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Abstract: It is crucial to predict landslide displacement accurately for establishing a reliable early
warning system. Such a requirement is more urgent for landslides in the reservoir area. The
main reason is that an inaccurate prediction can lead to riverine disasters and secondary surge
disasters. Machine learning (ML) methods have been developed and commonly applied in landslide
displacement prediction because of their powerful nonlinear processing ability. Recently, deep ML
methods have become popular, as they can deal with more complicated problems than conventional
ML methods. However, it is usually not easy to obtain a well-trained deep ML model, as many
hyperparameters need to be trained. In this paper, a deep ML method—the gated recurrent unit
(GRU)—with the advantages of a powerful prediction ability and fewer hyperparameters, was applied
to forecast landslide displacement in the dam reservoir. The accumulated displacement was firstly
decomposed into a trend term, a periodic term, and a stochastic term by complementary ensemble
empirical mode decomposition (CEEMD). A univariate GRU model and a multivariable GRU model
were employed to forecast trend and stochastic displacements, respectively. A multivariable GRU
model was applied to predict periodic displacement, and another two popular ML methods—long
short-term memory neural networks (LSTM) and random forest (RF)—were used for comparison.
Precipitation, reservoir level, and previous displacement were considered to be candidate-triggering
factors for inputs of the models. The Baijiabao landslide, located in the Three Gorges Reservoir
Area (TGRA), was taken as a case study to test the prediction ability of the model. The results
demonstrated that the GRU algorithm provided the most encouraging results. Such a satisfactory
prediction accuracy of the GRU algorithm depends on its ability to fully use the historical information
while having fewer hyperparameters to train. It is concluded that the proposed model can be a
valuable tool for predicting the displacements of landslides in the TGRA and other dam reservoirs.

Keywords: reservoir landslide; displacement prediction; time series analysis; complementary ensemble
empirical mode decomposition; gated recurrent unit

1. Introduction

Landslides are one of the most catastrophic disasters and are widely distributed in
numerous parts of the world [1–4]. In China, annual reports from China Institute of Geo-
Environment Monitoring (IGEM) show that landslides account for more than 50% of all
geological hazards in recent years [5]. In 2020, for instance, 7840 geology-related hazards
occurred in China, resulting in 139 deaths or people missing, 58 people injured, and a
direct economic loss of CNY 5.02 billion. Among these geological disasters, 4810 were
landslides, accounting for 61.3% of the total. Other types of hazards in 2020 included 1797
avalanches, 899 debris flows, 183 ground collapses, 143 ground fissures, and 8 cases of
ground subsidence.
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As one of the most landslide-prone areas in China, the Three Gorges Reservoir Area
(TGRA) has been given much attention concerning severe landslides [6]. One main reason
is that the construction of the Three Gorges Dam (TGD) has significantly changed the
regional hydrogeological conditions [7,8]. Some landslides in the TGRA (e.g., Bazimen
landslide) have deformed continuously for several decades, whereas some landslides
(e.g., Woshaxi landslide) have achieved a displacement of 28,065.9 mm, and the deformation
is still increasing [9,10]. Once landslides in dam reservoirs occur, they can cause severe
damage along both sides of the reservoir area. In addition, these reservoir landslides can
induce secondary surge disasters, endangering the shipping and bridges along the river
and its tributaries [11]. The Honyanzi landslide, which occurred on 24 June 2015, was such
an example, initiating a reservoir tsunami that resulted in two deaths and severe damage
to shipping facilities (Figure 1) [12]. These risks can be mitigated if one can establish
reliable early warning systems. As landslide displacement can represent its evolution
intuitively, accurate landslide displacement prediction is an effective means of establishing
such reliable early warning systems [10,13,14].

Figure 1. Location map of landslides in TGRA mentioned in the paper.

In situ displacement monitoring techniques have been available since the 1940s,
especially the global positioning system (GPS) technique [15–17]. These techniques make it
possible to acquire real-time monitoring information. These monitoring data have been
applied extensively in landslide displacement prediction (LDP). The research of LDP dates
back to the 1960s with the presentation of the Saito model. Subsequently, numerous LDP
theories and models have been successively proposed [18]. The development of LDP
research can be summarized into three stages [14,19,20]. The first stage (from the 1960s to
1970s) is the phenomenological and empirical prediction, mainly based on the macroscopic
deformation phenomenon before landslide failure. The prediction accuracy is usually
unsatisfied because of a high dependence on the gained experience. The second stage (dur-
ing the 1980s) is the displacement-time statistical analysis prediction, leading qualitative
prediction to quantitative prediction. Benefiting from the development of mathematical
sciences, various statistical mathematical models have been proposed and applied to the
LDP (e.g., grey system theory) [21]. Without considering influencing factors, these models
are built from statistics and mathematics. Hence, these approaches are primarily valid for
landslides with similar deformation characteristics [22]. The third stage (from the 1990s to
the present) is the nonlinear prediction and intelligent integrated prediction. Numerous
nonlinear and intelligent LDP models have been proposed and applied in cases. These
models can build relationships between landslide displacement and multiple triggering
factors. Their prediction performance has shown encouraging improvement.

