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Abstract: Vegetation cover and soil surface roughness are vital parameters in the soil moisture re-
trieval algorithms. Due to the high sensitivity of passive microwave and optical observations to
Vegetation Water Content (VWC), this study assesses the integration of these two types of data to
approximate the effect of vegetation on passive microwave Brightness Temperature (BT) to obtain
the vegetation transmissivity parameter. For this purpose, a newly introduced index named Passive
microwave and Optical Vegetation Index (POVI) was developed to improve the representative-
ness of VWC and converted into vegetation transmissivity through linear and nonlinear modelling
approaches. The modified vegetation transmissivity is then applied in the Simultaneous Land Pa-
rameters Retrieval Model (SLPRM), which is an error minimization method for better retrieval of BT.
Afterwards, the Volumetric Soil Moisture (VSM), Land Surface Temperature (LST) as well as canopy
temperature (TC) were retrieved through this method in a central region of Iran (300 × 130 km2) from
November 2015 to August 2016. The algorithm validation returned promising results, with a 20%
improvement in soil moisture retrieval.

Keywords: vegetation transmissivity; land surface parameters; microwave remote sensing; AMSR2;
soil moisture

1. Introduction

Volumetric Soil Moisture (VSM) content is the volume of water accumulated in soil
pores, usually recorded as a percent or volumetric ratio (i.e., cm3/cm3) for different depths.
The knowledge of soil moisture content is essential in several applications in the field
of ecological, hydrological and meteorological processes [1]. Predictions and results of
these applications are highly dependent on the accuracy of the VSM data [2]. Due to high
temporal and spatial variability of soil moisture and temperature, remote sensing is the
only rational instrument to measure and monitor them in an efficient manner, in a wide
range of areas [3,4].

Microwave (MW) remote sensing has great potential for measuring and monitoring
of soil characteristics. In light of this, different methodologies are found in the literature
to explain the rationale behind the estimation of surface soil characteristics accurately [5].
Findings of those studies among others have reported that the radar is more sensitive
to surface features, such as roughness and vegetation structure, and radiometer is more
sensitive to the near surface VSM and Land Surface Temperature (LST) [6].

Factors influencing the Brightness temperature (BT) of the surface as observed from
space, especially in the soil-vegetation medium consist of soil moisture, temperature, vege-
tation cover (type and amount), surface roughness, soil texture, soil Bulk density (Bd) along
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with elevation, soil depth, soil mineralogy, etc. [7]. A better estimate of those factors is very
much needed when assessing their effect on BT and soil moisture retrieval [7–9]. However,
in almost all studies, the quantization or prediction of soil characteristics with a consistent
degree of confidence is a challenging task for soil scientists and there exist different soil
moisture retrieval algorithms in this context. As the modelling of the soil surface roughness
and above-ground vegetation cover effects are critical, the difference in the developed
algorithms is in their modelling method with respect to these two parameters [10–12].
Other challenges that we are facing in modelling soil characteristics are due to limited
penetration of sensors and low sensitivity to the soil parameters [13]. Spatial and temporal
resolutions of sensors are another major problem that limits the model’s performance due
to mismatch between the ground and satellite footprints [14].

Due to the high temporal dynamics of vegetation effect, its accurate determination is
very important. In this study, the relationship between Vegetation Water Content (VWC)
and vegetation transmissivity, in order to model the effect of vegetation on BT, is inves-
tigated. The studies by [15] indicate that observations of passive microwave and optical
sensors are sensitive to vegetation in different sensor wavelengths. Therefore, in this
study, these two types of data are used and integrated under a newly introduced Passive
microwave and Optical Vegetation Index (POVI) to estimate VWC in a more accurate
way. Then, with two separate linear and nonlinear modelling approaches, the POVI is
converted to transmissivity and applied in the Simultaneous Land Parameters Retrieval
Model (SLPRM) algorithm to estimate the VSM, LST and canopy temperature (TC) param-
eters [16]. Finally, a comparison has been made between the retrieval accuracies of soil
surface parameters under linear and nonlinear modelling. The advantage of this algorithm
is that it considers the roughness parameter and VWC, therefore proposing a solution
towards simultaneous retrieval of soil surface parameters. Unlike VSM operational re-
trieval algorithms, LST and TC parameters are not considered equal in order to simplify the
algorithm [6].

