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Abstract: Different control strategies are available for human machine interfaces based on electromyo-
graphy (EMG) to map voluntary muscle signals to control signals of a remote controlled device.
Complex systems such as robots or multi-fingered hands require a natural commanding, which can
be realized with proportional and simultaneous control schemes. Machine learning approaches and
methods based on regression are often used to realize the desired functionality. Training procedures
often include the tracking of visual stimuli on a screen or additional sensors, such as cameras or force
sensors, to create labels for decoder calibration. In certain scenarios, where ground truth, such as
additional sensor data, can not be measured, e.g., with people suffering from physical disabilities,
these methods come with the challenge of generating appropriate labels. We introduce a new ap-
proach that uses the EMG-feature stream recorded during a simple training procedure to generate
continuous labels. The method avoids synchronization mismatches in the labels and has no need
for additional sensor data. Furthermore, we investigated the influence of the transient phase of the
muscle contraction when using the new labeling approach. For this purpose, we performed a user
study involving 10 subjects performing online 2D goal-reaching and tracking tasks on a screen. In
total, five different labeling methods were tested, including three variations of the new approach as
well as methods based on binary labels, which served as a baseline. Results of the evaluation showed
that the introduced labeling approach in combination with the transient phase leads to a proportional
command that is more accurate than using only binary labels. In summary, this work presents a new
labeling approach for proportional EMG control without the need of a complex training procedure or
additional sensors.

Keywords: electromyography; human machine interface; robotcontrol; EMG-control schemes

1. Introduction

Human machine interfaces based on electromyography (EMG) are a technology used
in many different applications. Besides the control of prosthesis, which is the most common
application of EMG control, it is nowadays also used in rehabilitation [1], robot control [2],
in computer gaming interaction [3], or for teleoperation in space applications [4].

Depending on the application, different control strategies are realized to use the
voluntary muscle activity as an input signal for an external device. In commercially
available prosthesis conventional control techniques, such as threshold-based methods [5,6],
or linear classification [7] are still widely used. However, usually just a few degrees of
freedom (DoFs) are sequentially controlled by these techniques. More complex devices,
such as a robot or multi-fingered prosthesis, require a more natural and versatile control
scheme. Therefore, proportional and simultaneous control strategies are becoming more
widely adapted.

While proportional control allows the user to continuously change the control output
by varying the control input, i.e., the EMG signal, simultaneous control further enables
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the user to command multiple available motor functions or DoFs of the system at the
same time [8]. One way to realize proportional control with classification is given by
Simon et al. [9], where the authors present a two-step method. First, a classifier is trained to
differentiate between the classes. Second, the mean absolute value (MAV) of all EMG chan-
nels per class is applied to calculate a continuous control output. However, this method
only allows to control one motor function or class at a time. To overcome the problem
of non-simultaneous control, regression can be used instead of classification. Regression
allows for a continuous output for multiple DoF and thereby enables simultaneous control.
Hahne et al. [10] could further show that regression leads to an improvement in perfor-
mance and also allows for a better user correction of control commands, when comparing
regression to classification in an online test. Various machine learning methods have been
applied to realize regression methods with EMG. For example, artificial neural networks
(ANN) are commonly used [11–13], as well as support vector regression [14], or more
recently convolutional neural networks [15]. To realize proportional control, the machine
learning methods are also often combined with continuous data gathered by additional
sensors. One example for this is given by Castellini et al. [16], where EMG signals have
been combined with force measurements to control a dexterous multi-fingered hand.

Independent of the mapping method, proportional control methods come with typical
problems of myocontrol, such as sensor shift, signal drift, or muscle fatigue [17,18]. On
top of that, these methods exhibit the additional challenge of acquiring a suitable training
data set with correct labels for model building. Within the last few years, different research
groups investigated a variety of methods to provide suitable training data sets for pro-
portional control. A quite common way to generate the labels is to ask the user to track
a visual stimulus on a screen. The stimulus can be illustrated, for example, by a moving
cursor or the motion of an animated or video-recorded hand shown on a computer screen
such as in [19–21]. EMG data are recorded while the user is following the stimulus on the
screen and the label is calculated based on the state of the visual stimulus. An alternative
way to generate the labels is to use additional tracking devices such as a camera [13,22] or
data glove [23]. Here, the EMG signal is fitted to the motion gathered by the additional
sensors during the training procedure. In terms of amputees, the contra-lateral hand/arm
can be tracked with the sensors while EMG signals are recorded from the arm used with
the prosthesis. This method is called mirroring. EMG signals are also often interpreted
as force. Therefore, additional force sensors can be used to generate the training data set.
Users exert, for instance, finger force to a force sensor during the training procedure [24].

Additional sensors, such as force sensors, measure the motor output directly, which
can be considered as the ground truth of the EMG decoding, which makes it the optimal
signal to generate labels for the mapping. However, in terms of people with disabilities,
additional sensors are usually not an option. People with motor impairments often have a
limited proprioception of muscular activity and in case of amputees, finger force can not
even be measured [24]. In addition, mirroring can cause wrong data, as it is hard for the
subjects to provide exact mirror movements. In Hahne et al. [25], the performance of hand
movements dropped when using labels generated with the co-lateral hand in comparison
to that of the ipsy-lateral hand.

