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Abstract: Insulators are one of the many components responsible for the reliability of electricity
supply as part of transmission and distribution lines. Failure of the insulator can cause considerable
economic problems that are much greater than the insulator cost. When the failure occurs on the
transmission line, a large area can be without electricity supply or other transmission lines will
be overloaded. Because of the consequences of the insulator’s failure, diagnostics of the insulator
plays a significant role in the reliability of the power supply. Basic diagnostic methods require
experienced personnel, and inspection requires moving in the field. New diagnostic methods require
online measurement if it is possible. Diagnostic by measuring the leakage current flowing on the
surface of the insulator is well known. However, many other quantities can be used as a good
tool for diagnostics of insulators. We present in this article results obtained on the investigated
porcelain insulators that are one of the most used insulation materials for housing the insulator’s core.
Leakage current, dielectric loss factor, capacity, and electric charge are used as diagnostic quantities
to investigate porcelain insulators in different pollution conditions and different ambient relative
humidity. Pollution and humidity are the main factors that decrease the insulator´s electric strength
and reliability.

Keywords: insulator; pollution; dielectric loss factor; leakage current; capacity; electric charge; humidity

1. Introduction

Insulators are pieces of electrical equipment to support electrical conductors on trans-
mission and distribution towers and to separate them electrically from equipment that
must not be under voltage. Insulators are divided according to the used insulation material,
insulator´s construction, or used fittings. The most used insulation materials are glass,
porcelain, and composite materials. The most used composite material is silicon rubber. All
these materials have their advantages and disadvantages. The choice of a suitable insulator
depends on many factors. The correct insulator to be used for the specific application
is determined by the operating voltage, the mechanical load, and environmental factors
such as pollution, high humidity, wind, lightning strokes, and many others. Therefore, it
is impossible to select one insulator design or material that will be most suitable for all
applications and the environment [1–6].

Capacitive sensors have a wide range of usability. Capacitive sensors have been
investigated to detect the aging of the silicone insulator. Experiments demonstrated that the
proposed capacitive sensors exhibited excellent performance in signal amplitude, sensitivity,
and stability against the effects of environmental humidity [7]. Other research concentrates
on a flexible capacitive tactile sensor. Sensors were used to measure normal force, shear
force, and torsion. Research proved that concentric-shape electrodes were enabled to avoid
unaffectedly the normal force when measuring the pure shear force due to concentric-shape
electrodes [8].
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Diagnostic methods used for decades are based on a measurement that requires
contact with the insulator by skilled personnel. A visual check is the most basic diagnostic
method. This method is still one of the most reliable inspection techniques. However, it
is almost impossible to find punctures that are not visible. Because of the disadvantages,
the other techniques were tested. Measurement of electric field and voltage distribution
on the insulators string, acoustic emission measurement, night vision camera, infrared
thermography is used to improve the diagnostic of the insulator and reach a representative
result. However, all of these techniques require qualified personnel who must be in contact
with or near the insulator [9–16].

Researchers nowadays started to use information technology to analyze the problemat-
ics of insulators. Fault, puncture, or contamination of the insulator surface can be analyzed,
simulated, or predicted using various software or software procedures. Recent studies with
numerical simulation models of insulators show that numerical techniques are valid for
calculating the electric field and potential distribution on insulators, such as the boundary
element method (BEM), the finite difference method (FDM), and the finite element method
(FEM) [17–19].

Another piece of research focused on the classification of insulators using neural
networks based on computer vision. The result shows that the contaminated insulators
classification can reach 97.5 % accuracy if the neural network model is used [20].

Other researchers work with ultrasound equipment that can help to forecast insulator
contamination. With the correct measurement and information technology set, it is possible
to predict contamination with good accuracy of a signal with many nonlinearities [21,22].

When the insulator is under high voltage, leakage current passes through the insu-
lator’s surface. The magnitude of the leakage current depends on surface conditions and
ambient environmental conditions. In case the surface of the insulator is damaged by the
aging process, the leakage current flowing through the surface of the insulator increases.
Furthermore, the increase in leakage current accelerates the aging process. The next factor
that influences the leakage current is contamination. The contamination is dangerous for
insulators, especially when it is wetted. In a wet and polluted environment, the leakage
current increases rapidly and causes damage to the insulator’s surface. Long-term leakage
current activity causes punctures, tracking, or erosion on the insulator’s surface. Long-term
leakage current measurement can indicate an aging process of the insulator and a reduction
in its dielectric strength [2,23–25].