In purview of the above, this study has been focused on (1) to develop, a new index
named as POVI for better representation of VWC, (2) to assess new index for vegetation
transmissivity estimation through linear and nonlinear modelling approaches, (3) to evalu-
ate the modified vegetation transmissivity for retrieval of BT through Simultaneous Land
Parameters Retrieval Model, (4) to retrieve the volumetric soil moisture, land surface
temperature as well as canopy temperature using the improved BT.

2. Study Area and Datasets
2.1. Study Area

In 2016, the data collection experiment was performed in the central Iranian plateau, a
semiarid region of Iran located between Isfahan and Tehran provinces (32◦43′–35◦35′ N,
50◦50′–52◦10 E) [17]. This region and its ground sites occupy an area of approximately
300 × 130 km2, as shown in Figure 1.

This area is generally semi-arid and its average elevation is 1400 m above sea level.
As elevation increases from east to west in this region, rainfall and temperature increase
and decrease, respectively, which creates different climatic conditions. Based on the meteo-
rological stations’ data, topography is the most important determinant of climate in the
study area. Land cover distribution types are diverse in this region, including Grass (steppe
species dominate the area). Other cover types that exist in the region are namely Trees,
Water bodies, Flooded vegetation, Snow/Ice, Built Area, and Scrub/Shrub. Regarding
the potential of this proposed algorithm, 10 sites with different soil moisture content are
selected for validation purposes.
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these dates is to make observations in different climatic conditions, and as a result, diver-
sity in the values of soil surface parameters. Details about the dataset used are provided 
in Table 1. AMSR2 was launched on the JAXA’s GCOM-W1 spacecraft in May 2012, re-
placing the AMSR-E sensor onboard the NASA’s Aqua satellite. Although the spatial res-
olution of this sensor has been slightly upgraded, it is still not considered a suitable reso-
lution. This instrument is dual-polarized and measures BT on several frequency channels 
twice a day. The overpass time of both MODIS/Aqua and AMSR2 is about 1:30 A.M. and 
1:30 P.M. Because ground data are observed around noon, only daytime AMSR2 and 
MODIS (or Moderate Resolution Imaging Spectroradiometer) data are used. In addition 
to having the same overpass time of both the sensors, the other reasons for selecting 
MODIS among other VIS/IR sensors are its temporal resolution, data availability and good 
1 km spatial resolution. The spatial resolution of AMSR2 in the metric unit is 25 km. The 

Figure 1. Spatial distribution of the ground stations (Solid black and red squares are locations of
calibration and check stations, respectively) and geographic location (Rectangular polygon) of the
study region along with the land cover.

2.2. Satellite Datasets

In this study, the Advanced Microwave Scanning Radiometer-2 (AMSR2) microwave
and MODIS data registered on 16 dates from November 2015 as well as January, March,
May, June and August 2016 from the selected region are applied. The reason for choosing
these dates is to make observations in different climatic conditions, and as a result, diversity
in the values of soil surface parameters. Details about the dataset used are provided in
Table 1. AMSR2 was launched on the JAXA’s GCOM-W1 spacecraft in May 2012, replacing
the AMSR-E sensor onboard the NASA’s Aqua satellite. Although the spatial resolution
of this sensor has been slightly upgraded, it is still not considered a suitable resolution.
This instrument is dual-polarized and measures BT on several frequency channels twice a
day. The overpass time of both MODIS/Aqua and AMSR2 is about 1:30 A.M. and 1:30 P.M.
Because ground data are observed around noon, only daytime AMSR2 and MODIS (or
Moderate Resolution Imaging Spectroradiometer) data are used. In addition to having
the same overpass time of both the sensors, the other reasons for selecting MODIS among
other VIS/IR sensors are its temporal resolution, data availability and good 1 km spatial
resolution. The spatial resolution of AMSR2 in the metric unit is 25 km. The spectral bands
2 and 5 of MODIS data are upscaled to 25 km by using the averaging method.
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Table 1. Details about the satellite datasets used in this study.

