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Abstract: Stroke leads to significant impairment in upper limb (UL) function. The goal of rehabilita-
tion is the reestablishment of pre-stroke motor stroke skills by stimulating neuroplasticity. Among
several rehabilitation approaches, functional electrical stimulation (FES) is highlighted in stroke
rehabilitation guidelines as a supplementary therapy alongside the standard care modalities. The aim
of this study is to present a comprehensive review regarding the usability of FES in post-stroke UL
rehabilitation. Specifically, the factors related to UL rehabilitation that should be considered in FES
usability, as well a critical review of the outcomes used to assess FES usability, are presented. This
review reinforces the FES as a promising tool to induce neuroplastic modifications in post-stroke reha-
bilitation by enabling the possibility of delivering intensive periods of treatment with comparatively
less demand on human resources. However, the lack of studies evaluating FES usability through
motor control outcomes, specifically movement quality indicators, combined with user satisfaction
limits the definition of FES optimal therapeutical window for different UL functional tasks. FES
systems capable of integrating postural control muscles involving other anatomic regions, such as
the trunk, during reaching tasks are required to improve UL function in post-stroke patients.

Keywords: functional electrical stimulation; stroke; rehabilitation

1. Introduction

Stroke is the major cause of disability [1,2]. It was estimated that after stroke, 70%
of the patients present upper limb (UL) dysfunction, more than half present moderate to
severe dysfunction, 40% are left with a non-functional arm with implications in quality of
life [3,4] and only 5–20% recover UL function completely [5,6]. Although the main deficits
were described for the contralesional limb (limb contralateral to the lesioned hemisphere),
more recent studies have described postural control deficits also in the ipsilesional limb
(limb ipsilateral to the lesioned hemisphere) [7–9], which were demonstrated to interfere in
the rehabilitation of contralesional UL function [7]. Considering the determinant role of UL
during activities of daily living (ADL) [10–13], the rehabilitation of UL function, namely to
improve the ability to reach and grasp, required in over 50% of ADLs [14], is a primary aim
in stroke rehabilitation.

It is expected that stroke will continue to be the main cause of disability-adjusted life
years until 2030. Consequently, rehabilitation care will continue to represent an important
and growing burden for the global health system difficulting the ideal of personalized
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rehabilitation based on a ratio of one therapist for one patient [15–17]. The functional
electrical stimulation (FES), combining electrical stimulation with the performance of
functional tasks [18], could be a strategy to extend the UL rehabilitation beyond health care
units such as the home setting or other environments selected by the user [19,20]. By being
used beyond health care units, FES has the potential of alleviating the pressure on existing
health care infrastructures but may also constitute a powerful motivational factor since it is
performed in a more functional context [21].

Previous systematic reviews with meta-analysis have demonstrated the positive effects
of FES on ADL outcomes [19,20,22]. This modality was even recommended by the recent
Clinical Guidelines for Stroke Management [23] and Guidelines for Adult Stroke Rehabili-
tation and Recovery [17] as a supplementary therapy alongside standard care modalities.
However, according to the data gathered by previous systematic reviews [19,20,22], the
studies included did not assess the quality of movement as an outcome to assess the role
of FES in UL rehabilitation of post-stroke patients. In this context of the applicability of
the FES as a tool that contributes to enhancing the quality of movement of the post-stroke
subject, it is important to consider the concept of usability as a determining factor. Usability
is defined as a measure that evaluates the user’s performance with a specific product
or system, in particular with regards to the quality of the user’s experience, and can be
analyzed through effectiveness and user satisfaction [24].

The aim of this study is to present a comprehensive review regarding the usability
of FES in UL rehabilitation of post-stroke subjects. Specifically, the factors related to post-
stroke UL rehabilitation that should be considered in FES usability, as well a critical review
of the outcomes used to assess FES usability, are presented. Accordingly, this review is
divided into four sections. In the present section, the epidemiological data that sustain the
need of exploring strategies to improve UL function in post-stroke patients is presented.
The second section presents an overview of the particularities of UL rehabilitation in
post-stroke subjects and its implications in FES usability. Section three is focused on FES
usability and gathering and discussing the available measures to assess UL movement
quality indicators. This section presents a critical review of the outcomes to be considered
to assess FES effectiveness. Finally, the last section reports the final considerations of this
review. Figure 1 summarize the main arguments that highlight the need to review FES
usability in UL rehabilitation in post-stroke patients.
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2. UL Post Stroke Rehabilitation Factors That Should Be Considered in FES Usability

The goal of rehabilitation is the reestablishment of pre-stroke motor stroke skills by
stimulating neuroplasticity [25], a complex combination of spontaneous and learning-
dependent motor processes including restitution, substitution and compensation [26].
Evidence suggests that post-stroke recovery is largely dependent on learning adaptation
strategies, particularly those that promote the organization of residual neural circuits
and/or allow access via new and alternative pathways [27].