As intelligent algorithms, machine learning (ML) models have been extensively
utilized to predict landslide displacements because of their nonlinear processing abil-
ity. These models, such as the back-propagation (BP) neural network [23,24], extreme
learning machine (ELM) [25–29], random forest (RF) [30,31], and support vector machine
(SVM) [32–34], have become popular and have been adopted in some landslide cases in the
TGRA. Influencing factors and displacement are set as the input and output of the models,
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respectively. The trained models have achieved encouraging performances. Zhou et al. [27]
selected an artificial bees colony (ABC) to optimize the parameters of a kernel-based ex-
treme learning machine (KELM) for LDP. Li et al. [28] proposed an ensemble-based ELM
and copula model to predict the displacement of the Baishuihe landslide in the TGRA.
Hu et al. [30] developed an integrated LDP model by combining the Verhulst inverse
function (VIF) and RF algorithm, which provided a practical approach for predicting the
long-term deformation of landslides. Bui et al. [34] adopted ABC optimization to model the
least squares support vector regression (LSSVR). These forecasting models belong to static
models, whereas the evolution of landslides is a complex nonlinear dynamic process [35].
The deformation conditions of landslides at one time can be affected by that of the former
time [36]. A dynamic model—long short-term memory (LSTM) neural networks—was
applied to LDP [9]. Jiang et al. [37] combined the support vector regression (SVR) algorithm
and LSTM model to forecast the displacement of the Shengjibao landslide in the TGRA.
As a deep ML method, LSTM can deal with more complicated time series predictions.
With the increment of the number of available monitoring data and the improvements in
computer hardware and software, the LSTM model has become a priority choice to deal
with more complicated time series prediction [38,39]. One drawback of LSTM is that it has
more parameters to be trained than classical ML methods, which makes it challenging to
obtain the optimum of all parameters simultaneously [10]. An improved version of the
LSTM—the gated recurrent unit (GRU)—is proposed and adopted in LDP. GRU replaced
the three gates (input gate, forget gate, and output gate) of LSTM with two new gates (reset
gate and update gate). This structure of GRU makes it possible to reduce the number of hy-
perparameters required for training. Thus, it can be easier for GRU to obtain a well-trained
model than the LSTM [31].

In general, the LDP in the dam reservoir involves decomposing the total displacement
into several components (trend term, periodic term, and stochastic term) according to time
series analysis and then through predicting each component by different methods. Each
displacement component has clear mathematical and physical significance. This treatment
of LDP has been proven to be effective in previous studies [10,23,31,33,36,40–42]. Several
decomposition methods have been adopted, such as the average moving method [10,33],
double exponential smoothing [10], variational mode decomposition (VMD) [40], empirical
mode decomposition (EMD) [37], ensemble empirical mode decomposition (EEMD) [40],
and wavelet transform (WT) [41]. It is critical to forecast periodic displacement accurately
to ensure the good prediction performance of accumulated displacement for landslides [23].
The prediction of periodic displacement is a heated topic, and the predictive models
are summarized as mentioned above. The trend displacement is usually modeled and
predicted by fitting the curve of displacement–time with polynomial functions [23,31,33].
A piecewise curve may need several polynomial functions [10]. Another displacement
component—the stochastic term—is usually ignored [10,32,37,43]. The main reason is
that stochastic displacement is influenced by varied, ever-present, and unquantifiable
stochastic factors.