Source Used Channels Spatial
Resolution

Temporal
Resolution Purpose

AMSR2/GCOM-W
6.9, 10.65 and

18.7 GHz
(v and h polarizations)

25 km Daily VSM, LST and TC
retrieval

AMSR2/GCOM-W 36.5 GHz
(v and h polarizations) 25 km Daily

Derivation of MPDI
(calculation of

vegetation water
content)

MODIS/Aqua

Band 2
(850 nm, NIR),

Band 5
(1240 nm, SWIR)

1 km Daily Calculation of
NDWI

2.3. Ground Datasets

LST is determined and ground samples are taken concurrent to satellite overpass. VSM
and LST measurements are taken at the depths of 0–6 cm and 0–5 cm, respectively. In the
laboratory, VSM content is also estimated for the above-mentioned dates. The average
Bd of the study region is measured by applying a few ground samples in the laboratory.
Towards this, according to the means of the region, the values of 1.2 and 0.12 are considered
for Bd and surface roughness, respectively. In total, the 10 best stations used in this study
have uninterrupted quality-controlled supply of the datasets for the duration considered
in this study. These stations are located in large homogenous fields to provide a good
consistent record to compare with the satellite datasets and to reduce errors in the spatial
mismatch between in situ and satellite datasets. Since the study area consists of 10 ground
sites and each site can be considered equivalent to the nearest passive pixel, there are in
total 160 passive pixels observed in 16 days. Out of these, observations of 7 stations in
16 days (112 pixels) were used to model calibration and the rest to assess accuracy.

3. Methods
3.1. Baseline Algorithm

SLPRM is developed to retrieve VSM, LST and TC from measurements at six frequency
channels of AMSR2 at H and V polarizations at frequencies 6.9 GHz, 10.65 GHz, 18.7 GHz
in a simultaneous manner [16]. The steps of this algorithm are as follows:

Step 1. Computation of dielectric constant by applying the model presented by [18].
The ground measured Bd and initial values for VSM and LST are required, obtained based
on their average amounts in the region, through Equation (1):

ε = f (VSM, LST, Bd) (1)

where ε is the real part of the complex soil dielectric constant.
Step 2. Estimation of effective land surface reflection, is obtained through Equation (2)

introduced by Fresnel expressions. To model roughness (i.e., sig and cl parameters), the
model presented by [19] is applied through Equations (3) and (4).

rH =

∣∣∣∣ cos(θ−
√

ε−sin2(θ))

cos(θ)+
√

ε−sin2(θ)

∣∣∣∣2
rV =

∣∣∣∣ ε. cos(θ−
√

ε−sin2(θ))

ε. cos(θ)+
√

ε−sin2(θ)

∣∣∣∣2 (2)

log[QP( f )] = aP( f ) + (bP( f )× log(sig/cl))
+(cP( f )× (sig/cl))

(3)
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Re
P = (QP)× rP + QP × rq (4)

where Re
P represents reflectivity, Fresnel reflectivity denoted by the term r, θ is incidence

angle, a, b and c are the frequency-based coefficients. Parameters H and V are horizontal
and vertical polarization, respectively. p represents the desired polarization and q represents
the opposite polarization. f represents the frequency, QP is related to surface roughness,
which can be calculated for different frequencies in horizontal and vertical polarization.

Step 3. Effective reflectivity (RP(θ)) can be converted into effective emissivity (EP(θ)),
through Equation (5):

EP(θ) = 1− RP(θ) (5)

Step 4. Here the effective temperature is calculated through Equations (6) and (7) as
shown below:

T = ((1− Γ)× TC) + (Γ× TS) + ((1− Γ)× Γ× (1− EP(θ))× TC) (6)

Γ = f ((VI)× θ) (7)

where Γ is vegetation transmissivity, VI is vegetation index and T, TS and TC are effective
temperature, temperatures of the soil and canopy temperature, respectively.