Neuromuscular electrical stimulation (NMES) has emerged as an efficient tool to
induce activity-dependent plasticity in neural circuits in stroke patients [28–30]. NMES
consists of a series of intermittent electrical stimuli applied over the muscle or the nerve
trunk to elicit tetanic muscle contractions [31,32]. When used in an isolated way, this
modality is mainly used for: (1) maintaining/preserving neuromuscular function during
disuse; (2) restoring neuromuscular function after disuse; and (3) improving neuromuscular
function in healthy individuals, including athletes [31]. In stroke patients, NMES is used
to assist voluntary movements during functional tasks, being commonly designated as
FES [33]. In fact, FES consists of the application of moderate-intensity and cyclic electrical
stimulation over selected muscles to generate functional movements that mimic voluntary
contractions and to restore functions that were lost [19,32]. The two common uses of FES
are to replace function (i.e., as an orthotic device) and to retrain function (i.e., as a thera-
peutic device) [34]. For more detailed information about FES systems used in post-stroke
rehabilitation, the review performed by Marquez-Chin and Popovic [32], 2020, should
be consulted. The main differences in the advantages of NME and FES are summarized
in Figure 2.
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Based on the arguments presented in Figure 2, technology-assisted training of arm-
hand skills based on FES is considered an attractive rehabilitation option. Particularly
because it has the ability to provide intensive periods of experience of the right sequence and
magnitude of muscle activity to perform functional tasks to facilitate motor re-learning [35]
with relatively low demand on human resources [3]. In fact, it is well known that among the
many endogenous and exogenous events that may trigger the post-injury neural plasticity
phenomena, experience with repetition is a strong modulator of cortical structure and
function [26,36–38]. Moreover, task-specific training in the familiar contexts of the patients
has the potential to enhance the acquisition of similar behaviors by transference [26,38,39].

A wide body of evidence supports the ability of FES in improving motor control [40–42].
This was demonstrated in output related variables such as range of movement, strength and
postural tone [40,41,43], but also in central processing related variables [44–50]. Specifically,
it was shown that FES leads to activation of the contralateral primary motor control so-
matosensory cortex and bilateral supplementary motor areas and prefrontal cortex [44–47]
and a modification of corticospinal excitability and the related output [48–50]. The neuro-
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plastic changes are greater if the practice method is meaningful, repetitive and intensive in
nature [43,51,52]

Based on the exposure and considering that the motor learning is specific and depends
on the repetition of the motor task, its novelty and concurrent volitional effort, the FES must
provide the execution of the movement for functional tasks performance with precision and
efficiency [53]. In fact, assistive technologies, including FES, together with task-orientated
training, combines two rehabilitation paradigms for the UL, providing a means to enable
patients to practice meaningful, functional tasks more intensely and more effectively on
their own by increasing neuronal functional connectivity as represented in Figure 3.

Sensors 2022, 22, 1409 4 of 14 
 

 

motor control somatosensory cortex and bilateral supplementary motor areas and pre-
frontal cortex [44–47] and a modification of corticospinal excitability and the related out-
put [48–50]. The neuroplastic changes are greater if the practice method is meaningful, 
repetitive and intensive in nature [43,51,52] 

Based on the exposure and considering that the motor learning is specific and de-
pends on the repetition of the motor task, its novelty and concurrent volitional effort, the 
FES must provide the execution of the movement for functional tasks performance with 
precision and efficiency [53]. In fact, assistive technologies, including FES, together with 
task-orientated training, combines two rehabilitation paradigms for the UL, providing a 
means to enable patients to practice meaningful, functional tasks more intensely and more 
effectively on their own by increasing neuronal functional connectivity as represented in 
Figure 3. 

 
Figure 3. Demonstration on how FES could increase neuronal functional connectivity in post-stroke 
patients. 

