKF) using the Cartesian state and MSC in a
number of tracking scenarios [6,7]. Their results showed the superiority of the PF-based
algorithms over the RP-EKF-based algorithms.

In our previous work [29], we compared the EKF-MSC and EKF-LSC using the
continuous-discrete filtering approach with the discrete-time CEKF. The results of this
study show that the EKF-MSC and EKF-LSC have comparable accuracy and perform bet-
ter than the discrete-time CEKF for low measurement accuracy. For high measurement
accuracy, the discrete-time CEKF has higher state estimation accuracy than the EKF-MSC
and EKF-LSC. Prior to our work in [8,31,32], the process noise using the MSC was mod-
eled approximately. We proposed new algorithms using the MSC to model the process
noise exactly. The AOF for the NCV motion can be solved in the following three possible
ways [8,31,32]:

• Use the discrete-time NCV model with the Cartesian state vector (with linear dynamic
model) and nonlinear measurement model;

• Use the exact discrete-time NCV model with the MSC (with nonlinear dynamic model)
and linear measurement model;

• Use the MSC with approximate discretization of the continuous-time dynamic model
(with nonlinear dynamic model) and linear measurement model.

In [8], we performed a comprehensive study of the AOF problem for a non-maneuvering
target in 3D using the EKF, UKF, and PF with Cartesian state vector and MSC. In this
study, new algorithms using the EKF, UKF, and PF with the MSC were formulated, and
improved filter initialization algorithms for the Cartesian state and MSC were presented.
Four versions of the PF were used in this work: the Cartesian bootstrap filter (CBF),
bootstrap filter using MSC with exact dynamic model (BF-MSC(E)), bootstrap filter using
MSC with an approximate dynamic model (BF-MSC(A)), and the optimal importance
density-based PF using MSC with an approximate dynamic model (ODIPF-MSC(A)). The
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initial range between the target and the sensor in the scenarios in [8] is higher than that
in [6,7]. Numerical results from this study indicate that the state estimation accuracy of the
PF-based algorithms is inferior compared with that of the EKF and UKF-based algorithms.
For the BOF problem in 2D Chapter 6 of [11], the measurement SD is of the order of a
degree and the measurement time interval is about 30–60 s. In this scenario, a PF has one of
the best state estimation accuracies Chapter 6 of [11,20]. Secondly, compared to the EKF,
the PF-based algorithms have about two orders of magnitude higher computational cost.
Thirdly, It is now well established that, when the measurement accuracy and data rate are
high (which is true for the current problem), PFs do not offer any advantage over the EKF,
UKF, and CKF [33–35]. Therefore, we did not consider the PF in this study.

A novel batch Bayesian weighted instrumental variable estimator for the 3D target
motion analysis problem using bearing and elevation measurements is presented in [36].
Results of this study show that the proposed algorithm outperforms its non-Bayesian
counterpart. The CEKF, Cartesian UKF (CUKF), Cartesian CKF (CCKF), and the Cartesian
new sigma point Kalman filter (CNSKF) were used in [3] to analyze the AOF problem in 3D
for a non-maneuvering target. Results of this study shows that these five filters have nearly
the same accuracy in operational scenarios. The particle flow filter (PFF), ensemble Kalman
filter (EnKF), EKF, UKF, and PF were compared for the AOF problem in 3D for a non-
maneuvering target in [37]. It was observed that the EKF-MSC, UKF-MSC, deterministic
EnKF-MSC, and Cartesian PFF had the best performance in operational conditions.

In [38], we studied the passive sonar tracking problem when the submarine and the
ownship move in different planes using the EKF, UKF, RP-UKF, and PF. Our results showed
that the depth of the non-maneuvering target can be estimated accurately, and the PF
had the best performance in the scenarios studied. The 3D instrumental variable-based
Kalman filter (3D-IVKF) is applied to an underwater passive sonar tracking scenario in [39]
for a non-maneuvering target using bearing and elevation measurements. It is observed
that at low measurement standard deviations (SDs) (<6°) the performance of the 3D-IVKF
is comparable to that of the UKF and CKF. However, at higher measurement SDs, the
3D-IVKF outperforms the UKF and CKF with lower computational cost.

To compare the accuracies of the filters used in the AOF problem with the best achiev-
able accuracy, we computed the posterior Cramér-Rao lower bound (PCRLB) [40] for a
non-maneuvering target using the NCV model in [41]. Our results show that when the
measurement accuracy is high, the root mean square (RMS) position and velocity errors
are close to the corresponding PCRLBs. The difference between RMS position and velocity
errors and corresponding PCRLBs increases with a decrease in the measurement accuracy.
In [42], a globally valid posterior Cramér–Rao lower bound was derived for the AOF prob-
lem. The authors claim the von Mises–Fisher distribution to be superior to the conventional
approach using additive Gaussian noise in measured angular coordinates.

A maneuvering target refers to an accelerating target [43]. Common accelerated
motions considered in tracking are the nearly constant acceleration (NCA), nearly constant
turn (NCT), and jerk [4,22,43]. The NCA and jerk models are linear, whereas the NCT
model is nonlinear in the target state. The number of publications for a maneuvering
target in the AOF problem is quite limited. In [5], the NCT model was used in the passive
ranging problem using an IRST sensor in air-to-air tracking scenarios. The authors used the
RP-UKF using the multiple model method. However, algorithm details are not presented
in the paper. The NCT model in the XY−plane has been studied extensively where
the angular rate is estimated [4,22,43–46]. This problem arises in the air-traffic control
(ATC) scenario [4,22,27,43,47]. In most cases, the conventional discrete-time NCT model is
approximate, since the state transition matrix and process noise covariance matrix cannot
be derived from the continuous-time model using a consistent procedure.

