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Abstract: Virtual assistants, deployed on smartphone and smart speaker devices, enable hands-free
financial transactions by voice commands. Even though these voice transactions are frictionless for
end users, they are susceptible to typical attacks to authentication protocols (e.g., replay). Using
traditional knowledge-based or possession-based authentication with additional invasive interactions
raises users concerns regarding security and usefulness. State-of-the-art schemes for trusted devices
with physical unclonable functions (PUF) have complex enrollment processes. We propose a scheme
based on a challenge response protocol with a trusted Internet of Things (IoT) autonomous device for
hands-free scenarios (i.e., with no additional user interaction), integrated with smart home behavior
for continuous authentication. The protocol was validated with automatic formal security analysis.
A proof of concept with websockets presented an average response time of 383 ms for mutual
authentication using a 6-message protocol with a simple enrollment process. We performed hands-
free activity recognition of a specific user, based on smart home testbed data from a 2-month period,
obtaining an accuracy of 97% and a recall of 81%. Given the data minimization privacy principle, we
could reduce the total number of smart home events time series from 7 to 5. When compared with
existing invasive solutions, our non-invasive mechanism contributes to the efforts to enhance the
usability of financial institutions’ virtual assistants, while maintaining security and privacy.

Keywords: IoT; machine learning; smart home; privacy; continuous authentication; virtual assistant;
trusted device; testbed

1. Introduction

Security is one of relevant emerging challenges for the Internet of Things [1–3]. Security
attacks in daily life [4] raises user concerns about the technology maturity. The demand
for resiliency against cyber attacks faced by IoT devices reveals resource limitations (e.g.,
energy consumption, memory, and processing), which inhibit the use of existing asymmetric
cryptography solutions [5].

Major banks worldwide offer online banking to their customers to reduce costs and
improve convenience of use. Online banking makes it possible for customers to check
their balances and perform many financial transactions anywhere, anytime. However,
emerging cybersecurity attacks make the reliance upon single-factor authentication (e.g.,
username/password) a growing concern for banks. By strengthening their authentication
mechanisms, banks can effectively protect the confidentiality and integrity of sensitive
customer data, thus avoiding financial loss and reputation damage resulting from events
such as fraud and customer data disclosure [6].

A plethora of attacks impose a threat to IoT systems. Considering voice-triggered
financial transactions, attacks such as impersonation, replay, speech synthesis, and voice
conversion are relevant, as illustrated in Figure 1. In an impersonation attack, the adver-
sary is a human being that tries to impersonate a genuine user’s voice; in a replay attack,
prerecorded audio is played in a compromised speaker; speech synthesis is used by knowl-
edgeable adversaries to generate artificial speech attacks; finally, voice conversion attacks
take a step further, by trying to model a specific user’s voice using statistical techniques [7].
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Even inaudible voice command attack feasibility has been proved in the literature [8], and
existing voice recognition systems, available to Alexa and Google Home smart speaker
devices, are not resilient against replay attacks [9].

Figure 1. Attack examples for voice-triggered financial transactions.

The basic existing authentication mechanisms are based on knowledge, ownership,
and biometrics [10,11]. When the authentication mechanism combines two or more ba-
sic authentication factors, then a multi-factor authentication is provided. Authentication
methods based on “what you are” can leverage behavioral or physiological unique user
characteristics [12] by using a specific digital fingerprint sensor, a frontal camera to rec-
ognize user’s face or eyes [12], or even voice recognition [9,13–17]. Other authentication
schemes are based on the possession of something to verify user identity, such as one-time
passwords by smartphone SMS, smartphone tokens, offline hardware token modules, and
smart cards [18]. The methods in the “something the user knows” category rely on secret
information that only the specific person should know, such as words, passphrases, and
PIN (personal identification number) [11]. One relevant example in the considered scenario
is the Alexa 4-pin code [19], which is a 4-digit numerical secret that the Alexa owner can
set up for voice purchases.

Hands-free interactions by voice enable various use cases, such as money transfer,
utility bill payment, and monitoring. Users choose to interact with smart speakers using
voice commands because they perceive it as requiring less effort when compared with
the smartphone alternative [20], so an invasive authentication that requires additional
interaction with another device may be impractical for wide adoption.

To address these security concerns and the invasiveness in existing authentication
mechanisms, this article presents a hands-free authentication scheme with a simple en-
rollment process. The major research contribution of this paper is that of a non-invasive
authentication mechanism for financial transactions by voice, in trusted connected locations,
with an additional hardware autonomous device, presenting a comparable response time
and security level to existing invasive solutions; moreover, it is integrated with a method
for continuous authentication, based on behavior learning in a trusted connected location
(i.e., the smart home).

The article is organized as follows: Section 2 presents the state of the art; research
background with usability, privacy, and security considerations are presented in Section 3.
Our proposed non-invasive authentication scheme is presented in Section 4. The challenge–
response protocol and its formal security analysis, using the Scyther tool, is presented in
Section 5; the proof of concept is described in Section 6; the continuous authentication
results are presented in Section 7. Section 8 presents a comparison of the obtained results
with related work; finally, Section 9 concludes the article with final thoughts and proposed
directions for future work.
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2. Related Work

In this section, we present related work found in the literature, organized in seven
categories, including single-factor and multi-factor proposed solutions.

Single-factor solutions based on voice biometrics: VoicePop is an anti-spoofing system
for mobile devices. It leverages the pop noise produced by the user’s breathing while
speaking close to the smartphone’s built-in microphone, which is difficult to record by an
adversary beyond a certain distance. The proposed solution was validated with 18 users,
4 different mobile devices, and it could identify replay and impersonation attacks. Only
accuracy-related results are available for this solution [21]. It requires no additional hard-
ware device other than the existing mobile device used for voice interactions with the
virtual assistant. A similar approach found in the literature is Two Microphone Authentica-
tion (2MA), which leverages multiple devices operating in the same area to localize and
authenticate voice commands [22].

Single-factor solutions based on WiFi data: As an example of context validation,
VSButton uses WiFi signals to resolve voice assistants’ vulnerabilities. These assistants are
deployed in smart speaker devices, which lack physical access control, and rely solely on
single-factor authentication. VSButton leverages WiFi signals to detect human motion, to
authorize the smart speaker to receive voice commands [23]. WifiU solution recognizes
users based on their gait. It uses two WiFi devices: one responsible for sending periodic
signals (e.g., router), and one responsible for receiving signals (e.g., laptop). The channel
state information (CSI) signals collected are used to identify users. The proposal was
validated with a database consisting of 50 human subjects in a lab environment of 50 square
meters, and it was considered to be non-invasive when compared with other approaches,
such as video surveillance by cameras, and has the advantage of not requiring specific
hardware, such as floor or wearable sensors [24]. A similar approach based on WiFi signals
aims to capture unique human characteristics inherited from daily activities (walking
and stationary). The CSI information is used to implement a deep learning model that
achieved over 91% authentication accuracy with 11 subjects, considering university office
and apartment environments [25].

Single-factor solutions based on trusted device: UCFL is a two-phase authentication
scheme that uses IoT devices from a three-layer framework to mitigate attacks, such as
replay, DoS, false data injection, and man-in-the-middle attacks. It uses physical unclonable
functions (PUF) to generate unique user identifiers, and to create challenge response pairs
(CRP); thus, it has a complex enrollment process. The obtained average response time was
less than 150 ms, and the communication cost was 3 messages [26].

Single-factor solutions based on wearable data: EarEcho employs wireless earphones
to provide user authentication with in-ear sound (unique due to the physical and geometri-
cal characteristics of the human ear canal). It could perform continuous authentication with
a set of 20 subjects with a precision of 97.57%, and a recall of 97.55% with a support vector
machine (SVM) classifier [27]. Even though wearables could be used for continuous user
authentication, a great challenge is to make users carry the tag inside the smart home [28].

Single-factor solutions based on sensors data: PALOT used an activity-labeled dataset
from a smart home, collected with motion, temperature, item usage, and other sensors, with
24 individuals, to propose a continuous authentication scheme for IoT. It uses Markov mod-
els, ontologies, and semantic rules to authenticate users without requiring any additional
device. However, the approach is heavily dependent on the deployment context [29].