As mentioned in Figure 3, several cortical areas are frequently lesioned in stroke pa-
tients. The middle cerebral artery territory is most affected [54]. In these patients, there is 
a high probability for the dysfunction of the cortico-reticular pathway that enables the 
connection between the cerebral cortex, mostly in area 6, including the premotor cortex, 
and the supplementary area, to regulate the coordination between postural and move-
ment control [55,56]. Therefore, to interfere in functional disability, FES should be used 
not only in movement-related muscles such as deltoids, triceps and the wrist and finger 
extensors/flexors [19] but also in postural control-related muscles in different UL tasks 
[57]. 

During reaching tasks, each UL movement is preceded (preparatory anticipatory 
postural adjustments) and accompanied (accompanying anticipatory postural adjust-
ments) by anticipatory adjustments that must also occur in the contralateral side to move-
ment execution [58–61], i.e., when movement occurs in the contralesional side, the ipsile-
sional side has a key role in ensuring the proper postural background for movement effi-
ciency. Therefore, the incorporation and adaptation of FES technology for enhancing pos-
tural activity during reaching would increase its potential for improving UL movement 
quality and function. The evidence demonstrates that post-stroke subjects with lesions in 

Figure 3. Demonstration on how FES could increase neuronal functional connectivity in post-
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As mentioned in Figure 3, several cortical areas are frequently lesioned in stroke
patients. The middle cerebral artery territory is most affected [54]. In these patients, there
is a high probability for the dysfunction of the cortico-reticular pathway that enables
the connection between the cerebral cortex, mostly in area 6, including the premotor
cortex, and the supplementary area, to regulate the coordination between postural and
movement control [55,56]. Therefore, to interfere in functional disability, FES should be
used not only in movement-related muscles such as deltoids, triceps and the wrist and
finger extensors/flexors [19] but also in postural control-related muscles in different UL
tasks [57].

During reaching tasks, each UL movement is preceded (preparatory anticipatory
postural adjustments) and accompanied (accompanying anticipatory postural adjustments)
by anticipatory adjustments that must also occur in the contralateral side to movement
execution [58–61], i.e., when movement occurs in the contralesional side, the ipsilesional
side has a key role in ensuring the proper postural background for movement efficiency.
Therefore, the incorporation and adaptation of FES technology for enhancing postural
activity during reaching would increase its potential for improving UL movement quality
and function. The evidence demonstrates that post-stroke subjects with lesions in the
middle cerebral territory also present impairments in the ipsilesional side, mainly related to
postural control, which are even more important to this adaptation [7]. Since shoulder and
elbow training only improves motor impairment in the shoulder and elbow [62], and that
training of the wrist and finger extensors only improves hand function [63], FES systems
should have the capacity of stimulating postural control muscles involving other anatomic
regions, linking the trunk and ipsilesional side to improve UL function. In fact, evidence
shows that the benefits of FES are greatest when UL muscles are trained in a synergic
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pattern [62–65]. Hence, it is important for an FES system to: (1) accurately assist functional
tasks in a synergic way; (2) encourage user effort; and (3) ensure muscle recruitment
selectivity [66]. To achieve these assumptions, the FES systems should include the selection
of a set of parameters capable of providing functional movements.

It is known that square or rectangular biphasic pulse shape is more efficient for
nerve stimulation due to an instantaneous increase in current to the maximal level [67].
The pulse frequency, typically ranging between 15 and 40 Hz, affects the type of muscle
contraction and the level of force produced [32,67,68]. The higher stimulus frequencies
generate higher forces (temporal summation) but produce fatigue of the muscle fiber and
a rapid decrease in contractile force [32,33,69]. An optimal system uses the minimum
stimulus frequency, producing a fused response that, in cases of upper limb applications,
ranges from 12–16 Hz [70]. The strength of a muscle contraction may also be increased
by increasing the number of motor units activated (spatial summation). This is achieved
by increasing the stimulus pulse amplitude and/or pulse duration, which effectively
increases the electric charge injected, producing a larger electric field and broader region of
activation so that more axons and motor units are activated [5,69,71]. The pulse interval
typically ranges between 200–400 microseconds [5,69]. It was demonstrated that high
intensity and large pulse durations increase the excitability of corticomotor projections
to stimulated muscles [66]. These parameters combined with a personalized adjustment
of the duty cycle can increase the self-perception of improvement of UL function in post-
stroke patients during turning on the light and drinking tasks [72,73]. However, outcome
measures considered in most previous studies, despite demonstrating a positive effect
over ADL [19,20,22], include qualitative measures that induce a certain level of subjectivity.
Consequently, more studies are required to establish conclusions about the FES optimal
therapeutic window for UL rehabilitation in post-stroke patients, particularly in other UL
tasks that are not yet assessed [19].