Leakage current measurement is well known and often used as an inspection technique.
Measurement leakage current is one of the non-destructive diagnostic methods if we
compare it with methods that require voltage higher than the rated voltage. The leakage
current measurement can indicate the problems on insulators. It is used predominantly for
contamination inspection. However, the leakage current measurement is more useful for
applications with only one insulator. However, there are successful studies that measure
leakage current on insulators string. N.A. Othman et al. use a shunt resistor connected to
the grounded end to measure leakage current on glass insulator string and results show
significant changes with increasing contamination [23]. Another successful measurement
was done on non-coated, half-coated, and full-coated insulator strings [26]. The pollution
layer on the surface of the insulator in a humid environment in any form increases the
leakage current that flows on the surface of the insulator. The probability of flashover
can be indicated by measuring the leakage current if sufficient data is available. From the
practical point of view, the leakage current measurement does not need special equipment
and can be measured online. The amplitude of the leakage current increases according to
the relative humidity increase. However, the combination of contamination and humidity
largen leakage current value even more [27–32].

The detailed measurement that uses Fourier transformation to investigate harmonic
compound shows that third, fifth, and seventh harmonic compound of leakage current
increases with pollution level. The main harmonic compound is mostly affected by humid-
ity. Researches focused on the leakage current harmonic compounds shows the statistical
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treatment that indicates the probability of failure and the necessity of the insulator’s main-
tenance. Researchers use harmonic indexes to evaluate the possibility of flashover. The
difference between indexes is a ratio between harmonic compounds [27,32–37].

Only a few studies have used a loss factor to indicate the aging of insulators. The
loss factor measurement is mainly used to diagnose transformers, cables, and windings.
Results show the loss factor values correlate with aging. So, the loss factor can indicate the
degradation of insulating material. Another finding confirms that small changes in applied
voltage do not affect the dielectric loss factor value [38,39].

After studying the problematics of diagnostics of insulators, the main goal nowadays
is to indicate pollution level and probability of flashover as accurately as possible. Regular
flashover testing is not appropriate because of the degradation of insulating materials
and accelerated aging. The measurement of quantities measured at low voltage is safer
and can be investigated at any time or online. Many types of research are based on the
measurement of leakage current. Leakage current measurement is a suitable diagnostics
method to investigate the impact of pollution and humidity.

However, few types of research are focused on other quantities that do not need high
voltage for measurement. In this paper, the dielectric loss factor, capacity, and electric
charge are used to investigate the influence of pollution and humidity on glazed porcelain
insulators. According to the search of a publication focused on diagnostics of insulators,
no research uses these quantities to diagnose the influence of pollution and humidity on
insulators. These quantities can measure at low voltages as leakage current. Results of
these quantities are compared to leakage current measurement to indicate the suitability of
the use of quantities.

Moreover, the multiple quantities measurement could be a good indicator for the risk
of pollution flashover because of more verifications of results. This measurement uses
frequencies that are higher than the standard frequency. It helps to avoid the problem with
electromagnetic interference that becomes negligible. This helps to improve the online
monitoring reliability of used quantities. Some quantities are more useable in the low
frequencies, some of them show better results in high frequencies.

Sensing electrodes are prepared by technology that has not been used for the inves-
tigation of pollution on insulators, and they are suitable for practical use in any ambient
conditions. Research is focused on the changes in quantities according to surface conditions
and ambient relative humidity conditions. A clean insulator simulates the beginning of the
life cycle of the insulator and pollution levels simulate consecutive contamination of the in-
sulator through its lifespan. Measurement of multiple quantities for pollution investigation
could show more significant differences between pollution levels and humidity rate and
should be more suitable for pollution investigation.

2. Materials and Methods

The laboratory is located at the Technical University of Košice, where all measurements
were performed. The porcelain insulator has two circular sensing electrodes. The gap
between sensing electrodes made from conducting tape is 4 cm. The diameter of the inner
electrode is 15 cm, and the diameter of the outer electrode is 23 cm. The total area between
the electrodes is 238 cm2. In Figure 1, the insulator with sensing electrodes is depicted.

The porcelain insulator shown in Figure 1 is suitable for high-voltage transmission
lines as a part of the insulator’s string. The shed of the insulator is glazed. The porcelain
insulator was made in the factory Elektroporcelán Louny in the Czech Republic. According
to IEC standard 60305:2021, the insulator is U 160 BL type. The diameter (D) is 280 mm,
and spacing (H) is 170 mm. In Figure 2, the size parameter of the insulator is depicted. The
minimum creepage distance of the insulator is 340 mm, and the mechanical failing load is
160 kN.
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Figure 2. Size parameter of porcelain insulator U 160 BL.