We consider the tracking of a maneuvering aircraft in 3D and assume that the aircraft
moves in the XY-plane with the NCT motion and has a NCV motion along the Z-axis. The
speed and angular rate are constant for the constant turn motion (CT) in the XY-plane.
Thus, it is natural to perturb the speed and angular rate in the NCT motion with the
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continuous-time white noise (Wiener processes) [22]. We follow this approach from [45]
to obtain the nonlinear stochastic differential equation (SDE) [48,49] for the NCT motion.
Since the SDE is nonlinear, it cannot be discretized exactly. We discretize the SDE using
the first and second-order weak Taylor (TS2) approximations [50] to obtain approximate
discrete-time dynamic models. The first-order stochastic Taylor series approximation is
also known as the Euler approximation. Two types of states for the NCT motion in the
XY-plane, namely the polar velocity and the Cartesian velocity-based states [43–46], are
used. The NCV motion along the Z-axis is discretized exactly. The Cartesian velocity state
in NCT comprises the 2D position, 2D velocity, and angular rate. In the polar velocity state,
the speed and heading replace the 2D Cartesian velocity.

An IRST sensor on another maneuvering aircraft collects azimuth and elevation
measurements. The accuracy of the angle measurements by an IRST sensor is usually
high (1 mrad). The data rate of an IRST sensor is also high (1 Hz). As sensor technology
improves, these factors are expected to improve. The AOF algorithm is required to process
the sensor measurements sequentially in real time. Thus, a batch algorithm is ruled out
for this tracking scenario. As discussed previously, a PF is not considered for this problem
due to its lack of state estimation accuracy and high computational cost. It has been
observed in [33–35] that when the measurement accuracy and data rate are high (which is
true for the current problem), the UKF and CKF have nearly the same accuracy, and the
accuracy of the EKF is somewhat lower. If the dimension of the state is n, then the UKF
and CKF have 2n + 1 and 2n sigma points and cubature points, respectively. As a result,
the computational cost of the CKF is lower than that of the UKF. If n > 3, then the first
weight in the UKF becomes negative and the rest of the 2n weights are positive. On the
contrary, each of the 2n weights in the CKF is positive and equal to 1/2n. This negative
weight may cause a filter-calculated covariance matrix to be non-positive definite in some
cases [27]. The CKF was also successfully used in our previous work on AOF in [9]. Hence,
we chose the third-degree spherical–radial cubature rule-based CKF [27] to estimate the
seven-dimensional state of the maneuvering target. The CKFs using the Euler and TS2
approximations are called CKF1 and CKF2, respectively. Thus, we consider four CKF filters;
CKF1P, CKF1C, CKF2P, and CKF2C, where the last letter in the filter refers to polar and
Cartesian velocity states.

Notation convention: For clarity, we use italics to denote scalar quantities and boldface
for vectors and matrices. A lower or upper-case Roman letter represents a name (e.g.
“s” for “sensor,” “RMS” for “root mean square,” etc.). We use “:=” to define a quantity
and A′ denotes the transpose of the vector or matrix A. The n−dimensional identity
matrix, m−dimensional null matrix, and m × n null matrix are denoted by In, 0m, and
0m×n, respectively.

The paper is organized as follows. Section 2 presents the dynamic models for the
target. Section 3 explains the discretization of target NCT models, and Section 4 describes
sensor dynamic and measurement models. A summary of the four CKF filters is given in
Section 5. Numerical simulations and results are presented in Section 6. Finally, Section 7
summarizes our contributions in the paper.

2. Target Dynamic Models

We assume that the IRST sensor trajectory is deterministic and the states of the sensors
are known exactly at measurement times. To improve the observability of the target
state, the IRST sensor performs maneuvers with a sequence of CV and constant turn (CT)
motions [5,8,31].

Two types of coordinates are commonly used for the NCT in the XY-plane: Cartesian
velocity and polar velocity-based models [43–46]. In addition to the 2D position and
velocity, the turn-rate or angular velocity ω is also estimated in the NCT model.

Let z(t) denote the Cartesian state along the Z-axis with position and velocity components

z(t) :=
[

z(t) ż(t)
]′. (1)
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For the NCT model in the XY-plane, we use η(t) and ξ(t) for state vectors where
the angular velocity ω is estimated. The velocity in η(t) and ξ(t) has Cartesian and polar
coordinates, respectively. Let s(t) and θ(t) denote the speed and heading of the target in the
XY-plane. In this paper, the heading is defined as the angle of the velocity in the XY-plane,
measured from the X-axis in the counter-clockwise direction, as shown in Figure 1.

TX

TY Local  

North 

Local  

East 

( )tq

2D  

velocity 

Target 

trajectory 

in 2D  

Figure 1. Definition of heading θ(t) in the tracker coordinate frame, θ(t) ∈ [0, 2π).

Then η(t) and ξ(t) are defined, respectively, by

η(t) :=
[

x(t) y(t) ẋ(t) ẏ(t) ω(t)
]′, (2)

ξ(t) :=
[

x(t) y(t) s(t) θ(t) ω(t)
]′. (3)

Three-dimensional state vectors where angular velocity is estimated are defined,
respectively, by

xc(t) :=
[

η(t)′ z(t)′
]′, (4)

xp(t) :=
[

ξ(t)′ z(t)′
]′. (5)

We assume that the measurement time interval is constant; i.e., tk − tk−1 = T for all k.
In this paper, we use the discretized continuous-time models [22].