This paper decomposed accumulated displacement into a trend term, periodic term,
and stochastic term by CEEMD. A univariate and a multivariable GRU model were used
to predict the trend and stochastic displacements, respectively. A multivariable GRU
model was adopted to predict periodic term displacement, and another two popular ML
methods—LSTM and RF—were used for comparison. The proposed model was applied
in the displacement prediction of the Baijiabao landslide in the TGRA. The deep dynamic
model has the advantages of a powerful prediction ability with a simpler structure and
fewer trained hyperparameters. In addition, the stochastic displacement, neglected in most
exiting prediction models, was considered in the proposed model.
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2. Approach to Model Displacements in Three Gorges Dam Reservoir
2.1. Time Series Decomposition

The change in landslide accumulated displacement is determined by geological con-
ditions, triggering factors, and stochastic factors [10,33]. Geological conditions involve
internal factors, such as the geological structure, topography, lithology, etc. Triggering
factors for landslides in the TGRA are mainly the seasonal rainfall and reservoir level
fluctuation. Stochastic factors appear with uncertainties, including earthquakes, traffic
load, wind load, etc. The displacement components induced by the above three factors
can be represented as trend displacement, periodic displacement, and stochastic displace-
ment, respectively. Consequently, the accumulated displacement can be expressed as
Equation (1):

A = T + P + S (1)

where A is accumulated displacement, T is trend displacement, P is periodic displacement,
and S is stochastic displacement.

2.2. Complementary Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD) was firstly proposed by Huang et al. [44]. They
implemented EMD by converting a nonlinear sequence into a set of stationary sequences
that consisted of several intrinsic mode functions (IMFs) and a residual. EMD, however,
has the disadvantage of mode mixing, and thus ensemble empirical mode decomposition
(EEMD) was presented by Wu et al. [45]. In EEMD, uncorrelated finite white noise is
added into the original signal, and the final IMF is obtained by averaging all the IMFs.
Due to the dependence of the added noise in EEMD, Yeh et al. [46] presented a modified
algorithm of EEMD named complete ensemble empirical mode decomposition (CEEMD)
to decompose the signal into different scale IMFs. By adding opposite random white noise
into the decomposition results of EEMD, CEEMD realized the advantages of an improved
decomposition, better denoising, and higher computational efficiency. The following steps
settle the process of CEEMD decomposing the original time series.

The first step is to add positive and negative white noise pairs to the original time series.[
Bi(t)
Ci(t)

]
=

[
1 1
1 −1

][
Si(t)
ai(t)

]
(2)

where Bi(t) and Ci(t) are the time series after adding positive and negative white noise,
respectively, Si(t) is the original time series, and ai(t) is the added white noise.

Subsequently, the EMD algorithm is used to decompose Bi(t) and Ci(t).
Bi(t) =

J
∑
j

IMF+
ij

Ci(t) =
J

∑
j

IMF−ij

(3)

where J is the number of IMF after decomposing, and IMF+
ij and IMF−ij are the jth compo-

nents of IMF after adding positive and negative white noise, respectively.
N sets of IMFs can be obtained after repeating the above two steps.

{{
IMF+

1j , IMF+
2j , · · · , IMF+

Nj

}}{{
IMF−1j , IMF−2j , · · · , IMF−Nj

}}  (4)

We can obtain the final jth IMF by averaging its positive and negative components.

IMFj =
1

2N

N

∑
i=1

(
IMF+

ij + IMF−ij
)

(5)
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Finally, the time series Si(t) is decomposed as Equation (6):

S(t) =
N

∑
j=1

IMFj (6)

2.3. Machine Learning Methods
2.3.1. Long Short-Term Memory Neural Network

Long short-term memory (LSTM) neural networks are in the category of dynamic
recurrent neural networks (RNN). Due to the issues of gradient vanishing and gradient
exploding in conventional RNN, they cannot handle the dependency of a long time series.
To avoid such disadvantages of conventional RNN, Hochreite and Schmidhuber [47]
proposed LSTM in 1997. In LSTM, a memory block is used as the basic unit of its hidden
layer, consisting of a memory cell and three gates, named the input gate, forget gate, and
output gate (Figure 2) [48].

Figure 2. Architecture of LSTM neural network.

The input gate controls the flow of input activations into the memory cell. The
information from the hidden state at step t − 1 (ht-1) and the current input value (xt) is
firstly passed along to the sigmoid function (σ). Then, the information of input data from
the current step and previous data from the last step is used to update and generate a new
vector. The forget gate is responsible for filtering information by means of passing along
useful information to the next step and abandoning useless information. The output gate
controls the transfer of useful information into other memory blocks.

We recorded the input sequence as x = (x1, x2, . . . , xT), and can obtain the output
sequence y = (y1, y2, . . . , yT) by treating Equation (7) to Equation (12).