Apart from the limitations previously mentioned, technological advances were made
to improve muscle recruitment selectivity. From these, the development of the multifield
electrode system enhances the generation of a localized electric field that increases the
selectivity in motor units recruitment with reduced discomfort and fatigue [74], compared
to other methods of electrical stimulation [18,75]. Multifield FES systems are developed
for various applications [74,76]. Some studies have already proven their effectiveness
regarding grasp recovery in post-stroke patients [74,76]. This was ensured by optimizing
the shape, position and size of the stimulation surface on the forearm and minimizing the
difference between the desired movement and that generated by FES [74,76].

The performance of functional movements resulting from the selective and synergistic
activation of muscle groups associated with multifield FES depends on the adequate
positioning and calibration of the electrodes, namely in terms of amplitude, pulse width
and frequency [75,77]. Multifield FES provides this selective synergistic muscle activation
while respecting neuroanatomical variability [75] to optimize the functional movement of
the contralesional UL [77]. This can be achieved as a consequence of:

• the possibility of desynchronized activation of different portions of the muscle [74];
• the possibility of individual adjustment of the stimulation location [77];
• the possibility of varying the stimulation parameters and patterns of stimulation,

namely frequency, amplitude, pulse duration and stimulation channel, to recruit the
more adequated synergy [77].

Previous studies concerning FES multifield systems have demonstrated the stimula-
tion zones and related parameters that lead to selective activation of the common extensor
of the fingers, extensor digiti minimi, cubital extensor, radial extensor of the carpus, abduc-
tor pollicis longus, extensor pollicis brevis and extensor pollicis longus [75,77]. The results
obtained by more recent studies demonstrate that a protocol based on an individual adjust-
ment of the mentioned pre-defined transcutaneous stimulation zones allows consistency
between intervention sessions in post-stroke patients [72,73]. The advantages of multifield
FES against more traditional approaches are summarized in Figure 3.
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3. FES Usability in Post-Stroke Patients

Concerning technological devices developed for people with limitations in activity
and participation, such as post-stroke patients, the usability tests become an essential tool
to ensure that a product has the desired impact. To evaluate FES usability, the quality of
the user’s experience in terms of satisfaction and effectiveness should be considered [23].
Usability tests are designed to evaluate the product under controlled conditions, simulating
the interaction and the quality of the user experience [78,79].

3.1. FES User Satisfaction

Satisfaction is the users’ comfort with and positive attitudes towards the use of a
system [80]. The System Usability Scale [81] and Quebec User Evaluation of Satisfaction
with Assistive Technology questionnaire [81,82] were used to assess the usability and the
related satisfaction of both the therapists and subjects for lower limb multifield technology.
The results of these studies demonstrate that it is feasible to include surface multifield tech-
nology while keeping a device simple and intuitive for successful integration in common
neurorehabilitation programs. The Patient Global Impression of Change was used to assess
the post-stroke patients’ perception of change concerning UL movement when this was
assisted by multifield FES [72,73]. The average improvement described by the participants
ranged between “somewhat better” and “moderately better”.

3.2. FES Effectiveness

Effectiveness is the accuracy and completeness with which users achieve certain goals.
Indicators of effectiveness include quality of solution and error rates [80].

3.2.1. Clinical Measures

To analyze FES effectiveness, clinical measures related to ADL, functional recov-
ery measures and muscle-related outcomes were considered (Table 1) [19,20,22]. It was
demonstrated that FES is effective in improving ADL, expressed through Functional In-
dependence Measure and Upper Extremity Function Test scores, and in functional motor
recovery, through a Fugl-Meyer Assessment score [19]. However, its effectiveness was not
demonstrated in the other clinical measures, which need to be discussed.

Table 1. Clinical measures used to assess FES effectiveness.