The discrete-time dynamic model for the NCV motion along the Z-axis is given by

zk = F1zk−1 + wz,k−1, (6)

where F1 is the state transition matrix and wz,k−1 is a zero-mean white Gaussian process
noise with covariance Qz,

F1 =

[
1 T
0 1

]
, (7)

Qz = qzB, (8)

B =

[
T3/3 T2/2
T2/2 T

]
, (9)

where qz is the power spectral density (PSD) of the continuous-time acceleration process
noise along the Z-axis [22].

The time derivative of ξ(t) is given by

ξ̇(t) =
[

ẋ(t) ẏ(t) ṡ(t) θ̇(t) ω̇(t)
]′. (10)

We have
ẋ(t) = s(t) cos θ(t), ẏ(t) = s(t) sin θ(t). (11)
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Since θ̇(t) = ω(t), (10) can be written as

ξ̇(t) =
[

s(t) cos θ(t) s(t) sin θ(t) ṡ(t) ω(t) ω̇(t)
]′. (12)

The time derivative of η(t) is

η̇(t) =
[

ẋ(t) ẏ(t) ẍ(t) ÿ(t) ω̇(t)
]′. (13)

In the constant turn (CT) model, the speed and turn rate are constant. The speed and
turn rate can be modeled as nearly constant in the NCT motion. Examining (12) and (13),
we find that for the NCT model, (12) is more suitable than (13), based on symmetry
considerations. Using conventional models in the engineering literature [22], for the NCT
model, we may write

ṡ(t) = ws(t), ω̇(t) = wω(t), (14)

where ws(t) and wω(t) are continuous-time zero-mean white acceleration and angular
acceleration process noises with power spectral densities qs and qω, respectively, [22]

E{ws(t)} = 0, E{ws(t)ws(τ)} = qsδ(t− τ), (15)

E{wω(t)} = 0, E{wω(t)wω(τ)} = qωδ(t− τ), (16)

where δ is the Dirac delta function [51]. We can write (14)–(16) mathematically rigorously
by defining

ds(t) =
√

qsdβs(t), dω(t) =
√

qωdβω(t), (17)

where dβs(t) and dβω(t) are standard independent Wiener processes [45,48]

E{dβs(t)dβs(t)} = dt, E{dβω(t)dβω(t)} = dt, (18)

E{dβs(t)dβω(t)} = 0. (19)

Define
fp(ξ(t)) :=

[
s(t) cos θ(t) s(t) sin θ(t) 0 ω(t) 0

]′, (20)

wp(t) :=
[

0 0 ws(t) 0 wω(t)
]′, (21)

Gp :=
[

0 0
√

qs 0 0
0 0 0 0

√
qω

]′
, (22)

dβ(t) :=
[

dβs(t) dβω(t)
]′. (23)

Then, conventionally, we can write ξ̇(t) as [23,48]

ξ̇(t) = fp(ξ(t)) + wp(t). (24)

We can write the time derivative of the polar state vector mathematically rigorously
using the Itô stochastic differential equation (SDE) [45,48,49]

dξ(t) = fp(ξ(t))dt + Gpdβ(t), (25)

where
E{dβ(t)dβ′(t)} = I2dt. (26)

We assume that the prior distribution of ξ is Gaussian,

ξ0 = ξ(t0) ∼ N (ξ0; ξ̄0, Pξ
0). (27)
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The time derivative of η contains Cartesian accelerations ẍ and ÿ in (13). It is necessary
to transform them to derivatives of speed and angular velocity. The 2D Cartesian velocity
is given by

v(t) =
[

ẋ(t) ẏ(t)
]′ (28)

and the Cartesian acceleration is v̇(t). Using (11), the Cartesian acceleration is expressed by

v̇(t) =
[

ṡ(t) cos θ(t)−ω(t)ẏ(t) ṡ(t) sin θ(t) + ω(t)ẋ(t)
]′. (29)

Using a similar approach, the Itô SDE [45,48,49] for the Cartesian state is

dη(t) = fc(η(t))dt + Gc(η(t))dβ(t), (30)

where
fc(η(t)) :=

[
ẋ(t) ẏ(t) −ω(t)ẏ(t) ω(t)ẋ(t) 0

]′, (31)

Gc(η(t)) :=
[

0 0
√

qs ẋ(t)/s(t)
√

qsẏ(t)/s(t) 0
0 0 0 0

√
qω

]′
. (32)

3. Discretization of Target NCT Models
3.1. The Euler Approximation

The Euler approximation is obtained by applying the Itô lemma [48] to the integral form
of the SDE and retaining only single integral terms. Applying the Euler approximation [50] to
the 2D polar velocity dynamic model, we obtain the stochastic difference equation [45]:

ξk = ξk−1 + Tfp(ξk−1) +
√

TGpw1, (33)

where fp(ξ) is defined in (20) and

w1 ∼ N (w1; 02×1, I2). (34)

The covariance of the polar velocity process noise wξ
k−1 =

√
TGpw1 is described by

wξ
k−1 ∼ N (wξ

k−1; 05×1, Qξ), (35)

Qξ = diag(0, 0, qsT, 0, qωT). (36)

From (36), we see that the polar velocity process noise is independent of the state.
Similarly, applying the Euler approximation to the Cartesian velocity dynamic model,

we obtain the stochastic difference equation [45]

ηk = ηk−1 + Tfc(ηk−1) +
√

TGc(ηk−1)w1, (37)

where fc(η) is defined in (31). The Cartesian velocity process noise wη
k−1 =

√
TGc(ηk−1)w1

is described by
wη

k−1(ηk−1) ∼ N (wη
k−1; 05×1, Qη

k−1), (38)