Step 5. Calculation of BT by applying the effective temperature and emissivity,
Equation (8):

BTP = EP (θ) × T (8)

Step 6. Here, the obtained BT and sensor measured BT are compared through error
minimization method with variables χ = {VSM, LST, TC} that minimizes χ2, through
Equation (9):

χ2 =
6

∑
i=1

[((BTobs)i − (BTest)i)
2] (9)

3.2. Algorithm Improvement
3.2.1. VWC Index Extraction

Since the Qp method is used in the SLPRM algorithm to model the roughness effects,
the main purpose of this study is to minimize the effect of vegetation on the AMSR2 mi-
crowave BT, by applying appropriate modelling for the retrieval of VSM content along with
LST and TC from microwave data. Because the purpose is to aggregate the observations of
passive microwave and optical sensors to estimate VWC, the two Multi Polarized Difference
Index (MPDI) and Normalized Difference Water Index (NDWI) are used as the proper
indicators of VWC, obtained from the AMSR2 and MODIS sensors, respectively. The multi-
polarization measurements at higher microwave frequencies are suitable for modelling the
vegetation effects [11]. The MPDI derived from 36.5 GHz, as a good representative of the
VWC, can be calculated through Equation (10):

MPDI = (BTV − BTH)/(BTV + BTH) (10)

where, BTV and BTH are the vertical and horizontal BT in passive microwave sensors,
respectively.

Because NDWI is more consistent with VWC than other (Vis/IR) vegetation indices, it
is calculated through Equation (11). Band 2 (850 nm, NIR band), and one of 5 or 6 bands
(1240 nm or 1650 nm, SWIR band) of MODIS can be applied. In this study, band 5 is used as
the SWIR band, because photons at 850 nm and 1240 nm penetrate into vegetation canopies
in a similar manner, with similar atmospheric scattering [20].

NDWI = (NIR− SWIR)/(NIR + SWIR) (11)

where, NIR is near infrared and SWIR is shortwave infrared.
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Due to the different spatial resolution of MODIS and AMSR2 sensors, NDWI is ex-
tracted from MODIS pixels are averaged to each passive pixel.

At this stage, the main issue is the integration of these two indices in development of
new index called POVI, in a sense that it is able to model the vegetation effect at its best.
Due to different high sensitivity of transmissivity to the MPDI and NDWI, the weights (wi)
are considered to calculate POVI in the Equation (12):

POVI =
n

∑
i=1

wi × (VI)i (12)

Since the objective here is to calculate the vegetation transmissivity (Γ) through
Equation (7) of step 4, it is necessary to examine the correlation between the vegeta-
tion transmissivity and the VWC indices. In this study, linear (first order) and nonlinear
(exponential), both are applied to the vegetation transmissivity and the VWC indices as
detailed in the following sections.

3.2.2. Transmissivity Modelling
Linear, First Order

As observed in Figure 2, the MPDI is more consistent with transmissivity than NDWI;
therefore, due to its lower Root-Mean-Square Error (RMSE) and higher contribution in
estimating vegetation effect, it should weigh more.

In linear regression, the R2 is the best statistical parameter to determine the degree of
compatibility and can be obtained through the weights calculated through Equation (13).

wi =
(R2)i

∑ (R2)i
(13)
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Figure 2. Scatter plots of MPDI and NDWI versus transmissivity using linear regression.

Equation (14) is defined as a linear regression, applied to estimating vegetation trans-
missivity. The relationship between calculated POVI and vegetation transmissivity using
linear regression is shown in Figure 3. The comparison between Figures 2 and 3 indicates
that the POVI is less compatible with the transmissivity than that of the MPDI:

Γ = (a× (POVI)) + b (14)
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where a and b are the constant coefficients of this equation.
Calculations were made to find the weight and the coefficients of linear regression

according to Table 2, to determine the vegetation transmissivity, the SLPRM algorithm is
applied and compared against ground measurements.
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Table 2. VSM- and -LST- retrieval accuracies.

