
����������
�������

Citation: Ali, O.; Ishak, M.K.;

Bhatti, M.K.L.; Khan, I.;

Kim, K.-I. A Comprehensive

Review of Internet of Things:

Technology Stack, Middlewares, and

Fog/Edge Computing Interface.

Sensors 2022, 22, 995.

https://doi.org/10.3390/s22030995

Academic Editor: Federico Alimenti

Received: 18 November 2021

Accepted: 21 January 2022

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

A Comprehensive Review of Internet of Things: Technology
Stack, Middlewares, and Fog/Edge Computing Interface
Omer Ali 1,2 , Mohamad Khairi Ishak 1 , Muhammad Kamran Liaquat Bhatti 2, Imran Khan 3 and Ki-Il Kim 4,*

1 School of Electrical and Electronic Engineering, Universiti Sains Malaysia (USM),
Nibong Tebal 14300, Malaysia; omerali@nfciet.edu.pk (O.A.); khairiishak@usm.my (M.K.I.)

2 Department of Electrical Engineering, NFC Institute of Engineering & Technology (NFC IET),
Multan 60000, Pakistan; dr_mklbhatti@nfciet.edu.pk

3 Department of Electrical Engineering, University of Engineering & Technology Peshawar,
Peshawar 21500, Pakistan; imran_khan@uetpeshawar.edu.pk

4 Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea
* Correspondence: kikim@cnu.ac.kr

Abstract: The Internet of Things (IoT) is an extensive network of heterogeneous devices that provides
an array of innovative applications and services. IoT networks enable the integration of data and
services to seamlessly interconnect the cyber and physical systems. However, the heterogeneity
of devices, underlying technologies and lack of standardization pose critical challenges in this
domain. On account of these challenges, this research article aims to provide a comprehensive
overview of the enabling technologies and standards that build up the IoT technology stack. First, a
layered architecture approach is presented where the state-of-the-art research and open challenges are
discussed at every layer. Next, this research article focuses on the role of middleware platforms in IoT
application development and integration. Furthermore, this article addresses the open challenges and
provides comprehensive steps towards IoT stack optimization. Finally, the interfacing of Fog/Edge
Networks to IoT technology stack is thoroughly investigated by discussing the current research and
open challenges in this domain. The main scope of this study is to provide a comprehensive review
into IoT technology (the horizontal fabric), the associated middleware and networks required to build
future proof applications (the vertical markets).

Keywords: Internet of Things (IoT); edge computing; fog computing; stack optimization; middleware;
pervasive computing; Ubiquitous computing

1. Introduction

The Internet of Things (IoT) is widely regarded as one of the most prevailing technol-
ogy revolutions of the previous two decades. IoT devices are often perceived as computing
devices with sensing capabilities, onboard computational power, and an internet-enabled
network to communicate with each other. It is one of the most rapidly growing areas that
relies on machine-to-machine communications and utilizes an internet stack for end-to-end
connectivity. In its simplest term, IoT is perceived as a network of billions of devices
that can sense, actuate and relay the information to a centralized system. Nowadays, IoT
devices and applications are deployed in various domains such as logistics, retail, health
care, smart city network, intelligent transportation and disaster management. Despite the
technological advancements in these individual domains, the heterogeneity of IoT devices
and lack of standardization challenges are yet to be addressed. It is vital to examine the
“Things” themselves, which operate differently depending on the implementation scenario,
ranging from time-critical to mission-critical applications.