Qη
k−1 = TE{Gc(ηk−1)G

′
c(ηk−1)}. (39)

We make the following approximation in calculating E{Gc(ηk−1)G
′
c(ηk−1)},

E{Gc(ηk−1)G
′
c(ηk−1)} ≈ Gc(η̂k|k−1)G

′
c(η̂k|k−1), (40)

where η̂k|k−1 is the predicted Cartesian velocity state estimate at time k. Then,

Qη
k−1 ≈ TGc(η̂k|k−1)G

′
c(η̂k|k−1). (41)
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Simplification of (41) gives

Qη
k−1 ≈

 02 02 02×1
02 qsTAk−1(η̂k|k−1) 02×1

01×2 01×2 qωT

′, (42)

where

Ak−1(η̂k|k−1) =
1

ŝ2
k|k−1

[
ˆ̇x2
k|k−1

ˆ̇xk|k−1 ˆ̇yk|k−1
ˆ̇xk|k−1 ˆ̇yk|k−1 ˆ̇y2

k|k−1

]′
. (43)

From (42) and (43), we see that the Cartesian velocity-based process noise covariance
is state-dependent.

From (4) and (5), we get the polar and Cartesian velocity-based states as

xp,k =
[

ξ′k z′k
]′, (44)

xc,k =
[

η′k z′k
]′. (45)

The 3D discrete-time dynamic model for the polar velocity-based model is given by

xp,k = xp,k−1 + Tf̃p(xp,k−1) + wp,k−1, (46)

where f̃p(xp) is defined by

f̃p(xp) =
[

s cos θ s sin θ 0 ω 0 ż 0
]′, (47)

wp,k−1 :=
[
(wξ

k−1)
′ w′z,k−1

]′
, (48)

wp,k−1 ∼ N (wp,k−1; 07×1, Qp), (49)

Qp =

[
Qξ 05×2

02×5 Qz

]
. (50)

Similarly, the 3D discrete-time dynamic model for the Cartesian velocity-based model
is given by

xc,k = xc,k−1 + Tf̃c(xc,k−1) + wc,k−1, (51)

where f̃c(xc) is defined by

f̃c(xc) =
[

ẋ ẏ −ωẏ ωẋ 0 ż 0
]′, (52)

wc,k−1 :=
[
(wη

k−1)
′ w′z,k−1

]′
, (53)

wc,k−1 ∼ N (wc,k−1; 07×1, Qc,k−1), (54)

Qc,k−1 =

[
Qη

k−1 05×2
02×5 Qz

]
. (55)

3.2. Order 2 Weak Taylor Approximation

Using the order 2 weak Taylor approximation [50] to the SDE, we obtain the discretized
dynamic model for the polar velocity-based model as [45]
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ξk = ξk−1 + Tfp,2(ξk−1) + Gp,2(ξk−1)w2, (56)

where

fp,2(ξk−1) =


sk−1 cos(θk−1)− Tsk−1ωk−1 sin(θk−1)/2
sk−1 sin(θk−1) + Tsk−1ωk−1 cos(θk−1)/2

0
ωk−1

0

, (57)

Gp,2(ξk−1) = Ep(ξk−1)V(T), (58)

Ep(ξk−1) =


√

qs cos(θk−1) 0 0 0√
qs sin(θk−1) 0 0 0

0 0
√

qs 0
0

√
qω 0 0

0 0 0
√

qω

, (59)

V(T) =
[ √

T3/3 0√
3T/2

√
T/2

]
⊗ I2, (60)

w2 ∼ N (w2; 04×1, I4). (61)

In (60), ⊗ refers to the Kronecker product [52].
The process noise wp,2,k−1 = Gp,2(ξk−1)w2 and associated covariance Qp,2,k−1 for the

second-order polar velocity-based model are described, respectively, by

wp,2,k−1 ∼ N (wp,2,k−1; 05×1, Qp,2,k−1), (62)

Qp,2,k−1 = E{Gp,2(ξk−1)G
′
p,2(ξk−1)}. (63)

Using a similar approximation as before, we obtain

Qp,2,k−1 ≈ Gp,2(ξ̂k|k−1)G
′
p,2(ξ̂k|k−1), (64)

where ξ̂k|k−1 is the predicted polar velocity state estimate at time k.
Simplification of Gp,2(ξk−1)G

′
p,2(ξk−1) gives

Gp,2(ξk−1)G
′
p,2(ξk−1) =



T3 cos2(θk−1)
3 qs

T3 sin(2θk−1)
6 qs

T2 cos(θk−1)
2 qs 0 0

T3 sin(2θk−1)
6 qs

T3 sin2(θk−1)
3 qs

T2 sin(θk−1)
2 qs 0 0

T2 cos(θk−1)
2 qs

T2 sin(θk−1)
2 qs Tqs 0 0

0 0 0 T3

3 qω
T2

2 qω

0 0 0 T2

2 qω Tqω


. (65)

The discretized dynamic model for the Cartesian velocity-based model using the TS2
approximation to the SDE is given by [45]

ηk = ηk−1 + Tfc,2(ηk−1) + Gc,2(ηk−1)w2, (66)

where

fc,2(ηk−1) =


ẋk−1 − Tωk−1ẏk−1/2
ẏk−1 + Tωk−1 ẋk−1/2

−ωk−1ẏk−1 − Tω2
k−1 ẋk−1/2

ωk−1 ẋk−1 − Tω2
k−1ẏk−1/2

0

, (67)