Multi-factor solutions based on WiFi and voice: REVOLT is a solution that combines WiFi-
and voice-based detection to mitigate replay attacks. It leverages the spectral characteristics of
original and replayed voice signals, WiFi channels information, and unique breathing rate
obtained from WiFi signals to test the liveness of the human voice [30]. Wivo is a voice liveness
detection system designed to mitigate attacks on the voice interface of smart homes, leveraging
wireless signals generated by IoT devices and received voice samples [31]. However, these
systems do not support user authentication as they are focused on detecting whether the voice
commands are synthetic or natural (i.e., from a person).
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Multi-factor solutions based on wearables and voice recognition: Feng et al. [32]
proposed VAuth, an authentication scheme for voice assistants. It is designed as a wearable
security token to provide an additional channel for physical access control. It detects body
surface vibrations with an accelerometer in eyeglasses, sends it by Bluetooth connection to
the mobile device, and the mobile device receives the wearable data and matches it with the
voice command from its microphone. This solution is resilient to replay and impersonation
attacks and incurs low latency, with an average of 300 ms overhead, and it achieved 97% de-
tection accuracy with 18 real users. However, the proposed solution enables authentication
only when users are performing voice commands, not in a continuous way.

A summary of related work is presented in Table 1. None of the listed studies combine
trusted device and behavior factors to perform user authentication in a non-invasive
manner with a simple enrollment process.

Table 1. Related work summary.

Solution Trusted
Device Biometrics Behavior Invasive Enrollment Users Accuracy Response

Time (ms)

VoicePop [21] No Yes No No Complex 18 90% -
2MA [22] No Yes No No Complex - 84% -
VSButton [23] No No Yes No Simple - - -
WifiU [24] No Yes Yes No Complex 50 92% -
Shi et al. [25] No No Yes No Complex 11 92% -
UCFL [26] Yes No No No Simple - - 150
EarEcho [27] No Yes No Yes Complex 20 95% 1000
PALOT [29] No No Yes No Complex 24 70% -
REVOLT [30] No Yes Yes No Complex 10 97% 1100
Wivo [31] No No Yes No Complex 5 96% 320
VAuth [32] Yes Yes No Yes Simple 18 97% 300

Among the presented solutions, the ones which present accuracy and response time
results are EarEcho, REVOLT, Wivo, and VAuth. There are no solutions that combine
trusted device and behavior authentication factors, and none that do not require a wearable
device or additional interaction other than the original voice command (i.e., non-invasive);
moreover, none have a simple enrollment process. Solutions such as UCFL or PALOT may
present results with more users or with a lower response time, but they are single-factor
solutions. The multi-factor solutions REVOLT and Wivo have a complex enrollment process,
because they are based on voice biometrics, and VAuth uses a wearable device, which we
consider an invasive solution for the hands-free voice transactions scenario considered.

3. Research Background
3.1. Usability

A user’s goal when using an information system is to perform an intended task, and
the authentication is the function that enables that only legitimate users perform this task
using the associated system. However, the authentication procedure could be viewed
as a laborious process that stands between users and their intended task, from a user’s
perspective. Effective authentication design and implementation must consider usability
by making it easy for legitimate users to carry out the right procedure, hard to carry out
the wrong procedure, and easy to recover if a problem arises. Poor usability often results in
coping mechanisms that can degrade the effectiveness of security controls [33].

User authentication must be secure but also convenient and easy to deploy and use to
be widely accepted. It is possible to have several authentication schemes, as long as they
are complementary and do not detract from usability. Different approaches are appropriate
for distinct scenarios: speed might be prioritized for device unlocking, and memorability
might be prioritized for fallback authentication, for example [34].

Considering the scope of this work, the goal of hands-free interactions is to support
users in a convenient and frictionless way to carry out their daily tasks; thus, integrating a
secure but invasive scheme may undermine the enhanced usability which was intended in
the first place.
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Feng et al. [32] proposes the use of wearable devices such as eyeglasses, earbuds, and
necklaces. The authors conducted a survey with 952 participants using Amazon Mechanical
Turk in the US who had previous experience with voice assistants. Using a 7-point Likert
scale (from strongly disagree to strongly agree), 47% of the participants affirmed (with
scores of 6 or 7) that they are willing to use a wearable device to perform authentication.

Ponticello [20] investigated the perceptions of 16 smart speaker users from Germany
(15) and Italy (1) with an exploratory survey. The authors conducted of one-hour semi-
structured interviews in remote and face-to-face forms. These surveys considered the
following hands-free scenarios:

• Dinner party: Social gathering with friends and family, with a money transfer to a
friend. The authentication was performed using Alexa 4-digit PIN;

• Utility bill payment: Utility bill payment by voice while watching TV. The authentica-
tion was performed using Alexa 4-digit PIN;

• Smart door unlocking: Unlock the front door with hands full of groceries using the
voice command. The authentication was performed using Alexa 4-digit PIN;

• Check if a bill has already been paid: Check if a specific bill has already been paid
by voice, while the hands are dirty after working in the garden. A variation of this
scenario is to have hands dirty by preparing food in the kitchen.

These hands-free scenarios illustrate user journeys where performing an additional
interaction in another device harms the usability. For example, one of the participants
stated that “I think that’s impractical, because if I have to pick up a smartphone to verify
myself, then I could check it right away, via an app”. The author argues that the main
reason for users to interact with a voice assistant was that the interactions were effortless
when compared with computers or smartphones, and that if an authentication mechanism
takes away these features, the participants would be not be willing to adopt it [20].

Consider the invasive user journey described in Figure 2, where the user initiates a
hands-free financial transaction by voice using a smart speaker. However, the authentica-
tion must be preformed in another mobile device, that the user did not desire to interact
with in the first place. Although the authentication may be secure by using a one-time
password (OTP), the additional user interaction in another device go against the original
objective of providing a hands-free interaction. The financial transaction result is provided
by the smart speaker to the user in a frictionless way.

Figure 2. Invasive user journey with push notification in mobile device.

Voice biometrics was the preferred method of authentication by most of participants,
but some had doubts regarding the voice recognition maturity, as illustrated by the follow-
ing statement: “Currently no, not satisfied. You can tell the difference, it recognizes you
by your voice, but even this recognition sometimes does not work, and I think that is very
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rudimentary. It’s nice that you can see that this feature is under development, but it is far
from mature” [20].

The results presented by Ponticello [20] indicate that users have preference for au-
thentication mechanisms that do not require an additional interaction with other device.
However, even considering that users do not want an invasive mechanism such as a user
password, they desire for these financial transactions by voice to be secure. While voice
biometrics is the most preferred method, it is still not mature, according to the participants.

Therefore, we considered that our design must not require an additional interaction
with another device by means of user action, and it should not rely on voice biometrics, as
it still not sufficient to secure voice transactions [35].

3.2. Privacy

We present some privacy considerations based on existing research regarding IoT and
smart speaker privacy, privacy by design, and the Brazilian and European data privacy laws.

Some open research challenges on IoT privacy are related to risk analysis, informed
consent to the user (e.g., data collection and sharing), and context-aware user privacy
preferences, considering the dynamic nature of IoT environments [36].

A major concern of smart speaker architectures hosted on a public cloud is privacy,
as information disclosure cases have already occurred (e.g., unauthorized recording of
personal conversations on Alexa). Where users demand context-aware data access control
policies (e.g., who is at home and where the request comes from) [37], smart speaker user
privacy perception is still at early stages (e.g., voice recognition services are available, but
are not broadly used [38]).

A participant in the smart speaker user perceptions survey executed by Ponticello [20]
proposed an ideal data flow to not allow Alexa or Amazon to intercept any data. The author
proposes a possible technical solution to provide a direct talk between a user and their
bank by decoupling the smart speaker from the Alexa cloud after the initial connection
to the third party (i.e., the bank), that will be responsible for audio processing, rather
than Amazon.