Clinical Measure Tool

ADL

• Functional Independence Measure
• Upper Extremity Function Test
• Arm Motor Ability Test
• Chedoke Arm and Hand Activity Inventory
• Functional Independence Measure
• Upper Extremity Function Test

Funcional Motor
Recovery

• Motor Assessment Scale Hand Movements
• Motor Assessment Scale Upper Arm Function
• Fugl-Meyer Assessment
• Box and Block Test
• Action Research Arm Test
• Functional Test for the Hemiparetic Upper Extremity
• Functional Test for the Hemiparetic Upper Extremity
• Chedoke McMasters Stroke Assessment
• Nine Hole Peg Test
• Ten Cup Moving Test

Muscle related • Modified Ashworth Scale
• Force



Sensors 2022, 22, 1409 7 of 13

When analyzing the results provided by the tools presented in Table 1, several as-
pects should be considered. In addition to observer bias, it should be considered in the
hypothesis that these instruments could not be sensitive enough to detect improvement
signs regarding complex UL motor function [83]. Furthermore, the tools cannot explain the
underlying biomechanical characteristic of motor function deficits, and their scores alone
do not clarify whether the observed changes depend on true recovery or compensatory
strategies [83]. In fact, several compensatory strategies expressed through pathological syn-
ergies were described for post-stroke patients during reaching tasks as a consequence of the
available motor strategies [84]. In other words, to compensate for upper limb impairment,
patients tend to recruit alternative strategies to improve functional arm and hand use. The
neurophysiologic explanation for this phenomenon highlights the post-trauma nervous
system’s ability to exploit the motor system’s redundancy by replacing lost motor pattern
elements with new ones to achieve the desired task [85]. In fact, it is well known that
after a lesion, the nervous system can be reorganized, producing an adaptive or maladap-
tive sensoriomotor behavior, thus highlighting the importance of cortical reorganization
through selective afferent input to optimize internal representation and influence move-
ment control (Figure 3) [26,86]. Moreover, considering that most stroke lesions occur in the
territory of the middle cerebral artery, presenting a high probability of damage of pathways
with predominant ipsilesional disposition mainly related to postural control, the tools
used to assess UL function should also measure bilateral postural control dysfunction [7].
Unfortunately, both research and clinical rehabilitation involving post-stroke subjects is
focused on contralesional side impairments, while ipsilesional impairments are attributed
to an adaptative strategy [7]. Based on this, the instruments regarding UL function are
used to reference the ipsilesional side (i.e., Stroke Rehabilitation Assessment of Movement
Measure [87], Motor Assessment Scale [88], Chedoke–McMaster Stroke assessment [89]).
This approach has negative consequences in the decision-making process since: (1) it limits
the identification of a possible ipsilesional impairment related to postural control; (2) it
limits improvement since movement failure of the contralesional side is also related to
ipsilesional postural control dysfunction; (3) it compromises the inter-limb coordination
necessary for most functional activities [7].

3.2.2. Laboratory Measures

Laboratory measures allow an accurate and objective assessment of FES effectiveness
regarding the selectivity and quality of UL movement. Some authors [90–95] used elec-
tromyography to analyze reaction times and activation magnitudes of sustained muscle
contractions, as well as to calculate ratios between agonist and antagonist muscle activation.
Gripping power was also assessed by dynamometry in another study [96]. However,
although these measures allow a more objective knowledge of motor function, they still do
not analyze the quality of movement.

Quality of movement can be accurately evaluated by kinematic analysis. In fact, in the
last decade, the kinematics of the ULs of neurological patients, mostly after stroke, were
studied in order to quantify movement objectively [97]. According to Ozturk et al. [98],
this analysis depends on four major factors: (a) motion capture systems, (b) movement
category, (c) kinematic metrics extracted and (d) interpretation of these kinematic metrics.

For this purpose, the most widely used type of motion capture system is the optoelec-
tronic system with passive markers [83], which is the golden standard in kinematic analysis
because of its high accuracy and reliability [97–99]. This system uses retro-reflective mark-
ers (passive or active) in which absolute position is detected by multiple video cameras in
relation to a reference position [99]. Although portable and markerless systems, such as
inertial or electromagnetic systems, appear to be promising alternatives for the kinematic
analysis of the ULs in stroke patients, the literature proving its validity for this purpose is
scarce [99–101].