Gc,2(ηk−1) = Ec(ηk−1)V(T), (68)
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Ec(ηk−1) =


√

qs ẋk−1/sk−1 0 0 0
√

qs ẏk−1/sk−1 0 0 0
0 −√qω ẏk−1

√
qs(ẋk−1 − Tωk−1ẏk−1)/sk−1 0

0
√

qω ẋk−1
√

qs(ẏk−1 + Tωk−1 ẋk−1)/sk−1 0
0 0 0

√
qω

. (69)

The process noise wc,2,k−1 = Gc,2(ηk−1)w2, and corresponding covariance Qc,2,k−1 for
the second-order Cartesian velocity-based model are given, respectively, by

wc,2,k−1 ∼ N (wc,2,k−1; 05×1, Qc,2,k−1), (70)

Qc,2,k−1 = E{Gc,2(ηk−1)G
′
c,2(ηk−1)}. (71)

The approximate expression for the process noise is given by

Qc,2,k−1 ≈ Gc,2(η̂k|k−1)G
′
c,2(η̂k|k−1), (72)

where η̂k|k−1 is the predicted state estimate at time k. Simplification of Gc,2(ηk−1)G
′
c,2(ηk−1)

gives

Gc,2(ηk−1)G
′
c,2(ηk−1) =

T3

3 a2
1qs

T3

3 a1a2qs
T2

2 a1a3qs
T2

2 a1a4qs 0
T3

3 a1a2qs
T3

3 a2
2qs

T2

2 a2a3qs
T2

2 a2a4qs 0
T2

2 a1a3qs
T2

2 a2a3qs Ta2
3qs +

T3

3 ẏ2
k−1qω Ta3a4qs − T3

3 ẋk−1ẏk−1qω − T2

2 ẏk−1qω
T2

2 a1a4qs
T2

2 a2a4qs Ta3a4qs − T3

3 ẋk−1ẏk−1qω Ta2
4qs +

T3

3 ẋ2
k−1qω

T2

2 ẋk−1qω

0 0 − T2

2 ẏk−1qω
T2

2 ẋk−1qω Tqω

,
(73)

where
a1 =

ẋk−1
sk−1

, a2 =
ẏk−1
sk−1

, (74)

a3 =
ẋk−1 − Tωk−1ẏk−1

sk−1
, a4 =

ẏk−1 + Tωk−1 ẋk−1
sk−1

. (75)

3.3. Comparison with Conventional NCT Model

We consider the NCT model using the Cartesian velocity-based state, when the angular
rate is estimated. The NCT model using the direct discrete approach is described in
Chapter 11 of [22]. The discretized continuous-time NCT model [27] is described by

ηk = FC
NCT(ω)ηk−1 + wC

k−1, (76)

FC
NCT(ω) =


1 0 sin(ωT)

ω − 1−cos(ωT)
ω 0

0 1 1−cos(ωT)
ω

sin(ωT)
ω 0

0 0 cos(ωT) − sin(ωT) 0
0 0 sin(ωT) cos(ωT) 0
0 0 0 0 1

, (77)

wC
k−1 ∼ N (wC

k−1; 0, QC
k−1), (78)

QC
k−1 =


qT3/3 0 qT2/2 0 0

0 qT3/3 0 qT2/2 0
qT2/2 0 qT 0 0

0 qT2/2 0 qT 0
0 0 0 0 qωT

, (79)

where q is the PSD of the acceleration process noise along the X or Y direction.
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Remark 1. The upper left 4× 4 block of the state transition matrix in (77) is the state transition
matrix for the NCV model using Cartesian state [22]. Similarly, the upper left 4× 4 block of
the process noise covariance matrix in (79) is the process noise covariance matrix for the NCV
model using Cartesian state [22]. They cannot be derived from a continuous-time model of the
NCT motion.

The second-order model with the TS2 approximation and Cartesian velocity-based
state was used in [53], and a superior RMSE was reported compared with the conventional
model described above.

4. Sensor Dynamic and Measurement Models
4.1. Sensor Dynamic Models

We assume that the motion of the sensor is deterministic and the state of the sensor at
each measurement time is exactly known. The sensor follows two types of motion: constant
velocity (CV) in 3D and the second type of motion with known angular velocity Ω. For both
types of motion, the Cartesian state vector of the sensor is appropriate and is defined by

xs(t) :=
[

xs(t) ys(t) ẋs(t) ẏs(t) zs(t) żs(t)
]′. (80)

The dynamic models of the sensor for the CV and CT are described, respectively,
by [8,31]

xs
k = FCV(T)xs

k−1, (81)

FCV(T) =

 I2 I2T 02
02 I2 02
02 02 F1

. (82)

xs
k = FCT(T, Ωk−1)x

s
k−1, (83)

where the state transition matrix F1 for CV is defined in (7), Ωk−1 is the angular velocity of
the sensor during [tk−1, tk) and the state transition matrix for CT is given by

FCT(T, Ω) =



1 0 sin(ΩT)/Ω −[1− cos(ΩT)]/Ω 0 0
0 1 [1− cos(ΩT)]/Ω sin(ΩT)/Ω 0 0
0 0 cos(ΩT) − sin(ΩT) 0 0
0 0 sin(ΩT) cos(ΩT) 0 0
0 0 0 0 1 T
0 0 0 0 0 1

. (84)

In passive IRST tracking, the sensor moves with a sequence of CV and CT motions [8,31].