Privacy by design principles are applied to systems design to mitigate privacy con-
cerns at an early stage. Gürses et al. [39] discuss engineering privacy by design, which
consists of principles that may be applied to mitigate privacy concerns and achieve data
protection compliance by integrating these principles into the system development process.
The two case studies presented followed four main steps: functional requirements analysis
to assess if the functionalities are feasible and well defined, as vague or implausible de-
scriptions may lead to solutions that collect more data than necessary; data minimization,
including state-of-the-art research to evaluate which data may be minimized or whether
there are alternative architectures that could contribute to the data minimization; model-
ing attackers, threats, and risks; multilateral security requirements analysis to consider
conflicting nonfunctional requirements and constraints (e.g., integrity, availability); and
implementation and testing of the design in a solution that fulfills the functionalities, while
using and revealing the minimal amount of private data.

The Brazilian law LGPD (“Lei Geral de Proteção de Dados” in Portuguese or “General
Data Protection Law” in free translation to English) was approved in August 2018, with
its enforcement since August 2020. It describes personal data as information related to an
identifiable or identified natural person; sensible personal data is described as information
regarding racial or ethnic origin, political opinion, syndicate affiliation, affiliation to a
religious, philosophical, or political organization, sexual life or health-related data, and
genetic or biometrics data. Among others, this law has the following principles: data
processing according to a finality, accorded with the data holder; free access by the data
holder to data treatment information and data integrity; transparency regarding data
treatment procedures and associated treatment agents; prevent damage related to personal
data leakage; proof of compliance with data protection rules. However, sensible data
can be treated with user’s consent for specific uses, or even without user content if it is



Sensors 2022, 22, 1325 7 of 29

imperative to ensure fraud prevention or security of the holder, in the identification and
authentication processes in electronic systems. In addition, children’s consent is based
on the consent of their legally responsible counterpart, and it foresees the need for risk
and failure management for everyone who uses personal data. There is also centralized
inspection by a national authority and the possibility of severe penalties in cases of non-
compliance with the law [40].

Aleksanjan [41] investigated the compliance of virtual personal assistants (Amazon
Alexa, Apple Siri, Microsoft Cortana, Google Assistant, Samsung Bixby) with the European
Data Protection Framework, including the General Data Protection Regulation (GDPR) law,
by analyzing the associated privacy policies. The results indicate that the five companies
analyzed are not fully compliant with the GDPR, with Google standing out in the trans-
parency aspect. Apple failed to inform data subjects about their rights; Amazon, Apple, and
Microsoft did not adequately inform the data subjects about the purposes for processing
their personal data, and relevant legal basis were not mentioned.

The GDPR was adopted in April 2016 with enforcement since May 2018, and it
describes rules regarding how personal data should be processed, the subjects’ rights and
the sanctions if the rules are not followed. It states that personal data must be processed
lawfully, fairly, and in a transparent manner, with purpose limitation and data minimization.
It also considers integrity, confidentiality, transparency, and accountability principles,
conditions for consent, and specific conditions for children’s data processing [41]. The
following GDPR principles may be considered:

• The purpose limitation means that data controllers should only use the collected data
for specific purposes. These purposes should be explicit and determined at the time of
the personal data collection;

• The data minimization principle refers to personal data being adequate, relevant, and
limited to what is necessary considering the purposes for which they are processed
(i.e., data controllers are only allowed to collect personal data that is necessary to fulfill
the specific purpose);

• The transparency principle states that the processing of personal data should be
transparent to the data subject, who must be knowledgeable about their rights and
have the means to exercise it. Natural persons should be aware of the risks, rules, and
rights in relation to the processing of personal data;

• The accountability principle refers to the controller being able to demonstrate compli-
ance with the privacy principles.

We will specifically address the data minimization principle by investigating how the
number of time series from a smart home impacts on the hands-free activity recognition for
continuous authentication.

3.3. Security

In this section, we present a literature review on existing vulnerabilities and attacks
in personal assistant systems. It is organized as presented in Figure 3, whose objective is
to provide relationships among vulnerabilities, user interface devices, attacks, and their
vectors, as described in the literature.

Existing vulnerabilities in personal assistant systems threaten the security of financial
transactions using the new interface. These vulnerabilities can be related to weak authenti-
cation mechanisms, or even incomplete voice application certification procedures. User
interface devices are those on which human users can initiate an interaction with a personal
assistant. Some can provide additional authentication mechanisms, such as desktop and
smartphone devices. The attack vector is the compromised device used by the adversary to
execute an attack. For example, it is possible to use the same device which the personal
assistant is integrated into, or to use another device to initiate the attack. The attacks may
have financial consequences, or even characterize an invasion of privacy. Some attacks
might need more knowledgeable adversaries, but some are simple to execute, such as the
replay attack.
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The existing authentication mechanisms, based on knowledge, possession, and bio-
metrics, are susceptible to some threats and attacks. Something you know may be disclosed
to an attacker, something you have may be lost, damaged, stolen, or cloned, and something
about you may be replicated. Replay, phishing, social engineering, and man-in-the-middle
(MitM) attacks could be performed by motivated attackers. For example, even a one-time
password (OTP) authenticator that requires a manual entry of its output shall not be con-
sidered impersonation-resistant because the manual entry does not bind the authenticator
output to the specific session being authenticated. Consider a MitM attack: an impostor ver-
ifier could replay the OTP authenticator output to the verifier and successfully impersonate
the user [33].

The first attack found in the literature was the DolphinAttack [8], highlighted in red in
Figure 3. Inaudible voice commands were recognized by commercial speech recognition
systems, such as Siri, Google Now, and Alexa. These commands were produced by a
specific hardware (amplifier and ultrasonic transducer), and the attacks were validated
with experiments using smartphones from various vendors (e.g., Apple, LG, Asus, Sam-
sung, Huawei, Lenovo). It was feasible to initiate a FaceTime call in iPhone, and to put
smartphones in airplane mode using Google Now.

The second attack is fake order [23], highlighted in green in Figure 3. In this attack, the
adversary could exploit smart speaker vulnerabilities to place orders in Google Express and
Amazon. The vulnerabilities considered are the reliance on single-factor authentication,
and no physical access control mechanism in Alexa devices. The acoustic devices used in
the attack are Bluetooth speakers and smart TVs.

The third attack regards privacy concerns [42], highlighted in yellow in Figure 3. It
was demonstrated that the voice application certification process is still immature: 100% of
234 Alexa skills and 39% of 381 Google actions with privacy violations were successfully
certified. With no re-certification procedure, the voice application could be modified after
initial certification without any additional validation, and personal sensitive information
(i.e., name) could be collected in third-party servers by using children-intended Alexa skills.

Phishing attacks [43] are also feasible in voice applications, as highlighted in black in
Figure 3. The certification process provide weak control over personal assistant application
names, so users could activate and interact with malicious applications whose names
resemble trusted voice applications.

Existing vulnerabilities in mobile devices could also be exploited if the personal
assistant is deployed in a smartphone (e.g., Siri, Google Assistant). Collusion attacks can
be performed using inter-app communication to perform elevated privilege actions using
two or more Android applications [44]. This attack is highlighted in purple in Figure 3.

There is a dangerous combination of voice input and output permissions in Android
devices and the chain of attacks from one device to another. As stated in a study found in the
literature [35], even solutions such as voice recognition could not be considered a panacea,
as attacks could be initiated from nearby connected devices with speakers (e.g., smartphone
or Bluetooth speaker). Inter-app communication, use of microphones by using intents, and
the unique coupled permission of voice input and output, are described as potential threats
in Android devices. The attack that could make a malicious application take control of voice
input without user acknowledgment is highlighted in green in Figure 3.

The inability to detect fake audio, and the reliance in a non-invasive unique authenti-
cation factor (e.g., voice) are some vulnerabilities that lead to replay attacks. Alexa speaker
recognition system is not capable of distinguishing recorded audio from real voice, and
Google speaker recognition system only performs voice verification on the wake word
(i.e., “Ok Google”). If nearby devices with integrated speakers are compromised, then
adversaries can record genuine voice commands and replay it afterwards, successfully
performing voice replay attacks by leveraging the vulnerabilities present in the smart
speaker user interface. The replay attack is highlighted in red in Figure 3.
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Figure 3. Attack relationships with Vulnerabilities, User Interface Device, and Attack Vector. Inaudi-
ble command, phishing, fake buy, collusion and sensible data collection attacks are illustrated in the
top panel. Replay and local privilege escalation attacks are illustrated in the bottom panel.