Generating labels without additional sensors, e.g., using a visual stimulus, comes
with the challenge to synchronize the EMG signals to the data used for the labels. When
generating EMG activation during the training procedure, the user may lag behind the
visualization on the screen. Poor synchronization of the data can lead to mismatches
between EMG data and labels, which may result in unreliable or simply wrong control
commands during usage. This can lead to unintended movements of the remote device
and therefore to frustrated users [26].

An additional challenge for the training data set used in proportional EMG control is
to gather the required variations in EMG signals in correlation with the desired continuous
control output. A relevant influencing factor for a robust EMG-based control lies in the in-
or exclusion of the transient phase. Fougner et al. [8] state that the training data needs to
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be as realistic as possible, including continuous movements to achieve good proportional
control. The transient phase of an EMG signal is defined as part of muscular activity in
which the signal rises from rest to contraction level. It includes the burst of the sudden
muscular activity in which not all motor-units (MUs) are activated yet. Compared to
this, the steady-state phase is defined as the phase of a constantly maintained muscle
contraction [27]. Although Englehart et al. [28] showed in an online study that the usage
of steady-state data leads to more accurate performance than using transient data, the
transient phase can give information for continuous labeling. Kanitz et al. [21], for example
state that the onset of a muscle contraction gives predictive information about the upcoming
class. According to Raghu et al. [29], the inclusion of transient data is not trivial, as the
segmentation, synchronization of additional sensors, as well as labeling is challenging with
this dynamic data. As a result to all these challenges, the transient phases of the signal are
often omitted, while the steady-state phase is regularly used for training, as, for example,
shown in [30].

Nevertheless, literature presents various possibilities to generate continuous labels
with varying EMG data. One option is to record and label EMG signals in a graded
representation. Therefore, the user provides muscular activity with different levels of
activation, e.g., at a low, medium, and high level, depending on the maximum voluntary
contraction (MVC) during the training procedure [31]. Another option is to continuously
ramp the motion during training from no contraction to a defined contraction level [32,33].
In Hahne et al. [10], the subject had to increase intensity up to 80% of MVC while a cursor
on the screen moved along the axis in order represent the required intensity. Zia et al. [34]
asked the subjects to provide muscular activity with contraction and relaxing periods of
4 s. In Jiang et al. [35], the forces, which had to be produced during the training procedure,
were visualized on a screen. Subjects were asked to ramp muscle contractions to a medium
force level which was recorded with a force-torque sensor. The force levels were then
used as labels. Gailey at al. [36] also used force sensors to measure finger force during the
training procedure. Phases of in- and decreasing forces allow one to measure different force
levels corresponding to the EMG data stream.

In this work, we focus on an EMG-based interface designed for robot control. The
main application is for people suffering from muscular atrophy. The interface maps
available residual muscular activity to a velocity-based output by using Gaussian process
regression. As presented above, generating continuous labels for proportional control is
often associated with the effort to fuse data from multiple sources. In terms of people with
disabilities, this is often not an option. Furthermore, complex training procedures are often
used to generate the labels, which can cause unreliable control commands.

The interface we are using provides a proportional output and thus comes with the
given challenges. In this work, we address these challenges and introduce a new labeling
approach to generate continuous labels for proportional control in an easy and direct
way. The introduced method directly uses the EMG feature stream of the training data
and creates continuous labels without the use of any additional sensors. As the label is
calculated directly based on the feature stream of the EMG signal, delays are reduced to a
minimum. Furthermore, a simple training procedure leads to easy application for users.
We compare the method to a standard binary labeling method and investigate the effect
of the different labeling strategies on task performance when operating a continuous and
simultaneous EMG-based interface. Additionally, the influence of in- and excluding the
transient phase of the EMG signal is analyzed.

To validate this approach experimentally, a user study with 10 subjects was conducted
using the velocity-based EMG interface. The task performance was analyzed with the help
of a 2D aiming and tracking task on a screen.

To summarize, the contribution of this work is to introduce a new labeling approach,
which generates continuous labels for proportional control in an easy and direct way.
Furthermore, the work includes a validation of this new labeling approach during task
performance and the effect compared to a binary labeling approach.
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2. Materials and Methods
2.1. The EMG-Based Interface

The used interface is interpreting the muscular activity of an operator to control a
remote device, e.g., a robot or cursor on a screen. Muscular activity is measured using
surface EMG sensors at different locations on the operator’s upper and lower arm. Based on
these EMG signals, the interface generates a continuous and velocity-based control signal
in 2D or 3D. The main use case of this interface is for people with severe muscular atrophy.
It provides people with the possibility to control a robot in 3D, when the usage of a joystick
is not an option anymore [37]. An assistive device like the robotic wheelchair EDAN can
present such a system, which is commanded via EMG signals by people suffering from
severe muscular atrophy (c.f. Figure 1 on the right) [38]. Depending on the user, the sensors
are either placed on the prominent muscle bellies, or in case of users with muscular atrophy
on spots along the arm where muscles can be still voluntarily activated. In this study, a 2D
control input was generated to perform tasks on a screen. The schematic overview of the
interface is given in Figure 1.