Despite the lack of standards, IoT systems are already expanding at a staggering pace.
IoT systems have now exceeded the world’s population and are projected to hit an as-
tounding 80 billion devices by 2025 [1,2]. In order to ensure the interoperability, scalability
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and reliability of IoT systems, a closer investigation of the technology stack is needed.
This would make it easy to identify the technical issues that need to be resolved and stan-
dardized at each level [3]. One of the most significant challenges is accurately identifying
billions of these devices in order to assure reliable data transmission between targeted de-
vices. For such an expansion in current deployment rates and potential exponential growth
projections for Internet-connected devices, a dynamic, scalable IP-addressing scheme is
required [4,5]. Initially, internet addressing and routing relied on the IPv4 addressing
protocol, which was deemed enough for identifying millions of devices worldwide. IPv4
addressing maintained unique and reliable addressing by incorporating a variety of ad-
dressing and translation technologies, including variable length subnet masking (VLSM),
Classless Inter-domain Routing (CIDR), and Network address translation (NAT). How-
ever, the emerging trend of Internet-connected networks at large and consumer-specific
IoT nodes, in particular, demands a holistic solution that is both flexible and intelligently
addressable in order to satisfy the rising requirement for IP address space. The IP address
scheme is considered to be the most important factor and the first step in the deployment
and management of future IoT applications [6,7]. By 2025, it is anticipated that the total
number of IoT device installations will exceed 75 billion globally. Researchers are already
investigating the IPv6 addressing method for larger networks, which is projected to become
the addressing standard for IoT devices.

The average roll-out pace and potential development forecast (as research reported
from 2019 to 2030) both go hand in hand with the technological aspirations that will revolu-
tionize the future interconnected world as shown in Figure 1. The most frequently used
variables for forecasting the IoT growth trend are cost reductions in the device’s average
operational and implementation costs. The productivity and commercial feasibility can
only be improved by applying business intelligence and by combining existing standards
with the proposed future IoT ecosystems [8], ensuring optimum resilience and adaptability
[9–11]. IoT technologies enable the connectivity of real and virtual items, enabling a new era
of ubiquitous computing. As a result, the Internet has transitioned from joining end-user
nodes to interconnecting physical objects, resulting in a more intelligent object network
capable of insightful collaboration and intelligent processing.

Figure 1. Internet of Things (IoT) devices installation growth trend [1]. Asteriks means projection
year.
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Nowadays, smart objects, Internet of Things (IoT) devices, and even Wireless Sensor
Networks (WSN) are equipped with Ambient Intelligence (AmI), which integrates perva-
sive computing at the technological stack’s core. Recent studies over the last decades show
an increase in smart IoT infrastructure deployments with elements of pervasive computing
such as AmI, enabling business intelligence and decision-making capabilities [12]. Some
of the technologies that are capable of introducing AmI to processes includes, Pervasive
Computing (PC), Mobile Computing (MC) and Cyber-Physical Systems (CPS) [13]. These
technologies are reliant on their hardware resources, node computing capability, critical
security models, machine learning capabilities, and central processing. AmI provisioning
in the technology stack requires the characterization of resources and business objectives at
every layer of the technology stack.

To understand the interconnectedness of billions of these devices in pervasive and
genuinely ubiquitous environments, it is necessary to explore real-world implementation
and application scenarios. Smart cities are a great example of IoT devices working together
towards AmI. Smart parking, remote monitoring, sidewalk monitoring, and real-time air
quality monitoring are just a few examples of IoT sensors integrated in our ecosystems.
Similarly, applications such as smart wearables have become an integral part of future
health-care systems. Industrial IoT deployments have also grown significantly over the last
decade. Integrating smart sensors improves the safety and security of industrial processes.
To create a user-centric Internet of Things that connects people and their gadgets in a
sustainable ecosystem, we must first address the integration of diverse technologies, the
establishment of trusted communications, the management of huge amounts of data and
services, and user engagement.

This article decouples the enabling technologies, the underlying infrastructure, and
vendor-specific and vendor-neutral implementations of the IoT environment by contrasting
existing tools on the Internet with the proposed IoT stack. The purposes and objectives
of the present IoT implementations, as well as the need for standardisation, are described
in further detail at each layer. Additionally, the role and behaviour of these devices
that contribute to the creation of an ecosystem in terms of processing capability, resource
availability, energy consumption, and sensing capabilities are also examined in detail.
Nowadays, technological advancements are reshaping the industry toward small-form-
factor, low-power gadgets that integrate a plethora of components. As a result, device cost,
processing power, energy consumption, and interoperability with other systems are viewed
as critical aspects in IoT applications [14–17].