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (7)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(8)

ct = ftct−1 + it tan h(Wxcxt + Whcht−1 + bc) (9)

Ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo) (10)

ht = ot tan h(ct) (11)

yt = Whyht + by (12)

where it, ft, ot, and ct are the values of the input gate, forget gate, output gate, and a
memory cell at time t; bi, b f , bo, and bc are their corresponding bias values; Wx are the
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weights between input nodes and hidden nodes; Wh are the weights between hidden nodes
and cell memory; Wc are the weights connecting the memory cell to output nodes; σ is
the sigmoid activation function; tan h is the hyperbolic tangent function mapping data
to [−1, 1]; and ht is the hidden state, containing information about the history of earlier
elements in the series.

2.3.2. Gated Recurrent Unit

The gated recurrent unit (GRU) is an improved version of LSTM. Compared with
LTSM, GRU has the advantages of fewer hyperparameters and faster training by using two
new gates (update gate and reset gate) (Figure 3). These two gates are utilized to store as
much information as possible for a long time series [49,50]. The reset gate is responsible for
determining how much information at the previous moment is passed along, and resets
the information at the current moment. The update gate controls the extent of information
from both the previous time step and the current time step that will be passed along to the
memory cell. The equations in GRU are given as follows:

ut = σ(Wxuxt + Whuht−1 + bu) (13)

rt = σ(Wxrxt + Whrht−1 + br) (14)

h′ = tan h(Wxhxt + (rt � ht−1)Whh + bh) (15)

ht = (1− ut)� h′ + ut � ht−1 (16)

where ut and rt are the values of the upset gate and reset gate, respectively; h′ is the value
after resetting; W and b are the weights and deviations, respectively;� represents pointwise
multiplication between tensors. Other parameters indicate the same meaning as those
in LSTM.

Figure 3. Structure chart of GRU.

2.3.3. Random Forest

Random Forest (RF) is an ensemble ML method that has been well-developed for
classification, regression, and other tasks [51]. This method has some advantages, including
great robustness, data adaptability, and low overfitting [52]. The RF algorithm is realized
based on multiple decision trees by sampling from the original dataset (both samples and
their features) [53].
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To build a decision tree, we divide the predictor space into the number of J regions
that are distinct and non-overlapping and represented as R1, . . . , Rj. The division is
implemented by minimizing the root of the sum of squares.

J

∑
j=1

∑
i∈Rj

(
yi − ŷRj

)2
(17)

where yi is the observation belonging to Rj, and ŷRj is the mean response for the training
observations within the jth region.

Bagging is used to select training sets from the original dataset, and each training set
is utilized for building a decision tree. The final prediction result ŷbag can be achieved by
averaging the results of all decision trees (Equation (18)), which can improve the prediction
accuracy by doing so.

ŷbag =
1
M

M

∑
i=1

ŷi (18)

where ŷi is the prediction result of the ith decision tree and M is the number of decision trees.

2.4. Prediction Process with the Proposed Model

In the establishment of the proposed model (Figure 4), we adopted CEEMD to de-
compose the monitored accumulated displacement into a trend component and a periodic
component. Subsequently, we used a univariate GRU model and a multivariate GRU
model to predict the trend term and periodic term, respectively. The univariate GRU
model described the trend displacement versus time, whereas the multivariate GRU model
described the relationships between periodic displacement and influencing factors. A mul-
tivariate LSTM model and a multivariate RF model were also utilized for forecasting
periodic displacement to verify the prediction performance of the GRU model. We adopted
a multivariate GRU model to predict stochastic displacement.

The error analysis introduces the root mean square error (RMSE), mean absolute
percentage error (MAPE), and the goodness of fit (R2) for validations. Smaller values of
RMSE and MAPE and a larger value of R2 reflect a better prediction performance.

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)
2 (19)

MAPE= 100%× 1
N

N

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣ (20)

R2 = 1− N ∑(xi − x̂i)
2

N ∑ x2
i −∑ x̂i

2
(21)

where xi and x̂i represent the ith observed displacement and predicted displacement,
respectively, and N is the record number of displacement.
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Figure 4. Flowchart of the proposed predictive model.

3. Baijiabao Landslide Case Study
3.1. Overview of the Baijiabao Landslide
3.1.1. Geological Conditions

The Baijiabao landslide is located on the west bank of the Xiangxi River and belongs
to Zigui County, Hubei Province, China (Figure 5). The Xiangxi River is a major tributary
of the Yangtze River, approximately 2.5 km upstream from the estuary. The main sliding
direction of the landslide is perpendicular to the Xiangxi River and orientated at N 82◦ E.
The front part of the landslide is submerged in the Xiangxi River, whereas the interface
between bedrock and soil bounds the upper edge. The left and right boundaries are
defined by seasonal homologous gullies (Figure 6). The landslide has a leading-edge
elevation of 160–175 m, a trailing-edge elevation of 265 m, a width of approximately 550 m,
a length of approximately 400 m, an average thickness of 45 m, and an estimated volume of
9.9 × 106 m3 [25].