Regression
Type Parameters Coefficients Type of

INDEX
RMSE VSM

(m3/m3)
RMSE LST

(◦C)

Linear
regression

a = −0.041 w1 = 1, w2 = 0 MPDI 0.042 2.92
b = 0.984 w1 = 0.513, w2 = 0.486 POVI 0.044 3.03

Nonlinear
regression a = 100

w1 = 0.38, w2 = 0.62 POVI 0.031 2.28
w1 = 0, w2 = 1 NDWI 0.033 2.32
w1 = 1, w2 = 0 MPDI 0.038 2.81

Nonlinear, Exponential

The exponential correlations between transmissivity and both the NDWI and MPDI
are shown in Figure 4. Hence, the nonlinear regression applied in estimating the vegetation
transmissivity is expressed through Equation (15):

Γ = exp(−a×VI − /cosθ) (15)

where a is a constant coefficient with a value of 100.
As observed, there exists a correlation between Figure 4 and Equation (14). The indices

weights are calculated through Equation (16):

wi = (1− SEi

∑ SEi
) (16)

where, SE is the standard error. In Figure 5, a flowchart is provided for easier understanding
of the algorithm and its modifications.



Sensors 2022, 22, 1354 8 of 12

Sensors 2022, 22, x FOR PEER REVIEW 8 of 13 
 

 

Table 2. VSM- and -LST- retrieval accuracies. 

Regression 
Type 

Parameters Coefficients Type of 
INDEX 

RMSE VSM 
(m3/m3) 

RMSE LST 
(°C) 

Linear 
regression 

a = −0.041 w1 = 1, w2 = 0 MPDI 0.042 2.92 
b = 0.984 w1 = 0.513, w2 = 0.486 POVI 0.044 3.03 

Nonlinear 
regression 

a = 100 
w1 = 0.38, w2 = 0.62 POVI 0.031 2.28 

w1 = 0, w2 = 1 NDWI 0.033 2.32 
w1 = 1, w2 = 0 MPDI 0.038 2.81 

Nonlinear, Exponential  
The exponential correlations between transmissivity and both the NDWI and MPDI 

are shown in Figure 4. Hence, the nonlinear regression applied in estimating the vegeta-
tion transmissivity is expressed through Equation (15): 

𝛤𝛤 = 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑎𝑎 × 𝑃𝑃𝑃𝑃 −/ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃)  (15) 

where a is a constant coefficient with a value of 100. 
As observed, there exists a correlation between Figure 4 and Equation (14). The indi-

ces weights are calculated through Equation (16): 

)1(
∑

−=
i

i
i SE

SE
w  (16) 

where, SE is the standard error. In Figure 5, a flowchart is provided for easier understand-
ing of the algorithm and its modifications. 

 
Figure 4. Scatter plots of MPDI (a) and NDWI (b) versus transmissivity. Figure 4. Scatter plots of MPDI (a) and NDWI (b) versus transmissivity.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 5. Workflow employed in this study. 

4. Results and Discussion 
Vegetation water content is estimated together with VSM, LST and TC through an 

improved physical model. In order to improve the surface parameters retrieval accuracy, 
the surface roughness is inserted in the SLPRM algorithm. In this study to improve the 
performance of this retrieval algorithm, the POVI is introduced and evaluated in estimat-
ing VWC and therefore, vegetation effects modelling. Here, the equations developed can 
estimate vegetation transmissivity from the POVI. Surface roughness (sig/cl) of constant 
amount is considered as 0.12, which is the average of regional roughness. As a general 
result, the comparison between the accuracies of VSM and LST retrieval through the two 
different linear and nonlinear regression can be made according to Table 2. The RMSE of 
VSM and LST retrieval based on the linear regression are also tabulated in Table 2. The 
findings related to the implementation of the linear regression with POVI and MPDI are 
provided in Figure 6. In this figure, a comparison is made between the observed and re-
trieved parameters in ten stations. As mentioned, the observations of the last three sta-
tions, which are the checkpoints, are used to estimate the retrieval accuracy.  