Numerous studies have been conducted across multiple industry sectors on IoT de-
vices, their technological stack, and application areas. The majority of the literature provides
a high-level overview of efficacy and application in this domain. Additionally, there is a
dearth of literature discussing IoT optimization and integration in the context of industry-
specific deployments. However, combining this data and offering clear recommendations
for IoT optimization and integration with future networks, such as edge computing, 5G
networks, and beyond, remains a challenge, which served as the motivation for this study.

Some of the major study contributions can be given as follows.

• A comprehensive insight into IoT technology stack, adaptation and growth trends.
• The detailed investigation of IoT Functional blocks at every layer (referred to as

horizontal fabric), state-of-the-art research corresponding these elements, and the
associated challenges.

• The characterization of Middleware, enterprise platforms and integration challenges
for enterprise solutions (referred to as vertical markets).

• Future directions to optimize the IoT Technology Stack and its integration with enter-
prise systems.

• Interfacing Fog/Edge network to extend coverage, convergence and deployment
scope for IoT networks.

• State-of-the-art research in Fog/Edge networks, open challenges and directions to-
wards IoT interfacing, thus enhancing application of vertical markets.
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Section 3 offers a comprehensive look into the industry outlook on the horizontal
fabric (technology stack) and the vertical market (applications and services). Section 4
introduces a comprehensive layered IoT architecture that decouples devices, associated
technologies, and standards on each layer. Centered on this, the entire Internet of Things
(IoT) network topology is studied, focusing on the various layers that make up the hor-
izontal IoT technology fabric. Section 5 furthers the fundamental building block of IoT
networks by exploring block-level technologies in various layers of the current IoT system.
It also investigates state-of-the-art technologies, standardisation initiatives, and research on
the different layers of the system. Furthermore, the technology stack is examined in depth
by decoupling the fundamental blocks of the IoT technology fabric.

Section 6 summarises the need for IoT network middleware and platforms by identi-
fying device and technology specifications. In addition, new vertical market middleware
technologies are being investigated for their effectiveness and security models. Finally,
a range of analysis models focused on security, privacy, and trust were examined, and a
vertical market gap was identified. Section 7 presents users with unique perspectives to
unfold IoT topology, architecture, and fundamental blocks by addressing the entire IoT
stack optimization opportunities.

Section 8 introduces the technical advances and open research problems in Fog/Edge
computing as a major way forward in this article. A potential reference multi-tiered
architecture model will also be provided to consider the significant components that will
replace or apply to the current IoT architecture and deployments. A comprehensive survey
covering the state-of-the-art studies into the underlying blocks of these technological
principles was presented. Research challenges and forthcoming trends in this domain are
also reported to provide a way forward for research in this domain.

2. Research Design

The primary research goals of this article are threefold. This article attempts to
highlight the rapid growth in IoT technology, its adoption, application domains, and
business opportunities. Next, the IoT technology stack, middleware integration, and the
need for stack optimization are deeply investigated. Finally, the interfacing of Fog/Edge
computing and associated technologies is investigated by looking into the state-of-the-
art research and open challenges in this domain. In this regard, a rigorous systematic
literature review (SLR) was conducted. This enabled us to examine potential future research
directions in IoT technology and its associated application domains.