The sliding mass is mainly composed of silty clay and fragmented rubble. These
sliding materials form a loose and disordered structure of the slope. The slip bed is silty
mudstones and muddy siltstones of the Jurassic Xiangxi group, which dig into the hill by a
direction of 260◦ with an angle of 30◦ [9]. The sliding surface is defined by the interface
between colluvial materials and subjacent bedrock. The sliding zone is mainly composed
of silty clay (Figure 7).

The Baijiabao landslide experienced large deformations since the impoundment of the
Three Gorges Dam (TGD) in 2003 and kept deforming in the following years. In June 2007,
tensile cracks with a length of 160 m and depth of 10 cm occurred at both side boundaries
of the landslide close to the trailing edge. In May 2009, tensile cracks were observed on the
road in the front and right parts of the landslide. A similar road deformation appeared in
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the middle of the landslide. In June 2012, cracks of the trailing edge showed a connecting
tendency. Besides, cracks of the boundaries extended to the front part of the landslide. In
June 2015, several tensile cracks, both on the right boundary and Zi-Xing road, became
larger. Before the impoundment of the TGD, 165 residents used to live in the landslide area,
whereas now, only 20 residents live there.

Figure 5. (a) Location of the Baijiabao landslide; (b) overall view of the Baijiabao landslide.

Figure 6. Monitoring arrangement in the Baijiabao landslide.
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Figure 7. Schematic geological cross-section A–1′ of the Baijiabao landslide.

3.1.2. Monitoring Data and Deformation Characteristics of the Landslide

Four GPS stations numbered ZG323, ZG324, ZG325, and ZG326 were installed in the
landslide area to monitor the surface displacements at one time per month since late 2006.
Another two stations numbered ZG320 and ZG321 were established as the datum stations.
Monitoring data from January 2007 to July 2018 were acquired (Figure 8). The displacements
of the four monitoring stations showed a similar trend of step-wise, which meant that the
landslide deformed distinctly in steps during April and September (especially from May to
July) and became unremarkable in other times of the year.

Figure 8. Accumulated displacement in the Baijiabao landslide.

Cao et al. [25] analyzed the deformation characteristics and evolution of the Baijiabao
landslide. The analysis showed that the Baijiabao landslide deformed as an entity. Station
ZG324, located in the central position of the landslide, was chosen as a representative
for establishing the displacement forecasting model. Figure 9 displayed the accumulated
displacements at station ZG324, monthly rainfall, and reservoir water level, and all the data
were obtained by measurement. The annual displacement, displacement during step-wise
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deformation period (from May to September), and the maximum monthly displacement
were summarized in Figure 10.

Figure 9. Rainfall, reservoir water level, and accumulated displacement at ZG324, Baijiabao landslide.

Figure 10. Annual displacement increment, displacement during step-wise deformation period, and
the maximum monthly displacement at ZG324, Baijiabao landslide.

It can be seen that a sharp displacement increment occurred every few years (2009,
2012, and 2015) that was more than 200 mm (204.81 mm, 206.18 mm, and 216.92 mm,
respectively). The displacement in other years increased by less than 100 mm. Another
phenomenon was that the displacement during the step-wise deformation period (from May
to September) contributed to the majority of the displacement in the whole year, especially
from May to July, which contributed to more than 70% of the annual displacement. The
maximum monthly displacement occurred in June or July each year, except 2015 (occurred
in August). For example, the yearly displacement in 2012 was 206.18 mm; the displacement
increment between May and July was 187.55 mm and occupied 91% of the whole year
displacement. The maximum monthly rainfall occurred in June and was up to 164 mm.
The reservoir level dropped between May and July 2012, and the cumulative rainfall rose
to 349.73 mm. Thus, the time from May to July can be the critical early warning period
for step-wise landslides. The deformation during this period was mainly controlled by
reservoir water level decline and heavy rainfall.