Figure 5. Workflow employed in this study.

4. Results and Discussion

Vegetation water content is estimated together with VSM, LST and TC through an
improved physical model. In order to improve the surface parameters retrieval accuracy,
the surface roughness is inserted in the SLPRM algorithm. In this study to improve the
performance of this retrieval algorithm, the POVI is introduced and evaluated in estimating
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VWC and therefore, vegetation effects modelling. Here, the equations developed can
estimate vegetation transmissivity from the POVI. Surface roughness (sig/cl) of constant
amount is considered as 0.12, which is the average of regional roughness. As a general
result, the comparison between the accuracies of VSM and LST retrieval through the two
different linear and nonlinear regression can be made according to Table 2. The RMSE of
VSM and LST retrieval based on the linear regression are also tabulated in Table 2. The
findings related to the implementation of the linear regression with POVI and MPDI are
provided in Figure 6. In this figure, a comparison is made between the observed and
retrieved parameters in ten stations. As mentioned, the observations of the last three
stations, which are the checkpoints, are used to estimate the retrieval accuracy.
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According to Figure 6 and as observed in Table 2, the RMSE of VSM and LST retrievals
through linear regression and POVI are obtained as 0.044 (m3/m3) and 3.03 ◦C, respectively.
While, if only the MPDI is applied, these values fall to 0.042 (m3/m3) and 2.91 ◦C, which
indicates the better performance of MPDI. In the first where a linear correlation is applied
between vegetation indices and transmissivity, there is a reduction in accuracy of the VSM
and LST, compared with the condition where only MPDI is applied. Unlike the linear
regression model, in the second case, the integration of indices increases the accuracy of
the VSM and LST, as compared to MPDI and NDWI.

In the nonlinear regression model, the weights and coefficients of nonlinear regression
are calculated and given in Table 2, the SLPRM algorithm is applied in VSM, LST and TC
retrieval. By applying the ground measurements, the overall accuracy of the retrieved
soil parameter is estimated. The RMSE of VSM and LST retrieval based on the nonlinear
regression are given in Table 2. A comparison between ground measurement, and retrieved
parameters, where the nonlinear regression is applied based on MPDI, NDWI and POVI, are
shown in Figure 7. As observed, the RMSE of retrieved VSM and LST, where the nonlinear
regression is applied, are obtained as 0.038 (m3/m3) and 2.81 ◦C, respectively, with MPDI.
If the POVI is applied, these values also fall to 0.031 (m3/m3) and 2.28 ◦C, which indicates
the better performance of POVI. It should be noted that using the NDWI alone instead
of the MPDI, also improves the accuracy of VSM and LST retrieval by about 0.05% and



Sensors 2022, 22, 1354 10 of 12

0.49 ◦C. As observed in Figure 4, there exist exponential correlations between vegetation
transmissivity and both NDWI and MPDI. This exponential relationship of NDWI is even
more visible. For this reason, the insertion of the NDWI into the linear regression will
weaken the performance of the algorithm and ultimately reduce the retrieval accuracy.
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While in nonlinear regression, the presence of the NDWI contributes to the better
performance of the algorithm. In other words, the integration of NDWI with the MPDI in
constructing the new vegetation index, i.e., POVI, increases the retrieval accuracy, only in
nonlinear regression model. Moreover, a comparison has been made between measured
and the most accurately estimated parameters, through nonlinear regression and POVI,
at three check stations in 16 dates that shown in Figure 8. Note that, the in situ data are
point measurements of soil moisture in the top 6 cm profile, whereas satellite provide
measurement at some foot print, which may cause a spatial mismatch and some error
in validation. However, in comparing with other methods [11,21,22], the RMSE values
suggest that this improved SLPRM algorithm is sufficiently reliable to allow the estimates
of all above mentioned parameters in the tested sites.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 13 
 

 

 
Figure 7. Comparison between observed and estimated Soil moisture (a) and Land surface temper-
ature (b) parameters using POVI, MPDI and NDWI in nonlinear relationship. 