Figure 1. A schematic overview of the EMG-based interface used in this study. Gathering signals: A
participant is shown with the EMG sensors, holding a handle to generate isometric muscle contrac-
tions. Raw EMG signals are wirelessly transferred for further processing. Signal processing: Four
time-domain features are calculated from the raw EMG signals. A supervised training procedure
allows to generate the labels for the prediction. The labeled data is mapped to a velocity-based control
command by the use of Gaussian process regression. Control: The interface realizes a proportional
and simultaneous control output. 2D as well as 3D applications are feasible, e.g., for a commanding
an assistive robot. In this study, only 2D control was realized to perform tasks on a screen.

2.2. Experimental Setup

In this work, eight wireless electromyography Trigno® sensors from the company
Delsys were used to record muscular activity. A medical grade double-sided tape allows for
an easy attachment of the sensors to the surface of the skin. To record hand and wrist activity,
electrodes were placed close to the muscles M. flexor digitorum superficialis, M. flexor carpi
radialis, M. extensor carpi radialis, and M. extensor digitorum, respectively. Two sensors
were attached to the upper arm, i.e., the M. biceps brachii and to the M. triceps brachii, and
two to the M. deltoid (anterior and posterior). For each participant, the sEMG electrodes
were placed on the same physiological spots along the dominant arm. Figure 1 on the left
shows a subject wearing the eight EMG sensors. The raw biosignals were amplified and
wirelessly transferred to the Delsys Trigno® base station. An analog-to-digital converter
of the company Beckhoff digitized the ±5 V analog signal from the base station into a
12-bit signal at a rate of 1 kHz. A linux real-time computer received the data via EtherCAT,
where the signal was further processed with 1 kHz. The time domain (TD) feature set was
used for preprocessing, which was originally proposed by Hudgins et al. [39] to classify
myoelectric patterns for the control of a multifunction prosthesis. This feature set includes:
waveform-length, slope sign-change, zero-crossing-rate, and sEMG-amplitude. All features
are calculated on each EMG channel with a sliding window of 150 samples.
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Gaussian process (GP) regression was used to map EMG data to the directional control
command (±x, ±y). Here, the pyGP library [40] was utilized, which is based on the
implementation of [41]. Participants were asked to exert forces and torques against a rigid
handle, which was placed in front of them. Thus, they were able to generate reproducible
muscle contraction in an isometric fashion.

2.3. The Training Procedure

A training procedure was conducted with each participant at the beginning of an
experimental session, in order to acquire data to be used for calibration of the GP. Therefore,
participants hold on to a handle with their dominant hand (the same side on which the
electrodes are placed) in front of them with an angled elbow. First, the rest signal of the
arm was recorded while grasping the handle in a comfortable position without any specific
muscle contraction. EMG signals were recorded during this rest state to determine and
remove the signal’s DC offset. Furthermore, this rest data allowed to define an individual
activity threshold to distinguish between rest and voluntarily activated muscles. Based on
this activity threshold, a supervised training procedure was performed in order to generate
a training data set for the GP.

In total, four different directions are decoded: left and right (±x), up and down (±y).
To do so, visual cues on a screen guided the participants through the training procedure.
The screen displayed a coordinate system illustrating these four directions. One direction
at a time was highlighted and participants were asked to exert forces and torques against
the handle to be associated with motion along this highlighted direction. A marker moving
along the axis and into the direction of interest served as a progress bar, to visualize the
amount of collected active samples. Samples were counted as active as soon as the activity
threshold was exceeded. Only these active samples were considered as potential training
data for the direction. Thus, the activity signal allows to track the users state of participation
during the training and the effect of the reaction time is eliminated.

Subjects were asked to provide muscular activity at a level they are comfortable with
and stay within the steady-state phase for at least 3 s. They were not asked to ramp the
EMG data or reach a special activation level. During data acquisition, raw EMG signals
and features were recorded in combination with the indicated direction of motion and
the information of an exceeded activity threshold. For each direction, the visual cue was
displayed until 3000 active samples have been collected. However, participants had no
feedback about their activation level or which muscles were activated during muscle
contraction. Once 3000 active samples had been recorded for the requested direction,
subjects had to return to a resting state (i.e., stay below the activity threshold). Once
remaining in rest for 1000 consecutive data samples, the next direction of motion would be
indicated to the subject, until data had been collected for all four directions.

This data acquisition procedure was repeated four times, while only the last three
repetitions were used to build the training data sets used for mapping. Gaussian process
regression was used to decode continuous velocity commands for each DoF, i.e., one GP
for ±x, and one for ±y, respectively. Further details about the decoder pipeline are given
in Vogel et al. [42].

2.4. Labeling Approach

The goal is to create continuous labels based on the simple data acquisition procedure
described above and without additional sensors. The preprocessed EMG signals, gathered
during the training procedure, serve as the basis for the continuous labels. The onset of
activation was determined by the activity threshold measured during the rest state and
can be used as the onset of the labels. Therefore, unwanted delays due to the participants
reaction time can be avoided. However, an intrinsic delay of 47 ms is introduced by the
data acquisition system. Furthermore, the feature extraction, which uses a 150 ms sliding
window results in additional delay. However, these delays are present not exclusively
during training but they also occur during usage of the interface.
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In previous work [42], an offline analysis was conducted to reveal the features with
the most information content used for the decoding. The results indicated that all four
TD features (waveform-length, slope sign-change, zero-crossing-rate, and amplitude) are
involved in the prediction. Hence, all four features were used to maintain the influence of
the individual features. Furthermore, the data of all eight sensors were considered for the
labels, since each directional command is a composition of different sensors. In total, a data
stream of 32 features (4 features and 8 electrodes) was processed per time step. All of the
following calculation steps have been done separately for each direction.