4.2. Measurement Model

Let pk and ps
k denote the target and sensor position vectors, respectively, at time tk,

pk := [xk yk zk]
′, (85)

ps
k := [xs

k ys
k zs

k]
′. (86)

An IRST sensor measures the bearing and elevation angles of a target [5,8] , as shown
in Figure 2. We note that the bearing (φk) and elevation (εk) angles depend on the relative
position pk − ps

k in Cartesian and polar velocity-based models. Hence, for both type of
state vectors, the measurement model for the bearing and elevation angles is described by

yk = h(pk, ps
k) + nk, (87)

h(pk, ps
k) :=

[
φk
εk

]
=

[
tan−1(xk − xs

k, yk − ys
k)

arctan((zk − zs
k)/ρk)

]
, (88)
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where φk and εk lie in [0, 2π) and (−π/2, π/2), respectively and the ground range ρk is
defined by

ρk :=
√
(xk − xs

k)
2 + (yk − ys

k)
2, ρk > 0. (89)

Target

T
X

T
Y

T
Z

Ownship

x

y

z

Local 

North

Local 
East

Local 

Up

ε

φ

Figure 2. Definition of the tracker coordinate frame (T frame), bearing φ ∈ [0, 2π) and elevation
ε ∈ (−π/2, π/2).

We assume that the measurement noise is zero-mean Gaussian with covariance R

nk ∼ N (nk; 0, R), (90)

R := diag(σ2
φ, σ2

ε ), (91)

where σφ and σε are the bearing and elevation measurement standard deviations (SDs),
respectively.

5. Filtering Algorithms

We compare the performances of four CKF-based algorithms using the Euler and TS2
approximations with the polar and Cartesian velocity-based states. These four algorithms
are called CKF1P, CKF1C, CKF2P, and CKF1P. The discrete-time dynamic and measurement
models in these algorithms are nonlinear. The features of these algorithms are summarized
in Table 1. In [54], the authors have considered the maneuvering target tracking problem
using a CKF-based CDF filter with range, azimuth, and elevation measurements. They
claim that this is a very challenging problem. They use the prior distribution to initialize
the filter. The problem considered in our study is relatively harder since only azimuth, and
elevation measurements are available.

Table 1. Features of CKF based algorithms.

Filter 2D State in NCT Approximation Process Noise

CKF1P Polar velocity Euler State-independent
CKF1C Cartesian velocity Euler State-dependent
CKF2P Polar velocity TS2 State-dependent
CKF2C Cartesian velocity TS2 State-dependent

6. Numerical Simulation and Results

The IRST sensor trajectory and parameters in the simulation are similar to those used
in [8,31]. The target moves with an NCT motion in a plane parallel to the XY-plane and
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moves with an NCV motion along the Z-axis. Table 2 presents prior mean polar velocity-
based state parameters of the target. The NCT motion has a centripetal acceleration s1ω1 of
3 g, where g = 9.8 m2s−2. This scenario was used in [5]. We use the same filter initialization
with that in [54] in the current study. The prior variance of the 3D polar velocity-based
state is chosen as

P0,p,1 = diag(10002 m2, 10002 m2, 302 m2s−2, 0.0873 rad2, (4.95× 10−3)2rad2 s−2,

1002 m2, 52 m2s−2). (92)

Using the Euler approximation, the process noise covariance in the polar velocity-
based model for the NCT motion can be calculated exactly. Hence, we use the Euler
approximation for the polar velocity-based model to generate true target trajectories for the
NCT motion in the XY-plane using 100 sub-sampling intervals for the measurement time
interval (T) of 1 s. The Z-component of the NCV trajectory is generated exactly. The process
noise parameters used in the simulation are qs = 0.2 m2s−3, qω = 5e− 07 rad2s−3, and
qz = 0.001 m2s−3. Figure 3 presents the true NCT trajectory of the target in the XY-plane
from the first Monte Carlo run.

Table 2. Prior polar mean velocity-based 3D state parameters of target.

Variable Value

x̄0 (m) 97,580.7358
ȳ0 (m) 97,580.7358

s̄0 (m/s) 297.0
θ̄0 (deg) 215.0

ω̄0 (deg/s) 5.672
z̄0 (m) 9000.0

¯̇z0 (m/s) 0.0

98 99 100 101 102 103 104

X (km)

94

95

96

97

98

99

Y
 (

k
m

)

Figure 3. Target true trajectory in the XY-plane from the first Monte Carlo run. The green circle and
the red diamond represent the start point and end point, respectively.

We assume that the motion of the sensor is deterministic. The sensor moves in a plane
parallel to the XY-plane at a fixed height of 10 km and follows a sequence of CV and CT
motions. The initial position and velocity vectors of the sensor are (0, 0, 10,000) m and (0,
264, 0) m/s, respectively. Table 3 presents the motion profile of the sensor. In Table 3, ∆t
represents the duration of the segment, ∆φs is the total angular change during the segment,
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and Ω is the angular velocity of the sensor during the segment. The measurement time
interval of the IRST sensor is 1 s and there are 101 measurements. The measurement error
SDs for bearing and elevation have the same value. We use two angle SDs of 1 mrad and
2 mrad in this simulation. The sensor trajectory in the XY-plane is shown in Figure 4.

Table 3. Motion profile of the sensor.

Interval (s) ∆t (s) ∆φs (rad) Motion Type Ω (rad/s)

[0, 15] 15 0 CV 0
[15, 31] 16 −π/4 CT −π/64
[31, 43] 12 0 CV 0
[43, 75] 32 π/2 CT π/64
[75, 86] 11 0 CV 0
[86, 102] 16 −π/4 CT −π/64

X (km)

0

5

10

15

20

25

Y
 (

k
m

)

Figure 4. Sensor trajectory in the XY-plane.