The sensing electrodes were used to measure leakage current, dielectric loss factor,
capacity, and electric charge. All quantities were measured at an ambient relative humidity
of 40 to 90%. Four pollution levels were prepared to simulate different pollution severities
according to IEC standard IEC/TS 60815-1:2008. We marked the prepared pollution levels
with abbreviations (L1, L2, L3, L4). The individual solutions were prepared by mixing a
specified amount of salt, kaolin, and tap water. The kaolin in tap water creates an even
distribution of the contaminating layer on the surface of the insulator. For each level of
contamination, an equal amount of kaolin was added to the solution. The amount of kaolin
is 40 g for each liter of water. The individual pollution levels with the amount of salt added
per liter of tap water are in Table 1. In Figure 3, the porcelain insulator contaminated by the
second pollution level is depicted.
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Table 1. Information about salt amount and conductivity of four levels of artificial pollution.

Pollution Level NaCl Amount (g/L) Solution Conductivity (µS/cm)

L1 1 28
L2 6 129
L3 10 173
L4 16 286
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Measurements for every pollution level started at a relative humidity of 40% in a
closed chamber. If relative humidity at the beginning was lower than 40%, the increase
of relative humidity started. After the relative humidity reached the required value, a
waiting period of 10 min started to ensure the surface of the porcelain insulator absorbs the
humidity. After 10 min, the absorption of humidity by pollution level slows down to the
minimum and it has a minimum influence on the measured values. After a measurement
that lasted approximately 7 min, the relative humidity gradually increased to the next
desired value. After reaching the next required level, the procedure was repeated.

Leakage current and electric charge measurement and calculations applied on porce-
lain insulators in various pollution conditions and relative humidity from 40 to 90% were
done in the insulated chamber. On sensing electrodes, function/arbitrary waveform gen-
erator Agilent 33210A (G) and an oscilloscope Agilent DSO7104A (DSO) were connected.
We used two different frequencies of the testing voltage applied on sensing electrodes.
The first frequency of the testing voltage, close to the power frequency, is 113 Hz. The
second frequency, several times greater than the power frequency, is 1 kHz. These two
frequencies, different from power frequency, prevent electromagnetic interference from the
supply network. The resulting leakage current (iL) r.m.s value was calculated according to
Ohm’s law as the average of 128 periods of voltage drop (VR) on the non-inductive sensing
resistor (R) divided by the resistance value. A rectangular testing voltage was applied to the
measuring electrodes to evaluate the electric charge transferred through the surface of the
porcelain insulator. The electric charge was calculated numerically using the rectangle rule.
A personal computer (PC) connected to the measuring devices via a USB port controlled the
frequency of the test voltage, recorded the time course of the leakage current, and stored
the measured data. The script was written in the Python programming language in the
Linux operating system under Ubuntu distribution used to collect the measured data from
the oscilloscope and calculate the electric charge. The measurement diagram of leakage
current and electric charge is in Figure 4. The numbers 1 and 2 in the DSO diagram indicate
the channels used.
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Figure 4. Leakage current and electric charge measurement diagram.

Capacity (C) and dielectric loss factor (tan δ) were measured with an impedance ana-
lyzer HIOKI LCR meter IM3533-1(Fotronic Corporation, Woburn, MA, United State). The
impedance analyzer can measure different quantities in a wide range of frequencies from
1 mHz to 200 kHz. We used a connection with four individual shielded coaxial cables with a
length of 1 m. Before every measurement series, calibration of the measurement device was
performed. To achieve the accuracy declared by the LCR meter manufacturer, open and
short circuit calibration was performed on the connected coaxial cables. Calibration was
performed according to the manufacturer’s recommendations. After successful calibration,
the test cables were connected to the electrodes on the surface of the porcelain insulator in
a closed chamber.

The LCR meter measured capacity and tan δ simultaneously with a measuring voltage
of 5 V swept from 1 Hz to 200 kHz. The frequency range was divided into 100 points on
a logarithmic scale, with 20 measurements averaged at each frequency point. The circuit
diagram of the impedance analyzer connected to the measuring electrodes using coaxial
cables is shown in Figure 5.
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Dielectric loss factor is a tangent of the dielectric loss angle (δ) between two vertical
components, namely, the capacity current IC and the resistance current IR. The third current
component (Ip) influencing the loss angle represents polarization of dielectric.

tan δ =
IR

IC
=

U
R

ω·C·U =
1

ω·C·R (1)

The dielectric loss factor is influenced by the conductivity of the insulation. As none
of the insulation is perfect, not only a reactive component of current is present but an active
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component is present as well due to conductivity and polarization of dielectric. Humidity
and pollution increase the conductivity of the surface of the insulator [40].