In a first step, all eight signal values x of the eight electrodes e per TD feature f
were summed up for each time step i, in order to maintain the influence of each electrode
proportionally. This is shown in Equation (1) with ne = 8 for any direction dir. Thus, the
feature stream of each direction, was reduced from 32 to 4 features:

x f ,dir[i] =
ne

∑
e=1

xe, f ,dir[i]. (1)

Further on, each feature stream is normalized for itself between 0 and 1. Since each
TD feature has a different unit, this step provides equal weight to the features. Equation (2)
illustrates this step, where max(x f ,dir) presents the maximum value of each feature f and
xmin is chosen to be the mean of the recorded rest states of all training sequences:

x′f ,dir[i] = (x f ,dir[i]− xmin)/(max(x f ,dir)− xmin). (2)

Finally, the four features (n f = 4) are summed up at each time step i and again
normalized to be between 0 and 1, in order to get a maximum label of 1 for each direction
(c.f. Equation (3)):

labeldir[i] = normalize(
n f

∑
f=1

x′f ,dir[i]). (3)

Based on these equations, different labeling strategies can be realized. In our previous
work [2,42], we used a binary labeling method, which is considered as the baseline for
evaluation. In this binary labeling method, samples of the training set in which the
activity threshold was exceeded are labeled as ±1 for the respective direction. Accordingly,
“inactive” samples as well as samples of a non-active direction were labeled as 0. It has to
be noted that even when the labels for the mapping are binary, the output of the decoder
still allows for continuous signals, when a regression method is used.

Binary labels (labeldir[i] ∈ {−1, 0, 1}) are simple to realize but in contrast to continuous
labels (labeldir[i] ∈ {x ∈ Q | −1 ≤ x ≤ 1}), they can not represent the continuous change
of the EMG signal.

Additionally, the effect of in- and excluding the transient phase of the EMG signal
was investigated. Therefore, data either included the transient phase or relied purely on
the steady-state phase of the EMG signal. The first 1000 samples were discarded in case
of steady-state labeling. In total, five labeling strategies were evaluated. All labels were
derived from the EMG data of the same three training data sets per subject. From the total
of 3000 available samples per direction and repetition, each method took 2000 samples
into account. The sample selection was dependent on the particular method. The label
strategies were realized as followed:

(A) Binary label, including the rising transient phase of the EMG signal in the activ label;
(B) Continuous label, including the rising transient phase of the EMG signal in the

active label;
(C) Binary label, using only the steady state of the EMG signal (excluding transient phases);
(D) Continuous label, using only the steady state of the EMG signal (excluding tran-

sient phases);
(E) Continuous label, including both transient phases (rising and falling) of the EMG signal.



Sensors 2022, 22, 1368 7 of 18

We limited the evaluation to these 5 combinations of labels in order to keep the
duration of one experimental session below 90 min. A visualization of the different labeling
strategies can be found in Figure 2.

Figure 2. Example for the generated labels. (A) Binary label (0 = not active, 1 = active), including the
rising transient phase of the EMG signal in the active label. (B) Continuous label, including the rising
transient phase of the EMG signal in the active label. (C) Binary label, using only the steady-state
signal (excluding transient phases). (D) Continuous label, only using the steady-state part of the
signal. (E) Continuous label, including the rising and falling transient phases of the EMG signal.

2.5. Experimental Procedure

An online experiment was conducted to evaluate performance in a 2D task on a
computer screen. The decoded EMG signals of the participants were used to control the
velocity of a cursor on the screen. Subjects were able to move the cursor in 2 DoF, i.e.,
up, down and left, right. As one individual predictive model was used for each DoF,
simultaneous movements (e.g., diagonal movements) of the cursor were possible. Using
this interface, subjects performed two different tasks during the experiments: An aiming
task (AT) and a tracking task (TT). The application GUI for both tasks contains crosshairs
with an x- and y-axis. During the AT, a target circle was visible on the screen (c.f. Figure 3,
left side). It was placed 400 px from the starting point along one of the main axes. The
starting point of each trial was set to the middle of the crosshairs. Subjects were asked to
move the cursor as quickly and accurately as possible into the target. The cursor had to
stay within the target circle for at least 500 ms to finish the task successfully. After each
trial, the cursor was set back to the starting position, where it had to steadily remain for 2 s
before the next trial would start. A countdown visualized the 2 s duration before a new trial
was initiated. A test sequence involved all four possible directions of a target, presented
in random order. One experiment included five test sequences, which leads to a total of
20 trials per AT experiment.
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Figure 3. Description of the aiming task (AT) on the left and the tracking task (TT) on the right. The
yellow dot displays the cursor controlled by the participants. The gray dot displays the starting point
in the middle of the coordinate axes. The green circle is the respective target. During the AT, a target
located along the cardinal axis had to be reached as quickly and accurately as possible. During the
TT, participants had to track the target which moved with constant velocity along the horizontal or
vertical DoF.