6.1. Comparison of Filtering Algorithms

We used 500 Monte Carlo runs to compute the root mean square (RMS) position,
velocity, and angular rate errors of the CKF1P, CKF1C, CKF2P, and CKF2C. Each filter is
initialized using the prior mean and covariance. The RMS errors for these four filters for
angle SDs of 1 mrad and 2 mrad are presented in Figures 5–7. Results in Figure 5 show that
RMS position errors of the CKF1P, CKF2P, and CKF2C are close and they are nearly the
same towards the end. On the contrary, the RMS position error of the CKF1C is significantly
higher during some measurement intervals and also significantly lower during a time
interval. We see in Figure 6 that the CKF2P and CKF2C have the best results and nearly the
same RMS velocity errors. The RMS velocity error of the CKF1P is slightly higher than that
CKF2P and CKF2C. The RMS velocity error of the CKF1C is significantly higher than that
of the other three filters. It appears that the CKF1C diverges for this maneuvering target
tracking scenario. A similar pattern is observed in the results of the angular rate errors in
Figure 7.



Sensors 2022, 22, 1422 15 of 22

0 20 40 60 80 100 120

Time index

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
M

S
 p

o
s
it
io

n
 e

rr
o
r 

(k
m

)

CKF1P

CKF1C

CKF2P

CKF2C

(a)

0 20 40 60 80 100 120

Time index

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
M

S
 p

o
s
it
io

n
 e

rr
o
r 

(k
m

)

CKF1P

CKF1C

CKF2P

CKF2C

(b)

Figure 5. RMS position error using the prior variance P0,p,1 from 500 Monte Carlo runs. (a) Angle SD
of 1 mrad, (b) Angle SD of 2 mrad.
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Figure 6. RMS velocity error using the prior variance P0,p,1 from 500 Monte Carlo runs. (a) Angle SD
of 1 mrad, (b) Angle SD of 2 mrad.
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Figure 7. RMS angular rate error using the prior variance P0,p,1 from 500 Monte Carlo runs. (a) Angle
SD of 1 mrad, (b) Angle SD of 2 mrad.
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To evaluate the overall performance of a filter, we use the root time-averaged mean
square (RTAMS) error [11] for position, velocity, and angular rate. Let pt

j,i and p̂t
j,i denote

the true and estimated position of the target, respectively, at time index j in the ith Monte
Carlo run. The RTAMS position error [11] is defined by

RTAMSpos =

√√√√ 1
NfM ∑

j∈Sf

M

∑
i=1
‖p̂t

j,i − pt
k,j‖2, (93)

where Sf is a set of time indices with Nf indices, and M is the number of Monte Carlo runs.
We have chosen time indices from 51 to 101 to define Sf. The RTAMS error [11] for velocity
and angular rate are similarly defined. Table 4 presents the RTAMS error metric for position,
velocity, and angular rate for measurement error SDs of 1 mrad and 2 mrad. Results in
Table 4 show that the CKF2P and CKF2C have the best RTAMS errors for position, velocity,
and angular rate, which are nearly the same.

Table 4. RTAMS position, velocity, and angular rate errors for CKF1P, CKF1C, CKF2P, and CKF2C
using the prior variance P0,p,1.

Metric Filter 1 mrad 2 mrad

Position error (km)

CKF1P 1.137 1.355
CKF1C 1.596 1.582
CKF2P 1.165 1.400
CKF2C 1.146 1.389

Velocity error (m/s)

CKF1P 28.628 28.178
CKF1C 75.853 77.691
CKF2P 18.959 21.132
CKF2C 18.867 21.334

Angular rate error (deg/s)

CKF1P 0.197 0.211
CKF1C 0.394 0.347
CKF2P 0.197 0.214
CKF2C 0.197 0.216

Table 5 presents CPU times for each Monte Carlo run and CPU times relative to the
CKF1P. Results in Table 5 show that the CKF1P has the fastest CPU time, being slightly
faster than the CKF2P.

Table 5. CPU times (s) for each Monte Carlo run and CPU times relative to CKF1P for angle SD of
1 mrad.

Filter CPU Time (s) CPU Relative to CKF1P

CKF1P 0.0377 1.0000
CKF1C 0.0386 1.0129
CKF2P 0.0391 1.0356
CKF2C 0.0789 2.0910

Let xk,i and x̂k,i be the true and filtered estimated X-coordinates at time k, respectively.
Similar definitions apply for other position coordinates. Then, the sample position bias is
given by [22,33]

bpos,k =
1
M

M

∑
i=1

[(xk,i − x̂k,i) + (yk,i − ŷk,i) + (zk,i − ẑk,i)]. (94)

For simplicity, we use “bias” to represent sample bias. Similarly, the biases for velocity
and angular rate can be defined. The bias at time k can be positive or negative. It is desirable
to have a small bias in the state estimate. The sample bias for position, velocity, and angular
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rate are shown in Figures 8 and 9. Results in Figure 8 show that the position biases of the
CKF1P, CKF2P, and CKF2C are small, and the velocity biases of CKF2P and CKF2C are
nearly zero. The angular rate biases of CKF1P, CKF2P, and CKF2C become smaller with
time and approach zero. The CKF1C has large position, velocity, and angular rate biases.