Polarization processes occur in a material because of the restricted movement of
charges. Nevertheless, charges are bound, they can be displaced from their equilibrium
position. An electric field that is applied cause two types of polarization. The first is rapidly
forming polarization, which does not cause any dielectric losses. The second is slowly
forming polarization, also called relaxation type of polarization. Interfacial, or migration,
polarization (Maxwell-Wagner effect) takes place in heterogeneous materials, containing
conducting components. The relaxation time of interfacial polarization is τ = 10−6–10−3 s.
Another type of relaxing type of polarization is induced polarization or electrochemical
polarization. It occurs in the electrical double layers on the boundaries between the solid
and liquid phases. This interface causes a potential difference to develop. Thus, the interface
becomes electrified [41]. The polarization can affect the dielectric loss factor especially
when the surface is polluted and wetted.

3. Results

The measurement of all quantities was performed first on a clean porcelain insulator,
then on four different pollution levels of the insulator surface. Because of two measurement
schemes, the insulator was measured in two steps. The first measurement was performed
according to the scheme shown in Figure 4. The increase in relative humidity vitiates the
pollution layer on the surface of the insulator. Because of this fact, after the measurement of
leakage current and electric charge, the insulator was precisely cleaned. After cleaning, the
pollution layer was recreated to measure the dielectric loss factor and capacity according to
the scheme shown in Figure 5.

3.1. Measurement of Dielectric Loss Ffactor in the Frequency Range from 1 Hz to 200 kHz

We present the results from the measurement of dielectric loss factor under different
pollution levels and on the clean insulator in Figure 6.
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Measurement results in Figure 7 show that the dielectric loss factor increases with
increasing relative humidity. It is clear from Figure 7 that with the increase in pollution
levels, the dielectric loss factor increases. The frequency response of the dielectric loss
factor in Figure 7a,b under a relative humidity of 40% is lower than under higher values
of relative humidity. Measurements with a relative humidity of 60% and higher are more
“grouped” and the difference between them is not that significant. For the second, third,
and fourth pollution levels, in Figure 7c–e, the rapid increase of dielectric loss factor is
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visible between 60% of relative humidity and higher relative humidity. So, the highest
dielectric loss factor increase is between 60 and 70%.
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The increase in dielectric loss factor between these two relative humidities is at a
frequency of 1 kHz, from 51 times to 263 times higher for different pollution levels. For the
fourth pollution level, the dielectric loss factor for 60% relative humidity is 0.48, and for
relative humidity, 70% is 126.5.

The other important information seen in Figure 7 shows that the local maximums or
the peak values are moving to the higher frequencies with increasing pollution levels. For
measurement at 90% relative humidity, dielectric loss factor peak value changes from 276 at
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frequency 1 Hz for clean insulator, to 214 at frequency 256 Hz for the second pollution
level, finally to 307 at frequency 475 Hz for the fourth pollution level. The peak value of
the dielectric loss factor is changing with relative humidity too. For the second level of
pollution, frequency changes from 1 Hz for 40 and 60% relative humidity, to 15 Hz for
70% relative humidity, to 74.8 Hz for 80% relative humidity, and finally to 256 Hz for 90%
relative humidity.

3.2. Measurement of Capacity in the Frequency Range from 1 Hz to 200 kHz

In Figure 8, we present the results of measured capacity under different pollution
levels and on the clean insulator.
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Measurement results of capacity in a wide frequency range show the capacity decrease
with increasing frequency. Figure 8 shows a significant capacity dependence on relative
humidity for all pollution levels. The difference between the individual measured capacities
for different relative humidities is evident in the low-frequency range. For frequencies
higher than 1000 Hz, the curves have converged and the difference is not that obvious.
As seen in Figure 8, the measured capacity at 40% relative humidity is significantly lower
than the capacity at higher relative humidity for clean insulators and the first level of
contamination. In the case of higher pollution levels, capacity frequency response at
a relative humidity of 40 and 60% are grouped. The measured capacity at the relative
humidity of 70, 80, and 90% for the second, third, and fourth pollution levels is significantly
higher and almost evenly distributed.