During the TT, the target moved with a constant speed either horizontal or vertical
along the axis. The target started in the middle of the coordinate system and traveled
in total 1600 px along one DoF (±x or ±y), including two turns (c.f. Figure 3, right side).
Subjects were asked to follow the target and stay within the target diameter as accurately
as possible. One test sequence included both DoFs: horizontally and vertically. Five test
sequences completed one TT experiment.

Each AT and TT was conducted with all calculated models based on the different
labeling strategies. In total, each subject performed five rounds of experiments of AT and
TT. The model order was randomized based on a Latin square design over all subjects. The
subjects could familiarize to the new control output prior to each experiment round. This
included control of the cursor freely on the screen for 30 s, followed by one test sequence,
which was not considered in the evaluation.

2.6. Subjects

Ten right-handed subjects (1 female, 9 males, age range 21–28 years) took part in this
study. None of them reported known neurological diseases or other physical impairments.
All of the subjects had prior experience with the EMG-based interface. In particular, they
had used the interface in combination with labeling method A as this was used in previous
applications. All subjects gave written consent to the procedure, which was explained to
them orally and in a written form. The study was conducted according to the guidelines
of the Declaration of Helsinki, and approved by the Ethics Committee of the Technical
University of Munich, School of Medicine (approval number: 6/14S).

2.7. Performance Measurement and Data Analysis

For analyzing the data of the AT following performance measures were used:

• Success rate;
• Completion time, gross, and fine motion time;
• Average and maximum speed during gross motion;
• Path efficiency.

A trial is counted to be successfully finished when the cursor is placed within the
target circle for more than 500 ms. If a task could not be finished within 10 s, the trial is
considered to be failed. The path efficiency describes the ratio of the shortest distance to
the target to the traveled distance of the cursor. The gross motion time is defined as the
time from the beginning of the task until the cursor touches the target circle for the first
time. The fine motion time starts as soon as the cursor touches the target circle for the first
time (end of gross motion) and lasted until the task is finished successfully. Accordingly,
the completion time is the sum of gross and fine motion time. The evaluation of the TT was
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done using the average distance from the cursor to the center of the target. Furthermore,
the average travel speed was analyzed.

A statistical analysis was performed on the performance measures gross motion time,
fine motion time, completion time, path efficiency, as well as on the performance measures
of the TT. Thereby, the following hypothesis should be proofed:

Hypothesis 1 (H1). The different labeling methods do not influence task performance when using
the EMG-based interface in a 2D task.

The mean value of each subject per labeling approach and performance measure
was used for this analysis to obtain a more expressive result. Since the data was not
normally distributed, a Kruskal–Wallis (KW) test was used for statistical analysis. A
pairwise Wilcoxon test with Bonferroni correction was used as a post hoc test. The effect
size r was estimated through the equation given by Rosenthal, 1991 [43]. One sample of the
TT in method D showed a value more than twice as the mean, which was not explainable.
This value was identified as an outlier and eliminated for further analysis. In addition,
a questionnaire was made after each experiment to gather information on the subjects’
confidence in controlling the cursor.

3. Results

In total, 200 trials were performed per labeling method across all subjects during the
AT. The highest success rate was reached by the labeling method B with 98.5%, and E with
99% (c.f. Table 1). Both methods are based on the new labeling approach and include a
transient phase. Methods C and D show success rates of about 93%, while the baseline
method A has a success rate of 88.5%. Most failures occurred during the fine motion time
independent of the method (A: 19/23, B: 3/3, C: 12/13, D: 12/14, E: 1/2). Gross motion
failures occurred rather rarely. Figure 4 illustrates the failed trials, successful trials with
overshoots, and trials which could be finished directly (without overshooting). It can be
observed that subjects were able to finish the AT in 92% of the cases without any overshoots
using method B. Subjects were able to finish the AT without overshoots in 88.5% of the
trials with method E, while method A shows 56.5% of the trials without overshoots.

Table 1. Success rates and failures over all subjects during the AT.

A B C D E

success rate 88.5% 98.5% 93.5% 93% 99%Complete trial failure 23 3 13 14 2
Fine motion failure 19 3 12 12 1
Gross motion failure 4 0 1 2 1

Figure 4. Overshoots over the whole experiment. For each labeling method A–E, the bar plot
illustrates how often the trials were finished directly by moving the cursor straight into the target
circle (green), a target was overshot before finishing the trial (orange), or the trials failed (red).
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Figure 5 illustrates the completion time, gross motion, and fine motion time for suc-
cessfully finished trials of all subjects. For illustration, the mean values per labeling method
and subject are used, analogous to the statistical analysis. The gross motion time shows
stable results over the different methods. A significant effect could not be identified. In a
direct comparison between all methods using continuous labels (B, D, E) to the methods
based on binary labels (A and C), no significant effect of the gross motion time could be
found either. The results of this comparison can be seen in Figure 5 on the right side.