The attacks presented in this section are by no means exhaustive. For example, there
are other attacks such as LightCommands [45], which consists of a signal injection attack by
converting light to sound to obtain control on Amazon Alexa, Google Assistant, Apple Siri,
and Facebook Portal, at distances up to 110 meters. Another attack that may be executed
without user notice is CommanderSong [46], which is an attack generated automatically by
integrating voice commands and background noise into songs, difficult for human listeners
to detect.

4. Proposed Non-Invasive Scheme
4.1. Design Goals

We model the existing smart home voice transactions scenario by defining the bank
server, internet banking, trusted mobile, and voice user interface components.

Definition 1 (Bank Server—BS). The bank server is the bank authentication server which is
integrated with bank back office services that effectively authorize and execute financial transactions
(e.g., money transfers).

Definition 2 (Internet Banking—IB). The internet banking mobile application makes banking
services available to users. This application is deployed in the mobile device, and it is the existing
interface for banking services.
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Definition 3 (Trusted Mobile—TM). A trusted mobile is a mobile application used for authenti-
cation with the bank server. The users and their trusted mobiles are associated in the enrollment
phase. There is an injective relationship between an user and their trusted device (i.e., each trusted
mobile is associated with an unique user, and each user is associated with an unique trusted mobile).

Definition 4 (Voice User Interface—VUI). The voice user interface makes personal assistants,
such as Alexa and Google Assistant, available to users. The voice commands and queries are
performed by users in a frictionless manner (i.e., only the voice is needed to perform commands to
voice user interfaces). The voice user interface communicates with the internet banking application
in the same mobile device.

Additionally, we consider the definitions of trusted IoT device, trusted location,
and non-invasive authentication, which are fundamental building blocks of the pro-
posed scheme.

Definition 5 (Trusted IoT Device—TIoTD). A trusted IoT device is a proposed specific device
used with the trusted mobile to perform authentication with the bank server. It is an additional
device other than the existing mobile device used for internet banking, and it is deployed on a trusted
location. The users and their trusted IoT devices are associated in the enrollment phase. There is an
injective relationship between an user and their trusted IoT device.

Definition 6 (Trusted Location). A trusted location is a place where the genuine user visits
frequently. The frequency must be at least weekly, and the trusted location for each genuine user are
registered in the enrollment phase. Examples of trusted locations are workplaces and residences.

Definition 7 (Non-invasive Authentication). A non-invasive authentication for a voice financial
transaction command is an authentication that does not require additional interactions for the end
user, nor does it require that the end user must hold a wearable device. Examples of non-invasive
authentication are voice authentication and the proposed authentication performed with a trusted
IoT device in an autonomous manner.

Considering the potential attacks and usability discussion presented, it is desirable
that the proposed solution support hands-free voice transactions. Taking into account
the reliance upon a trusted IoT device deployed in a trusted location, we envision the
non-invasive user experience illustrated in Figure 4.

Figure 4. Non-invasive user journey with continuous authentication in a trusted connected location.

The hands-free interactions are maintained in the three steps, from the financial voice
transaction voice command to its result. The non-invasive authentication is supported by a
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challenge–response protocol with a trusted IoT device, and a continuous authentication is
performed using the behavior learned in a trusted location (i.e., in this case, the smart home).

The combination of trusted device and continuous authentication is performed in an
autonomous way to support hands-free authentication, thus not requiring any additional
user interactions, such as a confirmation in the mobile device.

The considered requirements are presented:

• The mechanism must provide mutual authentication;
• The novel authentication mechanism must have at least the same security level as

the existing invasive authentication mechanism (i.e., smartphone token in internet
banking (IB));

• The authentication mechanism must have a comparable response time with the state-
of-the-art schemes found in the literature;

• The mechanism must be a non-invasive procedure. It should provide an acceptable
security level, while maintaining the usability of the voice user interface (VUI).

4.2. Threat Model

In this article, we consider the replay and fake order attacks to the voice user interface
available in a smart speaker device using a compromised nearby speaker, due to how easy
it is to perform these attacks. Other attacks that require specific hardware or attacker’s
physical presence were considered more complex thus performed by more knowledgeable
adversaries; therefore, they are considered to be outside the scope of this study.

The threat model is defined below, and illustrated in Figure 5:

Adversary’s Goal: The adversary wishes to reduce the legitimate user’s balance; Ad-
versary’s Knowledge: The adversary has access to some data samples from previous
financial transactions voice commands collected from a nearby compromised speaker
device (e.g., personal computer or smart TV);
Adversary’s Capability: The adversary can control the compromised nearby speaker
device to play a previous voice command or an altered voice command whenever
convenient. The random number used in the authentication can not be guessed by
the attacker;
Adversary’s Limitation: The inter-app communication in the mobile device is considered
secure (i.e., the adversary can not get the shared key in the mobile device by collusion
attack [44]), as we rely in the mobile operating system security. The adversary does not
have the resources to perform a massive attack to the bank server and compromise the
shared keys in the bank’s possession. The trusted IoT device is considered secure, and
we consider that the adversary can not steal it from the legitimate owner in the trusted
location. Internal attacks to the voice user interface, such as phishing, are out of the scope
of this study.

4.3. Assumptions and Hypotheses

We consider the following two assumptions and two hypotheses in the development
of the proposed non-invasive scheme.

Assumption 1. It is desirable to not use existing mechanisms with high computational load, such as
asymmetric cryptography, considering the constrained Internet of Things (IoT) devices’ performances.

As IoT devices are constrained (e.g., energy and computing power), using asymmetric
cryptography methods is not desirable in this scenario due to their high computational
cost [47].

Assumption 2. Unique biometrics authentication factors, such as voice biometrics, is not enough
to guarantee security for financial transactions by voice.
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Figure 5. Threat model with the compromised speaker as the attack vector.

It is not possible to rely solely on the voice as a single authentication factor [35].
NIST states that biometrics shall be used only as part of multi-factor authentication with a
physical authenticator (something you have) [33]. Inaudible, phishing, replay, and other
attacks are proved in the literature, as described in Section 3.3.

Hypothesis 1. A continuous authentication mechanism, based on behavior learning, can be based
on data collected by Internet of Things devices deployed in a trusted connected location (e.g., the
smart home).

As proposed in the literature, IoT could be leveraged to provide context-aware, contin-
uous, and non-invasive authentication services. The main benefit is related to usability, as
the user do not need to carry intrusive devices or remember complex secrets. Such solution
must recognize users’ behavioral patterns to validate their identity [29] and may strengthen
the authentication process at the time of access request and throughout the session, without
requiring additional user intervention [48].

Hypothesis 2. Performance and privacy requirements for non-invasive user authentication are
achieved with edge computing architecture and privacy by design.

Edge computing follows the guideline of bringing the computation closer to where it is
needed. It can reduce the latency of requests and reduce network costs [49,50]. The privacy
by design are applied in the system conceptualization to consider privacy concerns [39].
Additional principles can be found in privacy regulations, as described in Section 3.2.

4.4. Architecture

Figure 6 presents the proposed architecture. Consider the scenario of a financial
transaction by voice. The command is captured by the voice user interface, which is
integrated to various natural language processing services. When a financial transaction
intent is identified, an authentication request is sent from the voice user interface to the
internet banking application, deployed in the same mobile device. IB then sends the
authentication request to the bank server using a secure channel, such as TLS. A challenge
response protocol is performed for mutual authentication between the trusted IoT device
and the bank server (deployed in the cloud) with the trusted mobile as an intermediary,
based on shared keys K1, K2, and K3. The physical unclonable function (PUF) is used as
input for a pseudo-random number generator used in the challenge response protocol, and
not directly with challenge response pairs (CRP).
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Figure 6. Non-invasive authentication architecture.

After the successful authentication, a continuous authentication is performed by
leveraging the real time data collected by IoT devices for session management. If the
behavior detected is different enough to a previously learned behavior, then the session is
terminated. Otherwise, the session is maintained for next low value financial transactions.
If the next transaction is a high value financial transaction, the challenge response protocol
should be performed again.