Sensors 2022, 22, 1320 12 of 21

3.2. Accumulated Displacement Decomposition

The monitored data of station ZG324 from January 2007 to July 2017 and from Au-
gust 2017 to July 2018 were selected as training and testing data sets, respectively. An
appropriate decomposition method is crucial in establishing a landslide displacement
prediction model. Several methods have been used in accumulated displacement decom-
position, as mentioned in the introduction, and each has advantages and disadvantages.
Zhu et al. [54] and Fu et al. [55] have demonstrated that CEEMD is an effective method
for reconstructing landslide displacement, with the advantages of a high stability and
complete decomposition. Therefore, the CEEMD method was adopted here to decompose
accumulated displacement into trend term and periodic term displacements.

In the training of the forecast model, we tested 200 trials and set the standard deviation
of the added white noise in each ensemble to 0.25. We used the CEEMD to decompose the
accumulated displacement into several IMFs and a residual, while the residual represented
a trend component. Subsequently, we can obtain the periodic displacement by summing up
all of the IMFs or subtracting the trend term from the accumulated displacement. Figure 11
displayed the trend and periodic components of ZG324 in the Baijiabao landslide.

Figure 11. Displacement decomposition at ZG324.

3.3. Trend Displacement Prediction

Controlled by “internal” conditions, the trend displacement increases monotonically
with time [23]. Some researchers forecasted trend displacement by fitting the displacement–
time curve, and a polynomial was commonly used [33,37]. However, a single function
can be insufficient to fit the curve properly [10]. A univariate GRU model was adopted
to forecast the trend displacement in this study, and the established model achieved an
excellent prediction performance (Figure 12). The prediction results of RMSE, MAPE, and
R2-values were 2.09 mm, 0.14%, and 0.9984, respectively.
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Figure 12. Predicted and measured trend displacement.

3.4. Periodic Displacement Prediction
3.4.1. Triggering Factors Selection

Triggering factors selection is essential to guarantee the accuracy of a displacement
predictor. According to the monitoring data of the Baijiabao landslide (Figures 9 and 10),
rainfall and reservoir water level fluctuation are two major factors triggering its step-wise
deformation. Selby [56] proposed that the evolutionary state of landslides was also an
influential factor in the dependence of the movement on external factors. By referring to
the research [9,25,31,36] and our previous work [42], seven candidate triggering factors
were considered here.

Gray relational analysis (GRA) was used to check the degree of correlation between
the periodic displacement and candidate triggering factors [57]. In GRA, we chose periodic
displacement and candidate triggering factors as primary sequence and sub-sequences,
respectively. All the sequences were normalized in the following way:

Xk(i)′ = Xk(i)/
1
n

n

∑
i=0

Xk(i) (22)

where i = 0, 1, · · · , n; k = 0, 1, · · · , m; n is the number of data points; m is the number
of candidate triggering factors. The correlation coefficients were thus obtained by
Equation (23):

δ
(
(x0(i)′, xk(i)′

)
=

p + ρq
|Xk(i)′ − X0(i)′|+ ρq

(23)

p = min
k

min
i

(
Xk(i)′ − X0(i)′

)
(24)

q = max
k

max
i

(
Xk(i)′ − X0(i)′

)
(25)

where ρ is the resolution coefficient and is usually set to 0.5.
The grey relational grade (GRG) was adopted to evaluate the correlation between

variables, and was calculated by Equation (26):

r(x0, xi) =
1
n

n

∑
k=1

δ
(
(x0(i)′, xk(i)′

)
(26)

The GRG values vary from 0 to 1, with GRG values above 0.6 indicating a strong
correlation between variables. The results were summarized in Table 1. GRG values
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between all the variables were above 0.6, suggesting that the candidate triggering factors
can be used as the input of the prediction model.

Table 1. Candidate factors for the periodic displacement of Baijiabao landslide.

Inputs 1–7 Grey Relational Grade (GRG)

Input 1: the 1-month antecedent rainfall 0.68
Input 2: the 2-month antecedent rainfall 0.68

Input 3: average reservoir elevation in the current month 0.69
Input 4: change in reservoir level over the last month 0.72

Input 5: the displacement over the past month 0.71
Input 6: the displacement over the past two months 0.70

Input 7: the displacement over the past three months 0.69

3.4.2. Establishment of the Prediction Model

The training dataset was divided into training and validation sections, and they
accounted for 70% and 30% of the total [9,35]. The triggering factors and periodic displace-
ment were normalized to [−1, 1], and they were used as the input sequence and output
sequence of the models, respectively. In this experiment, all the models used in the paper
were implemented on MATLAB R2021a software, where the ML toolbox and deep ML
toolbox were used. The GRU model had three layers: two were GRU layers, and the other
one was a hidden layer. In the established GRU model, the number of hidden units was 200.
The values of maximum epochs, minimum batch size, and initial learning rate were 250, 10,
and 0.05, respectively. Those parameters of LSTM were 250, 1, and 0.01, respectively. In the
RF model, the number of predictors and trees were 5 and 10, respectively.