Research Questions

By surveying the IoT technology stack from a layered perspective, we investigated
the current technologies, growing trends, and emerging application domains. We found a
slew of surveys and research papers focusing on the IoT technology stack, integration with
existing systems, and highly specialised application domains like the Industrial Internet of
Things (IIoT), IoT for wearable devices, renewable applications, and smart cities, among
others. The role of middleware in current IoT solutions was also thoroughly examined. The
impact of middlewares on the technology stack allowed for a deeper dive into IoT stack
optimization, which is one of the article’s unique features. Finally, the interoperability of
existing IoT solutions with fog/edge architectures and associated technologies like 5G was
thoroughly investigated. We discovered a small number of surveys that specifically and
individually reported these aspects, which served as the impetus for this study.

In addition, we investigated leading research and survey papers on IoT, its application
scenarios, implementation details, and the open challenges in the technology stack that are
impeding its growth. Although most researchers concentrated on general IoT application
domains, as shown in Table 1. To the best of our knowledge, no previous research explicitly
aligned the IoT technology stack and its interaction with Fog/Edge networks by offering
unambiguous optimization recommendations.
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Table 1. Review/survey papers and their contributions in IoT application domains.

Year Article Title Major Contributions

2021 [18] Internet of Things (IoT): A Review of Its
Enabling Technologies in Healthcare Appli-
cations, Standards Protocols, Security, and
Market Opportunities

Investigation of security, privacy, and Quality of
Services (QoS) in IoT based healthcare applications.

2021 [19] Blockchain for IoT-Based Healthcare:
Background, Consensus, Platforms, and
Use Cases

Investigation of a few methodologically presented
use cases to demonstrate how key features of the
IoT and blockchain can be used to support health-
care services and ecosystems.

2021 [20] A Review of Wearable Internet-of-Things
Device for Healthcare

A systematic literature review on smart wearables
and its usage in an IoT health-care setting.

2021 [21] Recent advances on IoT-assisted wearable
sensor systems for healthcare monitoring

Detailed investigation of various IoT technologies
that are used in wearable and health-care environ-
ments.

2021 [22] Edge and fog computing for IoT: A survey
on current research activities & future direc-
tions

Investigation of Edge–IoT architecture environ-
ment issues including scheduling, SDN/NFV, vir-
tualization, and security.

2021 [8] Emerging IoT domains, current standings
and open research challenges: a review

A comprehensive survey on fast emerging IoT
ecosystems that require technical advancements
and technology integration.

2021 [23] A Systematic Survey on the Role of Cloud,
Fog, and Edge Computing Combination in
Smart Agriculture

A systematic literature review focusing on IoT,
Cloud, and Edge computing in Smart-Agriculture
domain.

2020 [24] Internet of Things (IoT) for Next-Generation
Smart Systems: A Review of Current Chal-
lenges, Future Trends and Prospects for
Emerging 5G-IoT Scenarios

An in-depth examination of IoT technology from a
bird’s eye perspective, including statistical/archi-
tectural trends, use cases, challenges, and future
prospects, as well as a link between 5G and IoT
scenarios.

2020 [25] Edge-computing architectures for internet
of things applications: A survey

Classification of Edge–IoT networks based on or-
chestration, security, and big data perspective.

2020 [26] Overview of Edge Computing in the Agri-
cultural Internet of Things: Key Technolo-
gies, Applications, Challenges

Edge computing in the agricultural Internet of
Things is examined, as well as the use of Edge com-
puting in conjunction with Artificial Intelligence,
Blockchain, and Virtual/Augmented Reality tech-
nology.

2020 [27] Internet of Things (IoT): Opportunities, is-
sues and challenges towards a smart and
sustainable future

Systematic research on IoT applications in sustain-
able environment, smart cities, e-health and AmI
systems.

2020 [28] IoT reliability: a review leading to 5 key
research directions

An in-depth review for the quantification of data
reliability and optimization in IoT.

2019 [29] Intelligent positive computing with mobile,
wearable, and IoT devices: Literature re-
view and research directions

A conceptual framework for bridging the gap be-
tween IoT networks and next-generation comput-
ing services.

2019 [30] Network optimizations in the Internet of
Things: A review

State-of-the art literature survey to suggest network
optimization in future IoT networks.