Figure 5. Results of completion time, fine motion, and gross motion time over all subjects during
AT, based on the mean values of each subject per labeling method. (Left): boxplots of the needed
time sorted by labeling method. The statistical analysis identified a significant effect in fine motion
time between method A and B. (Right): boxplots of needed time sorted by methods based on binary
and continuous labels. Binary includes results performed with model A and C; continuous includes
results from B, D, and E. The KW test could identify a significant effect for the fine motion time.
‘•’ indicates outliers; ‘*’ indicates statistical significance (‘*’ p < 0.05, ‘**’ p < 0.01, ‘***’ p < 0.001).

In contrast to the gross motion time, the fine motion time shows stronger variation
between the methods. A significant effect can be reported by the KW test (p-value < 0.01).
The post hoc test showed that it took significantly longer to finish the fine motion part
when using the binary model A compared to model B (p-value < 0.01, r = 0.66), which is
based on continuous labels. A direct comparison of methods using binary and continuous
labels shows a significant effect as well (p-value < 0.001, r = 0.80).

The analysis could identify a significant effect of the path efficiency during gross
motion. The KW test identified methods based on binary labels with an average path
efficiency of less than 79% to be less efficient (p-value < 0.05, r = 0.52) compared to the
methods based on continuous labels (path efficiency of B,D,E > 83%). These results can be
found in Table 2.

Table 2. Path efficiency and results of the questionnaire. The table show the path efficiency during the
gross motion section of the AT over all subjects. The questionnaire asked the subjects how well they
could control the cursor during each experiment. They could rate from 0 to 20, where 0 represented
bad control of the cursor and 20 represented a perfect control.

A B C D E

path efficiency (PE) mean in % 76.7 83.1 78.9 83.5 84.0
±sd 17.7 15.0 17.9 14.2 14.4

questionnaire: How good was
the control of the cursor?

mean (0–20) 13.6 16.3 15.3 15.4 15.9
±sd 3.2 3.0 1.9 2.3 2.2

When comparing the cursor speeds during the AT, differences can be observed for
the used methods (c.f. Figure 6 on the left side). The maximum cursor speed during
gross motion was reached by method A followed by method C, both with an average
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maximum speed of more than 400 px/s. The cursor would reach a velocity of approximately
600 px/s, if the output of the predictive model is 1. The KW test identified a significant
difference in maximum speed. The baseline method A shows an effect when compared
to the methods based on continuous labels (B, D, E). A faster maximum cursor speed can
also be reported (p-value < 0.001, r = 0.93) in a direct comparison between methods using
binary or continuous labels. The results are visualized in Figure 6 on the right side.

Figure 6. Results of average and maximum speed over all subjects during AT, based on the mean
values of each subject per labeling method. (Left): boxplot of the average speed and maximum
speed in px/s during the gross motion section of the AT. A significant difference was identified for
maximum speed (A-(B, D, E) by the KW test. (Right): boxplot for the average and maximum speed
during the gross motion for methods based on binary and continuously labeled data. A significant
difference was identified for maximum speed. ‘•’ indicates outliers; ‘*’ indicates statistical significance
(‘*’ p < 0.05, ‘**’ p < 0.01, ‘***’ p < 0.001).

During the TT, no significant effect on average distance to the target could be identified.
The left side of Figure 7 illustrates these results of the TT over all subjects. The statistical
analysis obtained a significant difference in average speed during the TT (p-value < 0.01,
r = 0.66). Hence, labeling method A showed a higher average speed compared to method
B, which is based on continuous labels. Results can be seen in Figure 7 on the right side.
While the average speed of method A lies at about 130 px/s, methods using continuous
labels show mainly values lower than 120 px/s. The target moved with a constant speed
of 100 px/s.

Figure 7. Results of the TT over all subjects, based on the mean values of each subject per labeling
method. (Left): boxplot of the average distance from cursor to target. The total distance traveled
per trial was 1600 px. There was no significant effect between the methods. (Right): boxplot of
the average travel speed of the cursor. The target moved with a constant velocity of 100 px/s. A
significant effect was identified between method A and B by the KW test and the post hoc test.
‘•’ indicates outliers; ‘*’ indicates statistical significance (‘*’ p < 0.05, ‘**’ p < 0.01, ‘***’ p < 0.001).
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Subjects had to rate their ability to control the cursor on a scale from 0 (very bad
control) to 20 (very good control) after performing each labeling method. Method B reached
on average the best rating with 16.3± 3 points, while method A was rated worst with
13.6± 3.2 points. The results of the questionnaire can be found in Table 2.

4. Discussion

In this work, we introduced a new labeling approach to generate continuous labels
for proportional electromyographic control. The continuous labels originated from the pre-
processed EMG data, recorded during a simple data acquisition procedure. No additional
sensors were used to generate the labels. Since the labels were created directly from the
EMG feature stream, they reflect the intensity of the muscular activity provided by the par-
ticipant. By using the EMG data without additional sensors, the challenge of synchronizing
external values to the proportional EMG signals as described in Raghu et al. [29] can be
avoided. Mismatches that may occur from tracking a visual stimulus during the training
procedure e.g., through an incorrect activity level or a delayed muscle contraction can be
excluded with this method. The simple training procedure specifies just the category of
the label (in this case, the direction) as well as the time to gather enough data. No ramp or
MVC levels had to be reached. The predefined activity threshold enables to coincide the
onset of the muscular activity with the onset of the labels, including the transient phase.
Thus, no additional time delay occurs between the EMG signals and the labels during the
training. The time delay given by the system, to transfer and process the data, is the only
delay present. However, this delay is inherent to the system and is present during training
but also during the usage of the interface.