The motor tasks generally used to study the function of ULs can be categorized into
functional movements (reaching movements and path drawing) and ADL [97,98,102], as
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proposed by van Tuijl et al., 2002 [102]. Although several authors [97,103–105] defend the
analysis of goal-oriented tasks, such as performing an ADL, to increase the validity of stud-
ies, half of the studies still analyze functional movements [106]. Within the ADL category,
the most performed task is drinking [106]. This seems to be a rich task for the kinematic
analysis of the UL as it includes sub-tasks such as reaching, grasping, transporting and
manipulating an object, which makes possible the study of these different motor skills [106].
However, it may become too complex for subjects with moderate or severe impairment,
which could decrease the number of participants in these studies [106]. Therefore, simpler
ADLs are recommended to include subjects with more severe impairment and increase the
number of participants [106]. Figure 4 represent two ADL tasks with different levels of
motor control complexity.
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Figure 4. Representation of two tasks of different levels of motor control complexity assisted by
multifield FES, drinking task (on the left) and turn on the light tasks (on the right).

Numerous kinematic metrics were used in the evaluation of UL movement in post-
stroke patients [83,107], which may be related to the lack of clarity regarding the ULs motor
planning [108]. Based on the theories of UL movement planning [108], kinematic metrics
can be classified into two categories: end-point (hand or wrist) kinematic metrics and joint
kinematic metrics [97,108]. End-point kinematic metrics are widely calculated by 3D Cartesian
coordinates of only one marker on the wrist (or hand) and analyze different characteristics of
movement, such as speed, efficiency, smoothness and control strategy [97]. The most analyzed
are “time to complete the task” [103,104,109–113], “peak velocity” [98,103,107,110,111,113]
and the “number of peaks in velocity profile” [103,104,107,112,113]. Joint kinematic metrics
include joint angles [103,105,107,111], angular velocities [103–105], inter-joint coordination
between shoulder and elbow [98,103,107] and trunk displacement [98,103,104,110,112]
(which is also used to quantify compensatory strategies).

The interpretation of kinematic variables is unclear. Subramanian et al. [114] suggested
the association between end-point kinematics and motor performance, as well as between
joint kinematics and movement quality. Subramanian et al. [114], and other authors [98],
also suggested that movement quality kinematics are more sensitive in identifying UL
deficits, while others [103,113] have argued that motor performance kinematics are sensi-
tive to change over time and discriminate healthy subjects from those with stroke, as well as
subjects with moderate impairment from those with mild impairment. Murphy et al. [112]
also speculate that some metrics, such as trunk displacement, primarily reflect the compo-
nent of compensation, and others, such as movement smoothness, the recovery. However,
these associations and their meanings are not well established [83]. Similarly, and also
for these variables, the role of FES application in the ipsilesional side should be consid-
ered, as according to our knowledge, no study has considered the impairments already
demonstrated in the ipsilesional side in stroke patients in the application of FES [8,9,115].
The metrics that should be considered to assess the influence of FES in movement quality
indicators are summarized in Figure 5.
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multifield FES in UL movement quality.

4. Concluding Remarks

FES seems to be a promising tool for improving UL function in post-stroke patients.
However, the lack of studies evaluating motor control variables, specifically movement
quality indicators, combined with user’s satisfaction, limits the establishment of conclusions
regarding its usability. This lack of information compromises the establishment of the
optimal therapeutical window for different UL functional tasks for post-stroke patients.
Besides considering the stimulation parameters that best assist the desired movement,
the optimal therapeutical window should also consider the muscle synergy that needs
to be recruited. FES systems capable of integrating postural control muscles involving
other anatomic regions, such as the trunk and ipsilesional side, are required to improve UL
function in post-stroke patients.

Author Contributions: Conceptualization, A.S.P.S., C.S., R.M., R.S.; methodology, A.S.P.S., I.M., C.S.;
investigation, I.M., J.M.; writing—original draft preparation, A.S.P.S., C.S., I.M., A.S.; writing—review
and editing, J.M.; project administration, R.S.; funding acquisition, A.S.P.S., C.S., R.M., R.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Fundación General CSIC [0348/CIE/6_E] and Fundação
para a Ciência e Tecnologia (FCT) through R&D Units funding (UIDB/05210/2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Murray, C.J.L.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.;

Abdalla, S.; et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic
analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [CrossRef]