While in nonlinear regression, the presence of the NDWI contributes to the better 
performance of the algorithm. In other words, the integration of NDWI with the MPDI in 
constructing the new vegetation index, i.e., POVI, increases the retrieval accuracy, only in 
nonlinear regression model. Moreover, a comparison has been made between measured 
and the most accurately estimated parameters, through nonlinear regression and POVI, at 
three check stations in 16 dates that shown in Figure 8. Note that, the in situ data are point 
measurements of soil moisture in the top 6 cm profile, whereas satellite provide measure-
ment at some foot print, which may cause a spatial mismatch and some error in validation. 
However, in comparing with other methods [11,21,22], the RMSE values suggest that this 
improved SLPRM algorithm is sufficiently reliable to allow the estimates of all above men-
tioned parameters in the tested sites. 

 
Figure 8. Comparison between measured and estimated parameters using POVI in nonlinear rela-
tionship: (a) Soil moisture (%), (b) Land surface temperature (°C). 

The accuracy of parameters retrieval is statistically improved when a nonlinear cor-
relation is considered between VWC and vegetation transmissivity, as well as the aggre-
gation of passive microwave and optical (VIs/IR) indices due to their sensitivity to the 

Figure 8. Comparison between measured and estimated parameters using POVI in nonlinear rela-
tionship: (a) Soil moisture (%), (b) Land surface temperature (◦C).



Sensors 2022, 22, 1354 11 of 12

The accuracy of parameters retrieval is statistically improved when a nonlinear corre-
lation is considered between VWC and vegetation transmissivity, as well as the aggregation
of passive microwave and optical (VIs/IR) indices due to their sensitivity to the vegetation.
It is more appropriate to apply passive microwave and optical (VIs/IR) observations on dif-
ferent platforms, like the AMSR2 and the MODIS observations, as applied in this study [6].
In addition to proper modelling of the VWC effects on BT, considering the roughness in the
SLPRM is one of the reasons for the algorithm’s success. The study reveals that the changes
in surface roughness also influence the emissivity of natural surfaces, and therefore, its
modelling in physical soil moisture retrieval algorithms is of great importance. Further-
more, due to the fact that different soil parameters are affected by each other, establishing a
proper relationship between different parameters is the key to have more accurate retrievals.
In this study, an algorithm for retrieving three parameters simultaneously is presented.
Due to the possibility of observing two parameters of soil moisture and temperature, the
accuracy of these two retrieved parameters has been evaluated. Although the ground
observation of the canopy temperature parameter is not possible, simultaneous retrieval of
this parameter along with two other parameters improves their retrieval accuracy.

5. Conclusions

In this study, soil moisture, canopy temperature and land surface temperature were
obtained by applying the SLPRM model at different levels of vegetation density, validated
by using ground sensor data like soil moisture and soil temperature. Through this study,
an attempt has been made to integrate passive microwave AMSR2 data and optical (Vis/IR)
MODIS. Both linear and nonlinear models were tested for estimating the VWC indices
and vegetation transmissivity. A new index called POVI, resulting from integration of two
sensors data, has been developed for an improved VWC estimation and ultimately soil
moisture retrieval.

The study showed that it is possible to estimate soil parameters with an improvement
accuracy of about 20%, by applying different sensors for vegetation modelling in the SLPRM
algorithm. Due to the possibility of extracting valuable information, this capability may
be useful in climatic, agricultural, and soil moisture retrieval studies. This newly devised
method allows the modelling of surface roughness and vegetation effects at AMSR2 spatial
scale in addition to retrieving reliable, acceptable and accurate soil parameters from satellite
observations. Further studies in expanding this algorithm could focus on evaluation of soil
parameters retrieval in specific regions (high vegetative areas) and testing other vegetation
indices by inclusion of more sensors.
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