The realized EMG-based interface achieved success rates between 88.5% and 99%
during the aiming task. In the literature it has been shown that aiming tasks are viable
to test the performance of EMG-based interfaces [44,45]. In Scheme et al. [44] e.g., two
proportional control schemes where compared using a Fitts’ Law test, which presents a
special type of an aiming task. Proportional control was added here as a post-processing
step to the classification. Since the experimental design differs from our approach (target
distances, target and cursor sizes, and simultaneous control), the results are not directly
comparable, however a good estimate was given for task performance with EMG-based
interfaces during aiming tasks. In Scheme et al. [44], a success rate of up to 96% could be
reached. Kamavuako et al. [45] used as well a Fitts’ Law test to measure performance and
reached success rates of about 91% with a surface EMG approach and 96% in a combined
approach of surface and intramuscular EMG. The success rate of our study (between 88.5%
and 99%) lies in a similar range as the results achieved in the mentioned publications. This
reveals that our approach provides, generally, a useful control output.

A success rate of up to 99% (B: 98.5%, E: 99%) could be achieved by methods based on
the new introduced labeling approach. It is noteworthy that the two continuous labeling
methods that include the transient phase (B and E) performed best. Exclusion of transient
phases in method D led to a drop in success rate to 93%. Here, the result is comparable to
method C (93.5%), a method based on binary labels which also excludes the transient phase.
Figure 8 illustrates the histogram of the labels generated by the new labeling approach. The
effect of in- or exclusion of the transient phase on the labels can be observed. Methods,
including the transient phase, contains more variability in the labels. As an example, in
method B and E, 11 % and 21 % of the labels have a value below 0.5. These are considerably
more as in method D (1.5 %). We assume that the label-variability, given by the transient
phase, improves the control accuracy. This statement is supported by the fact that failures in
method D occurred mainly during fine motion (c.f. Table 1), in which a precise commanding
is needed to reach the target. Including the transient phase allows for more variability in
EMG control while maintaining the simple training procedure. The short transient phases
that are required to reach the steady state signal already provide enough variability in the
EMG signal to improve the level of proportional control, compared to using steady state
data only.



Sensors 2022, 22, 1368 13 of 18

Figure 8. Histogram of the continuous labels. Shown is a histogram of the generated labels of the
methods using continuous labels B, D, and E. The data includes the labels between 0 and 1 of all
subjects and directions (0 is excluded).

Compared to method B, method E includes two transient phases: the rising as well
as the falling flank of EMG data. The success rate of both models shows similar results.
Further, a significant effect between these models could not be identified. This indicates
that considering the second flank has little effect on task performance. The experience from
our prior studies with people suffering severe muscular atrophy showed that it is often
a problem to relax the muscles abruptly after voluntary muscle contraction. This might
influence the falling EMG signal during training. Therefore, we hypothesize that in our
method, no advantage is given by including the falling flank in the training data.

When comparing methods based on continuous labels with methods based on binary
labels, differences in success rate, fine motion time, and maximum cursor speed can be
observed. Trials performed with a predictive model based on continuous labels show a
higher success rate as methods based on binary labels. The baseline method A showed,
with 88.5% success rate, the lowest value for all methods. On closer inspection, the effect
can be attributed to the fine control of the cursor. While the gross motion time is almost
equal over all methods, the outcome of the fine motion time varies. This means that the
cursor could be moved correctly in the direction of the target and reach it, however the
cursor could not always be moved precisely into the target circle. The statistical analysis
confirmed that the fine motion could be controlled more precisely with the methods based
on continuous labels. We assume that better fine motion indicates better proportional
control as the ability for slow and precise commands is required to place the cursor inside
the goal area.

The analysis of the cursor speed showed that a binary labeling strategy leads to faster
maximum cursor commands during the gross motion. The active EMG data was labeled
with 1 during the data acquisition when a binary label is applied. The generated labels
of the newly-introduced approach (c.f. Figure 8) are spread between 0 and 1. This leads
to a slower control output, which in turn leads to the ability to control the output more
precisely. Although, the maximum cursor velocity during the AT is faster for methods
based on binary labels, the average speed did not increase and the gross motion time did
not decrease for these models. However, the path efficiency showed that the traveled path
was more efficient in methods based on continuous labels (PE for binary labels < 79%;
PE for continuous labels > 83%). The average PE of methods based on continuous labels
correspond to those found in the literature. A PE of up to 82% was reported in [44] during
a Fitts’ Law test. Kamavuako [45] reported a PE of up to 87% in the Fitts’ Law test, which
was performed by nine subjects. Both realized the EMG control by the use of a proportional
classifier. In Ameri et al. [14], a support vector machine was used to achieve simultaneous
and proportional control. Here, a PE of up to 85% could be reported during a 2D aiming
task for one subject with transradial limb deficiency and about 76% for 10 healthy subjects
during a 3D task.
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A detailed inspection shows that especially method A causes differences to the meth-
ods with continuous labels. Besides the lower success rate, method A also produces an
effect in fine motion time and maximum cursor velocity. Method C, which presents a
method that excludes the transient phase, does not cause these effects. This reveals that
the inclusion of the transient phase to the binary label further increases the agility in the
prediction. Thus, model A appears most agile at the cost of less accuracy.