After the user identity is validated based on the possession of the mobile device with
the trusted mobile application, and the behavior biometrics from the trusted location, the
bank server must provide the authentication result to the voice user interface, which can
play a final voice response to the user. The scope of this work, illustrated in Figure 6, is
within the highlighted blocks with thick edges (i.e., bank server, trusted mobile, trusted IoT
device, behavior learning, and IoT devices).

According to different user security and privacy preferences, there is also a possibility
of requiring an invasive procedure for high financial transactions, and to use or not the col-
lected data by IoT devices. Considering the purpose limitation and transparency principles,
the purposes, risks, and rights of the IoT data must be made transparent to the user prior
to the possible continuous authentication deployment. The behavior learning must also
support data minimization.

The inter-app communications in the mobile environment are considered secure.
Attacks on inter-app communications which exploit trusted mobile operational system
vulnerabilities [44] are not considered in the scope of this work. The communication
between IB and BS is also considered secure. This secure communication channel could be
established with transport layer security (TLS), so the messages between internet banking
application and bank server are considered to be in a secure communication channel.

A final remark regards the authentication rate limit. Considering the following defi-
nition, after 5 wrong tries, the non-invasive user authentication should be disabled and a
knowledge-based invasive authentication may be offered as an alternative.

Definition 8 (Authentication Rate Limit). NIST [33] suggests a rate limiting of 5–10 consecutive
tries with a back-off time exponentially increasing.

4.5. Enrollment

The enrollment process is classified as either simple or complex. Complex schemes
are composed of extensive register of challenge response pairs of devices with integrated
PUFs [26,51–53]. Our proposal is based on shared secrets, which is considered a simple
enrollment process in terms of scalability and ease of management. We also do not directly
use the CRP because of the associated enrollment process.
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Definition 9 (PUF). Physical unclonable functions (PUF) are used in challenge–response protocols
either directly or as sources of randomness. By leveraging their unique physical characteristics
originated from the manufacturing process, strong PUFs generate large challenge response pair
(CRP) spaces [54,55]. PUFs can also be used in session key generation [56].

Definition 10 (Complex Enrollment). A complex enrollment process is defined as a manual and
onerous operation to the end user. Some examples are the offline provisioning process of PUFs and
facial and voice biometrics registration.

As illustrated in Figure 7, PUF-based enrollment consists of an offline provisioning
procedure wherein the PUF chip is directly connected to a fog/edge device (considered
a server entity). A single random serial number is the id of the PUF device and is sent
together with the response to challenges issued by server. The challenge response pairs
(CRP) are mapped with the serial number and sent from server to the cloud in a secure
manner. For example, it might consist of a generation of 2N CRP for a strong arbiter PUF
of N bits (i.e., for a challenge of 16 bits, there are more than 60,000 CRPs) [57]. The direct
usage of CRP generated by PUF requires that the server stores a large amount of CRP pairs,
escalating proportionally to the number of devices [58].

Figure 7. PUF challenge response pairs laborious offline registration process.

Considering that the user already has an invasive authenticator registered with their
bank (e.g., smartphone), the enrollment of the trusted IoT device can be classified as a
binding of an additional authenticator at existing authentication assurance level. According
to NIST [33], in this case, the user must authenticate with the existing authenticator to add
the new authenticator. After successful addition, a notification should be issued to the user
via independent mechanism, such as an email address previously associated with the user.

The user must register its trusted locations (according to the personal privacy prefer-
ences), trusted mobile, and trusted IoT device. The shared keys between trusted IoT device,
trusted mobile, and bank server are registered in each entity. These shared keys must be at
least 128 bits. The identifiers (i.e., BS—bank server; TM—trusted mobile; tIoTd—trusted
IoT) are also registered.

4.6. Continuous Authentication

Considering the following session definition, the proposed scheme uses the continu-
ous authentication based on smart home behavior to detect anomalous situations where
the session must be terminated. The session is transparent to the user for increased us-
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ability, and the accuracy of the smart home continuous authentication influences the user
experience directly.

Definition 11 (Session). Poor usability of frequent invasive user authentication motivates users to
perform workarounds, such as cached unlocking credentials that negate the authentication freshness.
A session host performs session management for increased usability and security. A session is
initialized in response to an authentication event by a session subject. The session host generates
a secret of 64 bits for session binding and provides it to the session subject. A session may be
terminated by inactivity timeout, explicit logout event, or other events [33].

The smart home continuous authentication module learns the usual behavior of the
household based on the data collected by IoT devices deployed in this trusted location.
When an user is authenticated successfully by the challenge–response protocol with the
trusted IoT device, the continuous authentication begins to monitor the smart home events
in real time. If the module detects an unusual behavior, it terminates the session.

As NIST [33] also states, the reauthentication procedure to prevent session termi-
nation may be performed by the presentation of a biometric authenticator, which mo-
tivated the usage of the behavior biometrics to provide continuous authentication for
session management.

5. Challenge–Response Protocol

In this section, the authentication protocol for mutual authentication is presented.
Formal security analysis of the proposed protocols is also presented.

The authentication protocol is based on the SKID3 protocol [59]. SKID3 is a 3-step
protocol that supports mutual authentication, and it is suitable for devices with limitations,
as stated in [60]. It is based on random numbers as the protocol nonces.

We consider three shared keys to adequate these extended protocols to support the three
entities (BS, TIoTD, and TM). The key K1 is the shared key between BS and TIoTD; key K2 is
the shared key between TIoTD and TM; key K3 is the shared key between BS and TM.

5.1. Protocol Description

The bank server generates a random number as the first challenge, associates the
trusted IoT device identifier, and performs two symmetric cryptography procedures: a
keyed hash with shared key K1, and another keyed hash with shared key K3 (M1). The
trusted mobile receives the message, decrypts the first layer with K3, and sends the result
to the trusted IoT device (M2). The trusted IoT device receives its identifier and the first
challenge, generates another challenge, and provides the answer with bank server identifier
with two procedures: keyed hash with K1, and keyed hash using K2 (M3). The trusted
mobile receives the message, decrypts the first layer with K2, and sends the result to the
bank server (M4). The bank server receives its identifier, the second challenge, and the
answer to the first challenge, computes the answer to the second challenge, performs a
keyed hash with K1, and sends it to the trusted mobile (M5). The trusted mobile receives
the message, performs another keyed hash with K2, and sends the result to the trusted IoT
device (M6). The trusted IoT device must decrypt the final message with K2 and K1 to
verify bank server’s identity proof.

Consider the following notation for the protocol description:

• TM—trusted mobile;
• BS—bank server;
• rBS—random number generated by BS;
• rTM—random number generated by TM;
• bs—BS identifier;
• tm—TM identifier;
• K1—the shared key between TM and BS;
• hK1()—hash function with shared key K1;
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• “,” denotes concatenation;
• TIoTD—trusted IoT device;
• rTIoTD—the random number generated by TIoTD;
• tIoTd—TIoTD identifier;
• K3—the shared key between TM and BS;
• hK3()—hash function with shared key K3.

The protocol messages are as follows:

M1: TM← BS: hK3(hK1(rBS,tIoTd))
M2: TIoTD← TM: hK1(rBS,tIoTd)
M3: TIoTD→ TM: hK2(hK1(rTIoTD,rBS,bs))
M4: TM→ BS: hK1(rTIoTD,rBS,bs)
M5: TM← BS: hK1(rTIoTD,rBS,tIoTd)
M6: TIoTD← TM: hK2(hK1(rTIoTD,rBS,tIoTd))

The proposed authentication scheme is illustrated in Figure 8.

Figure 8. Sequence diagram of proposed authentication procedure.

5.2. Formal Security Analysis

An automated security analysis using Scyther tool is presented for the proposed
protocols for trusted mobile and trusted IoT device scenarios.

Scyther is an open-source tool that allows verification and analysis of security protocols.
It is based on a formal semantics of security protocols to analyze different classes of attacks,
and possible protocol behaviors [61].