3.3. Comparison of All Quantities at the Frequency 113 Hz and 1 kHz

The leakage current measurement and electric charge numerical evaluation were
performed for frequencies 113 and 1000 Hz. The dielectric loss factor and capacitance are
taken from the frequency response measurements in Figures 7 and 8. The measured data
are in Tables 2–5.

Table 2. Leakage Current Measured Data at Frequencies 113 Hz and 1 kHz.

Leakage Current (µA)

Clean insulator L1 L2 L3 L4
RH (%) 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz

40 0.004 0.368 0.004 0.228 0.004 0.268 0.005 0.338 0.004 0.261
60 0.150 0.426 0.01 0.346 2.62 2.77 0.546 0.670 0.998 1.12
70 0.530 0.714 0.64 0.996 47.7 50.7 124 131 82.2 85.0
80 1.18 1.29 2.35 2.61 98.2 109 228 238 173 179
90 1.34 1.66 13.4 15.3 149 149 417 448 338 362

Table 3. Electric charge evaluated data at frequencies 113 Hz and 1 kHz.

Electric Charge (nC)

Clean insulator L1 L2 L3 L4
RH (%) 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz

40 0.367 0.066 0.113 0.051 0.175 0.058 0.139 0.064 0.122 0.052
60 0.804 0.155 0.411 0.096 16.4 1.69 0.286 0.287 7.06 0.872
70 2.49 0.328 3.05 0.389 82.3 8.87 88.4 12.4 37.6 3.86
80 4.99 0.668 13.8 1.524 89.4 9.4 992 9.73 128 7.66
90 6.71 0.785 65 7.329 107 9.6 1728 12.9 1615 9.74

Table 4. Dielectric loss factor measured data at frequencies 113 Hz and 1 kHz.

Dielectric Loss Factor (-)

Clean insulator L1 L2 L3 L4
RH (%) 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz

40 0.029 0.017 0.14 0.058 0.08 0.042 0.073 0.037 0.14 0.048
60 1.46 0.045 4.63 0.86 1.88 0.5 2.84 0.572 2.18 0.48
70 6.1 1.28 18.6 2.88 128 25.6 146 30.1 367 126
80 17.3 2.66 40.9 6.64 212 74.6 322 148 345 196
90 22.6 4.41 73.4 19.4 202 164 308 216 248 244
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Table 5. Capacity measured data at frequencies 113 Hz and 1 kHz.

Capacity (pF)

Clean insulator L1 L2 L3 L4
RH (%) 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz 113 Hz 1 kHz

40 8.48 8.25 9.07 8.27 9.01 8.45 8.97 8.46 9.22 8.51
60 16.6 10.4 14.5 11 15.8 11.5 14.3 10.9 13.8 10.7
70 19 12.1 18.6 13.7 33.7 18.5 40.4 21.3 89.2 28
80 17.4 12.2 23.4 15.5 70.6 21.9 122 28.7 184 35.2
90 24.8 14.6 41.8 17.3 273 36.8 283 43.9 498 55.1

The dependencies in Figure 9 and data in Tables 2–5 show measurement results at
frequency 113 Hz of the testing voltage. All measured quantities show a rapid increase
of measured values for the second, third, and fourth pollution levels after an increase
in relative humidity from 60 to 70%. Leakage current and dielectric loss factor increase
between 70 and 80% relative humidity are slight and constantly increasing to 90% relative
humidity. The capacity increase is slight up to 60% relative humidity, then increases steeply.
The measured electrical quantities on a clean insulator and with the first level of pollution
increase more and more, except the electric charge as for each pollution level, the electric
charge rises sharply between 60 and 80% relative humidity. Leakage current, electric charge,
and capacity show a significant difference between the clean insulator and first level of
pollution and other pollution levels at relative humidity 70% and higher. Dielectric loss
factor is only one quantity where clean insulator has lower values than for first pollution
level for a relative humidity 40 and 60%.
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The dependencies in Figure 10 and data in Tables 2–5 show measurement results
at frequency 1 kHz of the testing voltage. Measured quantities show the same trend as
measurement at frequency 113 Hz. Measured quantities increase with relative humidity
increase. The measured quantities on a clean insulator and the first pollution level are
close together. Similarly, the second grouping consists of measured quantities for the
second, third, and fourth pollution levels. Capacity measurement shows the most relevant
differences between pollution levels. Capacity values increase gradually and evenly. The
shape of curves of all quantities seems to have the same progress as the curves measured at
frequency 113 Hz.
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4. Discussion and Conclusions

Perspective multiple quantities diagnostic method, to indicate the pollution level on
the surface of insulators, has been introduced and described in this work. All quantities
point out the change in values with increasing relative humidity and pollution level.
Sensing electrodes on the porcelain insulator were polluted several times without failure
during the measurement was performed. Averaging multiple measured quantities were set
in the measurement procedure to avoid erroneous data.