These findings can also be observed for the tracking task. Higher average speed was
achieved when method A was active. A statistical effect was found between A and B.
Method B shows the lowest average speed, which is also closest to that of the moving target.
Nevertheless, the results of the average distance to the target indicates that an equivalent
performance could be reached by all methods. Apparently the selected speed of the target
of 100 px/s can be tracked equally well with all five labeling methods. We suggest further
tests with varying velocities of the target to investigate more detailed effects regarding task
performance during tracking.

With the results shown above, the Hypothesis 1 (H1) can be partially rejected, since the
task performance of fine motion and cursor speed are influenced by the different labeling
methods, especially when distinguishing between continuous and binary labeling methods.

The evaluation of the different labeling strategies indicates that a continuous label
leads to more precision during fine motion control. The control of prostheses or assistive
robots often requires precise proportional control in order to master tasks of daily living.
Therefore, our method can potentially help to improve the control of assistive devices. The
results of the questionnaire indicate that the participants preferred a precise control as
given by method B over a reactive control as given by method A for the given task. This
is expected, as the performance is worse using method A, with participants rating this
method lower. The assessment of the participants supports the results of the quantitative
measures, such as the success rate and fine motion.

A high frustration level due to a lack of control is one of the reasons to reject an
assistive device [26]. An increased confidence about the control may therefore increase the
acceptance of the assistive device. However, the findings about the sensitive control given
through a binary label and the inclusion of the transient phase, as given in method A, are of
interest to systems using shared control. Assistive devices with an integrated shared control
algorithm support the user during complex tasks of daily living. Operators command the
device roughly along a task. Precise movements and fine motions are then supported by
the system [46], which makes the task easier for the user. Here, the advantage of more
reactive control may outweigh that of precise control because deficits in precision can be
compensated by shared control. A detailed analysis of the labels during tasks of daily living
and with and without shared control would be necessary to confirm that assumption.

Prior research shows that the presented EMG-based interface can be used in 3D
applications with a robotic system [38]. Baseline method A was used as labeling method to
perform tasks of daily living with an assistive robot. The interface allows a proportional
and simultaneous control of the robotic device in 3D. Although, in this investigation the
labeling methods were evaluated in a 2D task on a screen, we assume that the results may
be valid for proportional and simultaneous control in 3D.

As sensor shift and drift are still problems in EMG-based control, techniques of online
adaptations are useful to update the predictive model during the application if control com-
mands are not fitting anymore [47]. The introduced approach provides continuous labels
that can be created during the usage of the interface. It is neither dependent on a defined
training procedure nor on additional sensors to generate the continuous labels. Thus, the
training data can be gathered during the application and interrupting the application is
avoidable. This makes the introduced approach ideal to update the predictive model online
with continuous labels.
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5. Conclusions

This work presents a new labeling approach for continuous labels used in propor-
tional EMG control. Labels are directly extracted from EMG features calculated during
data acquisition. The method allows for a simple training procedure and still covers the
variability of the EMG signal by including the transient phase of muscle contraction during
training. No additional sensors were needed and the method ensures a minimum time
delay between the EMG training data and the generated labels. Furthermore, mismatches
due to wrong contraction levels are avoided. Thus, this labeling method presents an ideal
method for people with physical disabilities, especially if additional sensors are not an op-
tion. However, this work does not provide a comparison between the introduced approach
and other labeling strategies, such as tracking a visual stimulus or additional sensors. At
this point we can also not make any statement on the control with prosthesis or other EMG
applications. Further studies are mandatory to verify if the introduced method can be used
or even improve e.g., prosthesis control.

We investigated the effect of the introduced labeling approach on task performance
when using an EMG-based interface. To quantify the effect, participants performed tasks
with five different mappings based on the same training data, however with different
labeling methods. The five different methods included continuous labels, a baseline method
with binary labels, as well as variations thereof with in- and excluding the transient phases
of the EMG signal. In total, three variations of the new labeling approach (called: B, D, and
E) were compared with two variations of a binary labeling strategy (called: A and C). The
evaluation showed that the methods based on continuous labels and including transient
and steady-state phases led to high success rates of 98.5% with B and 99% with method E,
compared to methods based on binary labels, which showed success rates of 88.5% with
A and 93.5% with method C. Differences between the methods were particularly evident
during fine motion. A significant difference could be identified between methods based on
binary and continuous labels, as well as between method A and B. This indicates improved
fine motion capabilities with methods using continuous labels and a higher command
accuracy in comparison with methods using binary labels.

To conclude, the introduced continuous labels in combination with the transient phase
(corresponding to labeling method B) presents an efficient way to map muscular activity to
a proportional control input with good command accuracy. The baseline method, which
uses binary labels, proved to be more reactive and less accurate. In applications where no
precise control is required, as e.g., in systems providing shared control, these strategies
may be advantageous. In future, the introduced approach must be deployed with a robotic
system in 3D to confirm the achieved results with the intended system of use. Furthermore,
the approach must be evaluated with actual users suffering from severe muscular atrophy,
where this labeling method is of particular interest, as additional sensors are not an option
for generating appropriate labels for this group of users.
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