2. Lv, Y.; Sun, Q.; Li, J.; Zhang, W.; He, Y.; Zhou, Y. Disability Status and Its Influencing Factors Among Stroke Patients in Northeast
China: A 3-Year Follow-Up Study. Neuropsychiatr. Dis. Treat. 2021, 17, 2567–2573. [CrossRef]

3. Intercollegiate Stroke Working Party. National Clinical Guideline for Stroke; Royal College of Physicians: London, UK, 2012.

http://doi.org/10.1016/S0140-6736(12)61689-4
http://doi.org/10.2147/NDT.S320785


Sensors 2022, 22, 1409 10 of 13

4. Lawrence, E.S.; Coshall, C.; Dundas, R.; Stewart, J.; Rudd, A.G.; Howard, R.; Wolfe, C.D.A. Estimates of the Prevalence of Acute
Stroke Impairments and Disability in a Multiethnic Population. Stroke 2001, 32, 1279–1284. [CrossRef] [PubMed]

5. Kwakkel, G.; Kollen, B.J.; van der Grond, J.; Prevo, A.J. Probability of Regaining Dexterity in the Flaccid Upper Limb: Impact of
Severity of Paresis and Time since Onset in Acute Stroke. Stroke 2003, 34, 2181–2186. [CrossRef] [PubMed]

6. Lang, C.E.; Edwards, D.F.; Birkenmeier, R.L.; Dromerick, A.W. Estimating Minimal Clinically Important Differences of Upper-
Extremity Measures Early After Stroke. Arch. Phys. Med. Rehabil. 2008, 89, 1693–1700. [CrossRef] [PubMed]

7. Silva, A.; Sousa, A.S.P.; Silva, C.C.; Santos, R.; Tavares, J.; Sousa, F. The role of the ipsilesional side in the rehabilitation of
post-stroke subjects. Somatosens. Mot. Res. 2017, 34, 185–188. [CrossRef]

8. Silva, C.; Silva, A.; de Sousa, A.S.P.; Pinheiro, A.R.; Bourlinova, C.; Silva, A.; Salazar, A.; Borges, C.; Crasto, C.; Correia, M.; et al.
Co-activation of upper limb muscles during reaching in post-stroke subjects: An analysis of the contralesional and ipsilesional
limbs. J. Electromyogr. Kinesiol. 2014, 24, 731–738. [CrossRef]

9. Silva, C.; Pereira, S.; Ferreira, S.; Oliveira, N.; Santos, R. Anticipatory postural adjustments in the shoulder girdle in the reach
movement performed in standing by post-stroke subjects. Somatosens. Mot. Res. 2018, 35, 124–130. [CrossRef]

10. Johanne, D.; Malouin, F.; Richards, C.; Bourbonnais, D.; Rochette, A.; Bravo, G. Comparison of Changes in Upper and Lower
Extremity Impairments and Disabilities after Stroke. Int. J. Rehabil. Res. 2003, 26, 109–116.

11. Shelton, F.D.N.A.P.; Reding, M.J. Effect of Lesion Location on Upper Limb Motor Recovery After Stroke. Stroke 2001, 32, 107–112.
[CrossRef]

12. Franceschini, M.; La Porta, F.; Agosti, M.; Massucci, M. Is health-related-quality of life of stroke patients influenced by neurological
impairments at one year after stroke? Eur. J. Phys. Rehabil. Med. 2010, 46, 389–399. [PubMed]

13. Lai, S.-M.; Studenski, S.; Duncan, P.; Perera, S. Persisting Consequences of Stroke Measured by the Stroke Impact Scale. Stroke
2002, 33, 1840–1844. [CrossRef] [PubMed]

14. Ingram, J.N.; Körding, K.P.; Howard, I.S.; Wolpert, D.M. The statistics of natural hand movements. Exp. Brain Res. 2008,
188, 223–236. [CrossRef] [PubMed]

15. European Stroke Organisation (ESO) Executive Committee; ESO Writing Committee. Guidelines for Management of Ischaemic
Stroke and Transient Ischaemic Attack 2008. Cerebrovasc. Dis. 2008, 25, 457–507. [CrossRef] [PubMed]

16. Gittler, M.; Davis, A.M. Guidelines for Adult Stroke Rehabilitation and Recovery. JAMA J. Am. Med. Assoc. 2018, 319, 820–821.
[CrossRef] [PubMed]

17. Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al.
Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals from the American Heart
Association/American Stroke Association. Stroke 2016, 47, e98–e169. [CrossRef]
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