Time index

P
o
s
it
io

n
 b

ia
s
 e

rr
o
r 

(k
m

)

CKF1P

CKF1C

CKF2P

CKF2C

(a)

Time index

V
e
lo

c
it
y
 b

ia
s
 e

rr
o
r 

(m
/s

)

CKF1P

CKF1C

CKF2P

CKF2C

(b)

Figure 8. Position and velocity bias errors for the 1 mrad case. (a) Position bias, (b) Velocity bias.

Time index

O
m

e
g
a
 b

ia
s
 e

rr
o
r 

(d
e
g
)

CKF1P

CKF1C

CKF2P

CKF2C

Figure 9. Angular rate bias error for the 1 mrad case.

6.2. Dependence of Filtering Accuracy on the Prior Distribution

In order to analyze the dependence of filtering accuracy on the prior distribution, we
have chosen a larger prior variance for the 3D polar velocity-based state relative to that
used in (92)

P0,p,2 = diag(50002 m2, 50002 m2, 902 m2s−2, (3 ∗ 0.0873) rad2, (3 ∗ 4.95× 10−3)2 rad2s−2,

5002 m2, 152 m2s−2). (95)

The prior variance of Cartesian position is increased by 25 times, and the other compo-
nents have been increased by 9 times. The prior mean is unchanged. The RMSE plots of po-
sition, velocity, and angular rate are presented in Figures 10 and 11 for the 1 mrad scenario.
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Figure 10. RMS position and velocity errors using the prior variance P0,p,2 with angle SD of 1 mrad.
(a) RMS position error, (b) RMS velocity error.
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Figure 11. RMS angular rate error using the prior variance P0,p,2 with angle SD of 1 mrad.

Table 6 presents the RTAMS error for position, velocity, and angular rate for measure-
ment error SDs of 1 mrad and the second prior distribution. Results in Table 6 show that
the CKF2P and CKF2C have the best RTAMS errors for position, velocity, and angular rate,
which are nearly the same.

6.3. Summary of Key Results

Based on RMS and RTAMS errors, the key results of our study are as follows:

• The CKF1P has the best position estimation accuracy. The position estimation accura-
cies of the CKF2P and CKF2C are close to that of the CKF1P;

• The CKF2P and CKF2C have the best velocity estimation accuracy;
• The state estimation accuracies of the CKF2P and CKF2C are comparable. However,

the computational cost of the CKF2C is about twice that of the CKF2P;
• The CKF1C does not perform well for this problem and has high estimation errors.
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Table 6. Comparison of RTAMS position, velocity, and angular rate errors for CKF1P, CKF1C, CKF2P,
CKF2C using prior variances P0,p,1 and P0,p,2 with angle SD of 1 mrad.

Metric Filter P0,p,1 P0,p,2

Position error (km)

CKF1P 1.137 7.175
CKF1C 1.596 13.559
CKF2P 1.165 7.178
CKF2C 1.146 7.454

Velocity error (m/s)

CKF1P 28.628 47.204
CKF1C 75.853 75.192
CKF2P 18.959 43.836
CKF2C 18.867 42.973

Angular rate error (deg/s)

CKF1P 0.197 0.265
CKF1C 0.394 0.440
CKF2P 0.197 0.265
CKF2C 0.197 0.274

7. Conclusions

We considered the challenging filtering problem of a maneuvering target in 3D using
the bearing and elevation measurements from a maneuvering passive IRST sensor. Research
on this problem is rather limited. The target moves with the NCT motion in the XY-
plane and has an NCV motion along the Z-axis. We discretized the continuous-time
stochastic differential equation for the NCT model using the first (Euler) and second-
order Taylor approximations to obtain discrete-time NCT models. Discrete-time dynamic
and measurement models are nonlinear. For each approximation, we used the polar
and Cartesian velocity-based states for the NCT model. The CKF was used in each case
giving rise to four filters: CKF1P, CKF1C, CKF2P, and CKF2C. Numerical results based on
Monte Carlo simulations suggest that the second-order Taylor approximation-based filters
CKF2P and CKF2C have the best state estimation accuracy for this scenario. Secondly, the
accuracies of these two filters are nearly the same.

Our future work will develop filter initialization algorithms that can be used with real
data. We shall also focus on calculating the PCRLB for the filtering problem to assess the
best achievable accuracy.
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Abbreviations
The following abbreviations are used in this manuscript:

3D-IVKF 3D instrumental variable based Kalman filter
AOF Angle-only filtering
ATC Air-traffic control
BOF Bearings-only filtering
CKF Cubature Kalman filter
CKF1C CKF using Euler approximation with Cartesian velocity
CKF1P CKF using Euler approximation with polar velocity
CKF2C CKF using order 2 weak Taylor approximation with Cartesian velocity
CKF2P CKF using order 2 weak Taylor approximation with polar velocity
CCKF Cartesian CKF
CEKF Cartesian EKF
CNSKF Cartesian new sigma point Kalman filter
CUKF Cartesian UKF
CT Constant turn
CV Constant velocity
EKF Extended Kalman filter
EKF-MSC EKF using the MSC
EnKF Ensemble Kalman filter
IRST Infrared search and track
LSC Log spherical coordinates
MPC Modified polar coordinates
MSC Modified spherical coordinates
MMSE Minimum mean square error
NCT Nearly constant turn
NCV Nearly constant velocity
PFF Particle flow filter
PCRLB Posterior Cramér–Rao lower bound
PSD Power spectral density
RP-EKF Range-parametrized EKF
RP-UKF Range-parametrized UKF
RMS Root mean square
SD Standard deviation
SDE Stochastic differential equation
TS2 Order 2 weak Taylor
UKF Unscented Kalman filter
UKF-MSC UKF using the MSC
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