The predicted values of GRU, LSTM, and RF models in the training process were
shown in Figure 13. The prediction accuracy of the trained models was shown in Table 2. It
indicated that the predicted displacements fitted well with the measured displacement in
the trained LSTM and GRU models and were more satisfied than the RF model.

Figure 13. Measured and predicted displacements of GRU, LSTM, and RF models in training.
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Table 2. Prediction accuracy of the trained models.

Model RMSE (mm) MAPE (%) R2

GRU 3.12 21.22 0.9929
LSTM 3.67 30.04 0.9916

RF 15.95 109.21 0.8009

3.4.3. Predicted Periodic Displacement

Figures 14 and 15 compared the measured and predicted periodic displacement at
locations ZG324 using the GRU, LSTM, and RF models. The prediction accuracy of each
model was summarized in Table 3. The GRU model gave the best agreement with the
measured values in the three models, with RMSE, MAPE, and R2 values of 1.21 mm, 11.87%,
and 0.9952. Another deep ML method—LSTM—showed a lower prediction accuracy than
the GRU model. Its RMSE, MAPE, and R2 were 3.67 mm, 26.67%, and 0.9672, respectively.
Compared with the two deep ML methods—LSTM and GRU—the ensemble model RF did
not demonstrate a satisfied prediction performance, and the accuracy factors were 7.35 mm,
69.84%, and 0.8517.

Figure 14. Training and prediction process of each model.
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Figure 15. Predicted and measured periodic displacement.

Table 3. Prediction accuracy of periodic displacement.

Model RMSE (mm) MAPE (%) R2

GRU 1.21 11.87 0.9952
LSTM 3.67 26.67 0.9672

RF 7.35 69.84 0.8517

The predicted displacements of GRU and LSTM aligned well with the measured
displacement, including in the critical early warning period of the step-wise landslides
(from May to July). During May to July 2018, the reservoir water level decreased from
160.39 m to 145.33 m, and the cumulative precipitation rose to 397.83 mm. The above two
influencing factors caused the displacement to increase sharply. Several local peaks existed
in the curve of the predicted results for the RF model. The error of each prediction time
point (each month) was distributed disorderly.

It should be noted that the GRU model showed a better prediction performance than
the LSTM and RF models on the whole rather than at every time point. For example, for
the displacement prediction of March, 2018, the absolute error (AE) and relative error (RE)
of the GRU model were 0.38 mm and 1.72%, whereas the indicators of the RF model were
0.27 mm and 1.25%.

3.5. Stochastic Displacement Prediction

According to displacement component composition, stochastic displacement can
be obtained by removing the trend term and the periodic term from the accumulated
displacement series. The results were shown in Figure 16, which indicated that stochastic
displacement varied with time disorderly.

In this paper, the stochastic displacement of the Baijiabao landslide was trained and
predicted by a multivariate GRU model. All of the impact factors and stochastic displace-
ments were converted to a [−1, 1] format in sample data preprocessing. The prediction
results were shown in Figure 17. The RMSE, MAPE, and R2 values were 1.48 mm, 94.36%,
and 0.0793, respectively. The prediction accuracy was not satisfied, whereas the whole vari-
ant trend between the predicted value and measured stochastic displacement was identical.

3.6. Accumulated Displacement Prediction

According to the accumulated displacement composition, the total displacement
can be obtained by making the sum of the predicted trend and periodic and stochastic
displacements. Figure 18 showed that the predicted accumulated displacements compared
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well with the measured displacement. The RMSE, MAPE, and R2 values were 1.48 mm,
0.09%, and 0.9936.

Figure 16. Stochastic displacement at ZG324.

Figure 17. Predicted and measured stochastic displacement.

Figure 18. Predicted and measured accumulated displacement.
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4. Discussion

It is critical to forecast periodic displacement accurately in the prediction of accumu-
lated displacement for landslides with step-wise deformation [23]. Multiple ML methods
have been proposed and adopted in the periodic displacement prediction, such as BPNN,
ElM, SVM, RF, etc. The evolution process of landslides is a dynamic, complex, and nonlin-
ear system. With the advantages of handling complex nonlinear problems and considering
the dynamic evolution, a deep dynamic model—GRU—is thus selected to predict landslide
periodic displacement.