Measurement results show that all the quantities are acceptable as an indicator of
pollution level. From Figures 9 and 10, it is evident that the most relevant results were
between relative humidity 70 and 80%. This fact can be checked in Tables 2–5. Due to the
wide range of measured values in the figures, the difference between the higher pollution
level is not significant. However, the difference between light pollution (the first pollution
level) and other pollution levels, which belong to medium and heavy pollutions are evident
and can be identified. All quantities rapidly increase between relative humidity 60 and
70%. The increase in leakage current, electric charge, and dielectric loss factor slow down
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between 70 and 90% relative humidity. Only the capacity increases sharply up to a relative
humidity of 90%.

If we compare a clean insulator with contaminated insulators, the increase of measured
quantities depending on the relative humidity is not so significant for an insulator with a
clean surface. This observation is due to the ability of the solution to absorb water from
the air. Experiments published in [42] show that the saturation on the contaminated layer
depends on the contaminant layer composition on the surface of the insulator. As seen
from the graphs in Figures 8 and 9, there is a significant saturation between 60 and 70%
relative humidity. In the case of using a solution with a different composition, a sharp
increase in the measured quantities at a different relative humidity can be expected. Further
studies dealing with pollution in various areas [43] have shown that the polluting layer
may consist of different compounds having different physical properties (conductivity,
hydrophilicity). Therefore, we recommend monitoring the measured values even at lower
relative humidity.

The difference between the quantities measured at the second, third, and fourth
pollution levels at a relative humidity of 70–90% are not as significant as between these
pollution levels and the first pollution level. We have found that the higher the pollution
level, the higher the effect of moisture on the pollution layer. Capacitance, leakage current,
and electric charge are suitable for diagnostic measurements at one selected frequency.

Because dielectric loss factor peaks are dependent on frequency when relative humidity
and pollution are changed, it is appropriate to measure the dielectric loss factor in the
frequency range to indicate the movement of the peak value. On the other hand, dielectric
loss factor data for two chosen frequencies show the same trend as the other measured
quantities. It could be helpful to select a frequency higher than 1000 Hz. The curves in
Figure 6 seem to be more stable for frequencies higher than 1000 Hz. Measurement of
quantities on clear insulators indicates lower resistivity than polluted insulators at low
relative humidity. Saturation plays a key role in the presence of a polluted layer. The
insulator becomes conductive after the pollution layer gets humid.

Leakage current measurements confirm results from the studied literature. Other
measured quantities have the same trend as the leakage current trend, so measuring
multiple quantities can help determine the severity of insulation pollution by specifying
the pollution level more precisely.

Monitoring of the relative humidity seems to be very helpful for increasing reliability.
According to IEC 60071: 2010, the reference value of relative humidity is 60% (11 g/m3).
The significant change in the increase of the measured quantities is between 60 and 70%
relative humidity, and then the increase is slight up to 90% relative humidity. Studied
literature pointing out the most dangerous ambient condition for flashover is fog. Generally,
the fog has higher relative humidity than 70% and the value is near 99%. According to
our results, the danger of failure starts at a relative humidity of 70% reached in temperate
weather conditions. The measurement of pollution levels under various relative humidity
shows the necessity of monitoring the insulators not only in extreme conditions.

The advantage of the porcelain insulator with measuring electrodes used in the exper-
iments was that measuring the leakage current of the porcelain insulator is not necessarily
required to suspend in a power frequency supply network. The power supply network
contains a certain percentage of higher harmonic components, which cause errors in evalu-
ating the leakage current using frequency analysis. Another advantage is that the porcelain
insulator with the measuring electrodes can be placed in any area to detect the degree of
contamination. The diagnostic quantities measured by a suitable measuring system can be
stored in a database and evaluated online. Subsequent analysis of the measured quantities
indicates the possible need for an earlier cleaning period in critical areas of the power
system and helps prevent insulator failure.

In the next step, we will continue examining other materials used for insulator sheds or
housings like silicon rubber composite material. Moreover, samples of recycled composite
materials are being prepared to compare them with standard materials. The experiments
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will be repeated on aged samples using accelerated aging to indicate the influence of the
insulator aging on the measured quantities.
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