Scyther provides a graphical user interface, a Python command line interface, and can
be used in Windows and Linux operational systems. In the unbound mode, Scyther can
output proof and attack trees, and in the bound mode, Scyther states that no attacks exist
within a certain bound, or showcases some identified attacks. Its input language resembles
C/Java-like syntax, and allows the modeler to describe protocols by defining a set of roles,
which are defined by a sequence of events [62].

Scyther allows the verification of claims related to authentication properties of ana-
lyzed protocols. These properties are defined in Reference [63]: aliveness, weak agreement,
non-injective agreement, and injective agreement.

Definition 12 (Aliveness). After entity A completes a run of the protocol, if another entity B is
apparently active, then the protocol guarantees aliveness of entity B to entity A.



Sensors 2022, 22, 1325 17 of 29

Definition 13 (Weak Agreement). If the protocol guarantees aliveness of entity B to entity A, and
if the protocol also guarantees aliveness of entity A to entity B, then a weak agreement is guaranteed
between entities A and B.

Definition 14 (Non-injective Agreement). A protocol guarantees an initiator A non-injective
agreement of another agent B on a set of data D if entities A and B have weak agreement, and the
two agents agreed on the data values present in D.

Definition 15 (Injective Agreement). A protocol guarantees an initiator A injective agreement
of another agent B on a set of data D, if entities A and B have non-injective agreement, and each
protocol run of A corresponds to a unique run of B. This one–one relationship may be important in
financial protocols.

The proposed protocol for the trusted IoT device scenario was modeled based on
existing Scyther models [64] of the ISO 9798 standard for entity authentication, which were
used for the conception of SKID3 protocol [59].

The Scyther tool identified that challenges must also be protected, so that entities
respond only to valid entry challenges. Three keys were necessary: K1 for trusted IoT
device and bank server, K2 for trusted mobile and trusted IoT device, and K3 for trusted
mobile and bank server.

The properties secrecy, aliveness, weak agreement, non-injective agreement, and
injective agreement could be proved using the Scyther tool for the extended SKID3 protocol
with the three shared keys.

All protocol models are available online under GPL-2.0 License (https://github.com/
vthayashi/scyther-auth, accessed on 11 December 2021).

6. Trusted IoT Device

A proof of concept is implemented for the proposed protocol. It is composed of a
mobile application for the authentication module, a server for bank server emulation, a
web application for voice user interface emulation, and an embedded application for the
trusted IoT device.

This proof of concept is designed to have the same security level as state-of-the-art,
non-invasive, PUF-based authentication, with the benefits of supporting a non-invasive authen-
tication with a simple enrollment process, and the use of PUF to improve nonces randomness.

6.1. Methods and Materials

The mobile application TM was developed for Android devices in Java, the BS server
was developed in Python, and the webpage for the VUI was developed in HTML/Javascript
using available libraries for Android [65,66] and Python [67,68]. The trusted IoT device is
developed based on existing python libraries [67–69], and integrated Bluetooth 4.1 support
for the Raspberry Pi 3 (https://www.cnet.com/, accessed on 11 December 2021). The
devices used were an Android smartphone Samsung S20, a Windows laptop with 8GB
RAM, a router with 802.11 communication, and a Raspberry Pi 3, as illustrated in Figure 9.

The proof of concept was executed in a local environment, with websockets com-
munication, over WiFi and USB communication. Shared keys of 136 bits were used for
the keyed hash (HMAC) with SHA256, and for the version with AES-256 symmetric key
encryption. All the code and response time results for the proof of concept are available
online under a GPL-3.0 License (https://github.com/vthayashi/SKID3-PoC, accessed on
11 December 2021).

https://github.com/vthayashi/scyther-auth
https://github.com/vthayashi/scyther-auth
https://www.cnet.com/how-to/how-to-setup-bluetooth-on-a-raspberry-pi-3/
https://github.com/vthayashi/SKID3-PoC
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Figure 9. Testbed for trusted IoT device proof of concept.

6.2. Tests and Implementation

The proof of concept was evaluated with the four following tests:

1. Correct shared keys;
2. Correct shared key K1, correct shared key K2, and wrong shared key K3;
3. Correct shared key K1, wrong shared key K2, and correct shared key K3;
4. Wrong shared key K1, correct shared key K2, and correct shared key K3.

The tests were successfully executed, as shown in Figures 10 and 11, with the proposed
protocol using SHA-256 and AES-256, respectively.

Figure 10. Proposed protocol with SHA-256 hash.

Figure 11. Proposed protocol with AES-256.
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6.3. Performance Analysis

The response time for the extended SKID3 protocol was obtained experimentally. A
total of 1000 authentication requests are performed for each scenario, with a 2-s interval
between requests. A normal distribution was assumed for experimental results; thus a
confidence interval was obtained with a confidence level of 95%.

Considering a normal distribution for SHA-256 hash experimental results, sample size
of 1000, computed standard deviation of 172.18 ms, and a significance level of 5%, we have
an average response time of 392.37 ms ± 10.67 ms (i.e., from 381.70 ms to 403.04 ms), with
a confidence level of 95% with serial communication (USB).

Considering a normal distribution for SHA-256 hash experimental results, sample size
of 1000, computed standard deviation of 189.19 ms, and a significance level of 5%, we have
an average response time of 542.76 ms ± 11.73 ms (i.e., from 531.04 ms to 554.49 ms), with
a confidence level of 95% with wireless communication (WiFi).

Considering a normal distribution for AES-256 experimental results, sample size of
1000, computed standard deviation of 146.83 ms, and a significance level of 5%, we have an
average response time of 383.76 ms ± 9.10 ms (i.e., from 374.66 ms to 392.86 ms), with a
confidence level of 95% with serial communication (USB).

We have an average response time of 578.96 ms ± 11.99 ms (i.e., from 566.97 ms
to 590.95 ms) with a confidence level of 95% with wireless communication (WiFi), with
a normal distribution for AES-256 experimental results, sample size of 1000, computed
standard deviation of 193.46 ms, and a significance level of 5%.

7. Continuous Authentication

The interested reader may consider previous work, which describes in detail the
behavior learning in a smart home [70]. In this article, we focus on presenting how such
a behavior factor may be integrated into continuous authentication to support session
management (i.e., session beginning and end) in the proposed scheme. Our approach
consists of leveraging energy consumption data collected by IoT devices to detect hands-
free activity detection, as further explained.

One additional requirement is related to the data minimization principle described
in Section 3.2. As the personal data must be relevant and limited to what is necessary, we
verify how granular the collected data should be to enable the recognition of hands-free
activity detection.

7.1. Considered Scenarios

We consider two scenarios for hands-free voice interactions. The first one happens
whenever the user does not have IoT devices in the connected trusted location, or in the
initial learning phase of the behavior learning model. In this situation, the user can activate
or deactivate the hands-free authentication alternative, by using an invasive authentication
method (e.g., token in the mobile device). If the user knows that they might perform
a financial transaction by voice in the near future, it is possible to activate the hands-
free authentication in advance, and disable it after the financial transaction has been
performed, in a similar way to how users unlock their virtual credit cards in advance. This
initial manual phase provides data labeling (i.e., the timestamps the hands-free financial
transactions are performed), which is used to automatize the hands-free activity detection
in the second scenario.

The second scenario is the non-invasive authentication for financial transactions by
voice, with automated session management supported by hands-free activity detection.
The user can specify in which contexts he/she wishes to activate the hands-free interactions
automatically. Whenever the user is in a hands-free context and performs a financial
transaction by voice, the non-invasive authentication with the trusted IoT and mobile
devices is performed for increased usability. As described in Section 3.1, some hands-free
scenarios with financial transactions are money transfer in dinner party with friends, and
payment while watching TV. Some works found in the literature investigate daily activity
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recognition and forecast in smart homes. It is possible to classify some of these daily
activities as hands-free activities: cooking, eating, reading, washing dishes, and watching
TV from [71], and cooking, eating, relaxing, and washing dishes from [72].