The performance of the model was validated with the observations of the Baijiabao
landslide. Another two popular models, LSTM and RF, were adopted for comparison.
The results showed that GRU achieved the best prediction accuracy in the three models.
Compared with RF, GRU has the ability to establish connections between adjacent time
steps, and this structure contributes to improving the prediction performance of the models.
Compared with LSTM, GRU has a simpler structure and fewer hyperparameters. Thus,
it can be easier to establish a well-trained GRU model and achieve a better prediction
accuracy. It should be noted that though GRU indicated a higher prediction accuracy for
one monitoring point in the Baijiabao landslide, this does not mean that the model applies
to all landslides. The limitation of generalization inherent in the GRU model makes it
difficult to predict all cases accurately. Such a limitation exists in all models [37]. To deal
with this problem, ensemble models can be established by combining several models with
different weights of the individual model [58]. In addition, switched prediction methods
can be adopted to select the appropriate individual prediction model from several candidate
models for a landslide [59].

Although the GRU model achieved an encouraging prediction accuracy, it has some
drawbacks. One drawback is that the GRU uses the stochastic gradient descent optimization
algorithm to update weights, which risks falling into local optimization [60]. Another
drawback is that the deep GRU model demands a larger dataset size than conventional
ML models [10]. The monitoring frequency is one time per month for the GPS data used
in the Baijiabao case. It may take years to obtain enough data for the prediction model.
If not enough training samples are available, the neural network cannot be fully trained,
and therefore the prediction accuracy of the model will be affected. This drawback of GRU
places a higher requirement on the monitored data of landslide deformation.

The stochastic displacement is induced by some stochastic factors, including earth-
quakes, wind load, and vehicle load, which make it a disordered series (Figure 14). This
feature contributes to the difficulty in stochastic displacement accurate prediction. Little re-
search on stochastic displacement prediction has been reported [33]. If a slope is marginally
stable or even unstable, a slight stochastic “load” can lead to disequilibrium and intense
deformation. The ignorance or underestimation of stochastic displacement may make
landslide planners carry out nothing, thus increasing the possibility of landslide accidents.
In this paper, stochastic component displacement was considered in accumulated displace-
ment prediction. The stochastic displacement was determined by deducting the trend and
periodic displacements from accumulated displacement, and was predicted by a multi-
variable GRU model. The prediction performance was unsatisfactory due to the varied,
ever-present, and unquantifiable stochastic factors. The work is still a helpful experiment
for understanding landslide displacement components and serves as an early warning
for landslides. One should consider methods to develop optimal models for predicting
stochastic displacement in the future [37].

The temporal prediction of landslides is one of the main components of early warning
systems [61]. Empirical methods based on the trend of landslide rate and semi-empirical
practices based on the displacement rate and acceleration can provide an estimation of
landslide failure time [62]. In addition, multiple parameters relating to displacement,
such as the displacement rate, displacement acceleration, and tangential angle, have been
proposed as thresholds to suggest a probable failure, although these approaches cannot
provide a time frame for such an occurrence [63]. Realizing the temporal prediction
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of landslides at slope-scale based on relating the displacement would require a deeper
dissertation in future work.

5. Conclusions

Displacement prediction is a vital and economic measure for landslide risk reduction
and always emphasizes landslide research. This paper decomposed accumulated displace-
ment into different displacement components by CEEMD. A univariate GRU model and
a multivariable GRU model were used to predict the trend and stochastic displacements.
A multivariable GRU model was used to establish a predictor for periodic displacement
prediction, and two other popular ML models—LSTM and RF—were adopted for com-
parison. The predicted accumulated displacement was gained by the superposition of the
three predicted displacement components. The results showed that predictors of deep ML
methods—GRU and LSTM—had a higher prediction accuracy than the RF model in the
studied case, which revealed the superiority of deep ML methods in long time series predic-
tion. Both as deep ML methods, the GRU model achieved a better prediction performance
than the LSTM model. One main reason is that the GRU algorithm has fewer hyperpa-
rameters to be trained in the model establishment than the LSTM algorithm. A prediction
model with the structure of CEEMD—univariate GRU (trend displacement), multivariable
GRU (periodic displacement), and multivariable GRU (stochastic displacement)—was
proposed and achieved an encouraging prediction performance. The proposed model can
be a potential tool for landslide risk reduction in the dam reservoir.
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