The proof of concept for hands-free activity detection in smart homes is presented
in Figure 12. The raw data is collected by the IoT devices installed in the trusted location.
In the data preparation step, the data from different devices is aggregated in a dataset
consisting of events that occurred in specific time slots, and in a specific location inside the
household (e.g., higher energy consumption in the kitchen in the first hour of a workday).
Based on the events metadata and calendar of the smart home inhabitants, the events
are labeled based on a subset of hands-free activities (i.e., watching TV, eating lunch and
dinner). With a relevant dataset with data of at least one month, the hyperparameter tuning,
model training, and validation steps are performed. Based on the existing promising results
of daily activity recognition with support vector machines (SVM) [73], we selected this
machine learning model to develop our proof of concept. If the model has an accuracy
of over a specified threshold, then the model is deployed, and made available to detect
hands-free activities in real time. This model is integrated with the proposed scheme to
allow automatized session management.

Figure 12. Hands-free activity detection proof of concept.

7.2. Testbed Data Collection

The smart home testbed is the same household with four inhabitants presented in a
previous work [70], but using data collected with energy monitoring sensors instead of the
light and motion sensors. The data was collected from June 2021 to August 2021, a total of
2 months.

The smart meter used is the prototype presented in [74]. The smart meter and smart
plugs used were based on the previous works on data collection using the ESP8266 de-
velopment board [70,75]. In this work, we will use the consumption of the kitchen and
living room household sector collected using the smart meter, and granular data collected
from the kitchen (air conditioner, electric rice pan, and electric oven) and the living room
(home office station, light bulb, TV) using some smart plugs. A total of 7 energy monitoring
sensors are used, resulting in a dataset of hour granularity, 7 time series, and 1683 rows.

7.3. Proof of Concept

In the activity labeling step, we considered a fixed time window of one hour, the
features of the most frequent event in the current window, a subset of the features used
in [76]. Additionally, the day of week is included as a feature, based on Reference [77]. The
resulting 9 features are: the 7 energy consumption time series, the weekday, and the hour.
The hands-free activities of the resident that works daily in the living room home office
station were labeled manually (i.e., 1 if hands-free activity, 0 if not). Most of the events are
related to lunch break, and watching TV after the work schedule (usually at night).
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The analysis using the Lasso Regression Model from the Python sklearn library [78]
showed that the most important features are the kitchen electric oven, the living room TV,
and the living room home office station. The SVM model tuning was performed using the
GridSearchCV from sklearn, with 5-fold cross validation to optimize hyperparameters such
as kernel, gamma, and degree (where applicable), using the f1-score metric. The dataset
(1683 elements) was partitioned into the training dataset (70%, i.e., 1178 elements) and the
test dataset (30%, i.e., 505 elements).

The experiments covered a total of 4 scenarios to investigate which time series must be
used for the hands-free activity recognition. Scenario A includes the 7 time series in kitchen
(air conditioner, electric rice pan, and electric oven), living room (home office station, light
bulb, TV), and the household sector of the living room and kitchen appliances. Scenario
B consists of 5 time series in the kitchen (electric rice pan and electric oven) and living
room (home office station, light bulb, TV). Scenario C consists of the 3 most important
features, according to the Lasso Regression analysis: the kitchen electric oven, the living
room TV, and the living room home office station. The last case (scenario D) consists of
kitchen appliances: the air conditioner, electric rice pan, and electric oven.

The recall metric is specially important to understand how many relevant hands-free
activities were classified correctly when compared to the total of hands-free activities, as
illustrated in the confusion matrix of scenario A in Figure 13. The results of the 4 scenarios
are presented in Table 2 considering the accuracy and recall metrics with 5-fold cross
validation. The accuracy results might be compared with the general activity recognition of
the SVM model of 91.52%, found in the literature [73].

Figure 13. Scenario A confusion matrix for hands-free activity recognition.

Table 2. Comparison of the 4 scenarios to analyze which time series are necessary for hands-free
activity recognition.

Scenario Number of Time Series Kitchen Living Room Accuracy Hands-Free Recall

A 7 yes yes 95.76% 76%
B 5 yes yes 97.03% 81%
C 3 yes yes 97.79% 80%
D 3 yes no 92.11% 37%
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8. Discussion
8.1. Assumptions and Hypotheses

Assumption 1 states that it is desirable to not use existing security mechanisms with
high computational load, considering the IoT devices’ constraints. The proposed challenge–
response protocol is based in the hash function SHA-256, and symmetric encryption with
AES-256. Even though the SHA-256 version does not require decryption, as the AES-256
does, both versions of the 6-message protocol are based on light security mechanisms, and
provide mutual authentication with a simple enrollment process.

As specified in Assumption 2, using the voice biometrics as an unique authentication
factor is not enough to guarantee security for voice-triggered financial transactions. Our
solution combines the trusted device paradigm (i.e., associated with “what you have”) and
smart home behavior to provide a non-invasive authentication mechanism.

The continuous authentication mechanism based on data collected by IoT devices
could be achieved by a hands-free activity recognition based on energy consumption data
from a smart home testbed. Thus, Hypothesis 1 could be proved successfully, considering
the smart home as a trusted connected location.

The performance requirements for non-invasive user authentication were achieved by
relying on the local websockets communication between the trusted mobile and trusted
IoT device. Additionally, the context information (i.e., the presence of the trusted mobile
in the trusted connected location, both associated with the same user) was employed in
our solution. Therefore, the performance aspect of Hypothesis 2 was proved successfully,
based on the results of the trusted IoT device proof of concept.

As for the privacy requirements associated with Hypothesis 2, the results observed
in Table 2 show that the hands-free activity recognition model performed better in the
scenario B with fewer time series when compared with scenario A. Considering the data
minimization principle defined in Section 3.2, a feature engineering process could be
employed to reduce the number of time series to the ones which are relevant to the specific
task of hands-free activity recognition. However, it is essential that such feature selection
must consider time series from different smart home rooms, as one may infer by comparing
the recall metric from scenarios C and D.

8.2. Known Limitations

Even though behavioral biometrics are suitable for the non-invasive authentication
scenario, this kind of biometrics are less likely to express authentication intent because they
do not need a specific action of the end user [33]. Another shortcoming of the behavioral
biometrics in the smart home scenario is that the behavior learning proposed solution is
highly dependable on the deployment context (i.e., which IoT devices are available in each
smart home).

If an opponent compromises a trusted mobile from a specific user, no other user
gets compromised. This feature decreases substantially the potential attacks scalability.
Additionally, if our scheme is used with different bank server identifiers for each user, than
there is less risk involved if this secret were also to be compromised.

The main vulnerability in our scheme is the shared key capture in the mobile device,
as the mobile device is a general use device and could be subject to other attacks. Properly
protecting the shared keys in the trusted IoT device is also of foremost importance, con-
sidering the possibility of physical attacks in this devices (e.g., side-channel attacks). We
consider that obfuscation, key splitting, and secure multi-party computation mechanisms
may help to enhance the security of our solution.

Another issue is the potential threat of quantum computing in the existing systems
that supports financial services. Novel technologies that enable innovations, such as the
Blockchain for decentralized financial transactions, face this quantum computing threat as
well [79]. Even though our proposed hands-free authentication does not use public key
encryption that is threatened by the quantum computers [80,81], it is relevant to include a
discussion regarding this issue.
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We may consider the Bitcoin scenario as an example of how the quantum computing
threat can be solved. Bitcoin is a decentralized cryptocurrency that uses the Blockchain tech-
nology to perform a consensus without the need to rely on a trusted third party [82]. How-
ever, the most vulnerable aspect in the case of Bitcoin is the classical signature scheme [83],
which is not used in our proposed hands-free authentication scheme. As far as the au-
thors are concerned, Ikeda [84] is the first to solve the problem of double spending by
using quantum teleportation [85]. The quantum teleportation is a method to transport
quantum information to another area [82] related to the quantum communication research
field. Ikeda [82,84] also uses the quantum digital signature schemes of Gottesman and
Chuang [86], given by a quantum one-way function.

In the case of the hands-free authentication proposed in this work, we use an additional
authentication factor based on behavior, which is independent of the cryptography used.
The trusted device authentication factor rely on symmetric algorithms and hash functions
that are relatively resistant to quantum computers [80,81].

According to NIST, the impacts of large scale quantum computers on AES and SHA
algorithms are larger outputs for hash functions and larger key size for symmetric en-
cryption [81]. It is possible to follow these guidelines and additionally investigate if a
post quantum cryptography algorithm may be applied in our scheme. However, such
investigation must consider post-quantum cryptanalysis [87] and proper evaluation [88].

Cheng et al. [89] developed an Assembler implementation of the SHA-512 hash algo-
rithm for the ATmega 8-bit AVR microcontrollers with 128 kB flash memory and 4 kB RAM.
This version of the SHA512 hash algorithm is comparable to the SHA256 implementation
of Balasch et al. [90] considering short messages of 500 bytes each. Therefore, it is feasible
to use the SHA512 in our scenario considering the constraints of IoT devices to make the
proposed scheme resilient to quantum computers.

8.3. Comparison with Related Work

As shown in Table 3, the proposed solution has an accuracy of 97%, comparable
to REVOLT [30] and VAuth [32]. However, REVOLT has a complex enrollment process
because it is based on biometrics and behavior authentication factors, which require training
time or specific biometric registration, and VAuth is an invasive solution, according to
Definition 7, which defines wearable-based solutions as invasive.

The response time of 383 ms presented by our proof of concept with the SHA-256
version is comparable to VAuth and Wivo [31]. Still, Wivo relies only on the behavior
authentication factor entirely thus it has a complex enrollment process because of its
training phase. UCFL [26] presents the best response time, though it also relies in an unique
trusted device authentication factor.

Even though our approach was evaluated with fewer users than the related work,
we have validated in a real-world setting (i.e., “in the wild”), with no control over the
inhabitants’ routine in the 2-month data collection period. Moreover, we have performed
activity and person recognition in a multi-user scenario with 4 persons. VSButton [23]
recognizes activities, but not who is performing them. Wivo performs voice liveness of
certain persons, but does not recognize the associated activity, and it was validated with
two users in the multiple user scenario [31]. PALOT relied on a dataset from an apartment
where participants were asked to perform certain daily activities while interacting with
the deployed sensors, so it presented a certain degree of control over the inhabitants
activities [29]. WifiU conducted experiments to collect gait data in a typical laboratory with
50 square meters area, which is a controlled environment [24].

Considering that the multi-user scenario is a challenge for smart home algorithm
development [91,92], and that it is difficult to implement a granular access control for smart
speakers inside multi-user environments, we advocate that our approach helps to close
this research gap, by presenting a way to perform hands-free activity recognition from a
specific person. As shown in Table 2, it relies on device-level energy consumption data
from two different environments for acceptable accuracy and recall results.
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Table 3. Comparison of proposed solution with related work.

Solution Trusted
Device Biometrics Behavior Invasive Enrollment Users Accuracy Response

Time (ms)

VoicePop [21] No Yes No No Complex 18 90% -
2MA [22] No Yes No No Complex - 84% -
VSButton [23] No No Yes No Simple - - -
WifiU [24] No Yes Yes No Complex 50 92% -
Shi et al. [25] No No Yes No Complex 11 92% -
UCFL [26] Yes No No No Simple - - 150
EarEcho [27] No Yes No Yes Complex 20 95% 1000
PALOT [29] No No Yes No Complex 24 70% -
REVOLT [30] No Yes Yes No Complex 10 97% 1100
Wivo [31] No No Yes No Complex 5 96% 320
VAuth [32] Yes Yes No Yes Simple 18 97% 300
Proposed Solution Yes No Yes No Simple 4 97% 383

A comparison with third-party metrics for authentication is available in Table 4. This
framework includes security, deployability, and usability aspects, so it is suitable for
analyzing the proposed authentication scheme in general [93]. We chose the categories
that apply to our hands-free authentication scenario: effortless to remember, nothing to
carry for the end users, easy to learn, and infrequent errors under the usability aspect.
Under deployability, we assess if the cost is negligible per user. We also analyze whether
the mechanism is resilient to leaks from other verifiers, whether it is resilient to theft, and
whether it requires explicit consent.

Table 4. Comparison of proposed solution with related work considering third-party metrics.

Solution
Usability Deployability Security

Memorywise-
Effortless

Nothing-
to-Carry

Easy-
to-Learn

Infrequent-
Errors

Negligible-Cost-
per-User

Resilient-to-Leaks-
from-Other-Verifiers

Resilient-
to-Theft

Requiring-Explicit
-Consent

4-digit
spoken PIN yes yes yes yes yes no yes yes

Mobile
Token yes no yes yes yes yes yes yes

Voice
Biometrics yes yes yes no yes no yes no

Wearable yes no yes yes no yes no no
Behavior

Biometrics yes yes yes no yes no yes no

Proposed yes yes yes yes no yes no no

The 4-digit spoken PIN used in Alexa has high usability and deployability, but weak
security. The mobile token is secure but invasive, thus lacking in usability, and the wearable
solution requires the users to carry an additional device, with considerable cost per user.
Voice and behavior biometrics are not yet mature, with frequent errors, and they face
the issue that a leak from another verifier may compromise the factor entirely (i.e., the
revocation is limited). We use the behavior factor as a secondary factor to identify hands-
free scenarios and reduce the potential attack window, and we rely on the autonomous
trusted device to not require explicit consent, which is a trade-off between security and
usability. However, the cost is not negligible per user, and the case of trusted device theft is
not considered within the scope of this work.

Entrophy is also an essential aspect for user authentication. Considering other authen-
tication schemes presented in the literature, displayed in Table 5, the trusted autonomous
device used in the proposed scheme provides a comparable security.

To the best of the authors’ knowledge, our proposal is one of the first works to combine
trusted device and behavior factors to perform user authentication in a non-invasive manner
with a simple enrollment process. Our mechanism supports mutual authentication, with
a comparable security level to the existing invasive authentication mechanism, and it
presents a comparable response time with state-of-the-art schemes found in the literature.

The proposed solution allows non-invasive authentication for financial transactions
by voice while the user is performing hands-free activities in a trusted connected location
(i.e., the smart home). The architecture considers using the PUF in the random number
generator instead of directly application of challenge–response pairs, which would result
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in a complex enrollment process. In addition, it integrates the data minimization principle
in the behavior learning process to respect the user privacy.

Table 5. Entrophy comparison of proposed solution with related work.

Authentication Entrophy (Security Bits) Source

Voice 30 [94]
Spoken Password 46 [95]

Face Image 47 [95]
Fingerprints 69 [95]

Binary Face Template 75 [96]
Autonomous Device 128 This work

Iris 288 [95]

9. Final Considerations

Considering financial transactions by voice commands to personal assistants, we
proposed a non-invasive mutual authentication protocol based on trusted IoT devices and
hands-free activity recognition in a smart home.

Formal security analysis with the Scyther tool guided the definition of the extended
versions of existing light protocols to be used in the non-invasive authentication scheme.

The first proof of concept was developed for the Android operational system, inte-
grated with a bank server emulated in Python, with websockets communication, over a
local WiFi network. It also had an authentication module in a trusted IoT device, imple-
mented in a Raspberry Pi 3.

The second proof of concept presented how it is possible to provide hands-free activity
recognition based on energy usage data collected by smart meter devices. It also employed
different scenarios to investigate which subset of time series features is necessary to maintain
acceptable recall and accuracy results, considering the data minimization principle.

As future work, the number generator for the trusted IoT device with physical unclon-
able functions (PUFs), to provide better nonces for the challenge–response protocol, could
be evaluated experimentally. The dynamic random access memory (DRAM), PUF-based
key generation found in the literature [97] is considered for future PUF design. Chen et al.’s
solution uses intrinsic sensors available in commodity devices, and provided a proof of
concept for Raspberry Pi. A relevant work for random number generator presented a proof
of concept with an additional static random access memory (SRAM) and a Raspberry Pi
device [98]. We also consider the RC-PUF, which is based on additional passive components
(i.e., resistors and capacitors) [99].

Another research opportunity is to validate the user’s context in a more granular way,
by verifying which room a certain person is in, based on direct communication between
the trusted mobile and trusted IoT devices (e.g., Bluetooth). Another research opportunity
is to use obfuscation, key splitting, and secure multi-party computation mechanisms to
enhance the security associated with key management in trusted mobile and trusted IoT
device. Additional security validations may be performed with ProVerif [100].
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