2018 [31] A survey on the edge computing for the
Internet of Things

Architecture-based investigation of Edge comput-
ing to enhance IoT performance

2017 [32] Internet of things: architectures, protocols,
and applications

A comprehensive literature review of IoT technolo-
gies, applications and implementation. In addition,
the research provides a unique perspective in de-
signing and optimizing future IoT systems.
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In addition, we developed research questions based on those proposed by [33–35] to
find research gaps in these domains. This prompted the formulation of (RQ1): “What is
the current state of IoT technology stack (referred to as horizontal fabric) and application
scenario (referred to as vertical markets)?”. This motivated us to expand our research
into (RQ2): “What is the impact of utilizing middlewares into existing enterprise IoT
applications?”. This naturally led to (RQ3): “What are the current technological and
integration challenges, and how can the current technology stack be optimized?”. Finally,
to enhance the coverage and application efficacy of current IoT networks, (RQ4): “How can
Fog/Edge networks extend the capabilities of current IoT applications?”.

As a result, this review article is organized around the following research questions:

• What is the current state of IoT technology stack (referred to as horizontal fabric) and
application scenario (referred to as vertical markets)? This question aims to identify
the current state-of-the-art of IoT technology, growth trends, associated challenges
and the range of applications and domains.

• What is the impact of utilizing middlewares in existing enterprise IoT applications?
This question allowed us to classify the current state of middlewares currently being
deployed for enterprise applications.

• What are the current technological and integration challenges, and how can the
current technology stack be optimized?. This question focuses on the integration effect,
feasibility, and scope of these IoT application domains. It further aims at providing
gaps and solutions to optimize the IoT technology stack from a layered perspective.

• How can Fog/Edge networks extend the capabilities of current IoT applications?. This
question is aimed at investigating the current state of Fog/Edge networks and the
possibilities of extending these services to IoT deployments.

3. IoT Market Growth by Industry Sectors

According to reports, IoT sales and spending have increased dramatically in recent
years. Businesses are eager to invest in technologies that generate user data for use in
business analytics and decision-making [10]. IoT spending has increased by more than
200 percent in yearly expenditures in the domains of logistics and transportation alone,
with business investments of up to 40 billion dollars. The market growth trends in various
IoT domains are presented in Figure 2, where annual spending is studied over the course
of last five years. In terms of market trends, revenues invested, and projected IoT rollout
estimates, it is critical to analyse the relationship between industrial needs and technical
resource availability, which will define this smart connected environment [36].

As reported earlier, the number of IoT device install-bases is expected to reach
75 billion by 2025 [1]. In the same perspective, smart objects (internet-connected devices
with minimal computing capabilities) are expected to reach almost 200 billion entities by
the end of 2021 [37,38]. One such example of a smart object is Amazon’s dash button that
enables a pre-programmed purchase of goods with a press of a button [39]. The volume
of data flows or traffic in general is another important indicator that highlights industry
growth and commercial potential. At present, the global market is data-centric, and IoT
systems are projected to generate data in magnitudes ranging from exabytes to zettabytes
each year [37]. The global increase in M2M traffic alone is projected to increase by 51% by
2022. The Cisco forecast on these smart objects’ adaptation rate projects an increase of 17
percent in the compound annual growth rate of these devices [9]. The forecast on such
smart devices presents a considerable increase in M2M traffic, as shown in Figure 3. Many
IoT-based eco-systems, ranging from manufacturing, transportation, defence, construction,
and waste management to the health care industry, witnessed significant increases in both
adaption and financial advantage.
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Figure 2. Market spending projection (USD billion) in various IoT industry sectors.

The global market prediction for IoT-based technologies and industries is crucial in
the information and communications technology (ICT) sector, where global market values
are estimated to reach USD 1102.6 billion by 2026 [40,41]. Another important aspect is the
predicted global technology investment in IoT products, which is expected to reach USD
1.2 trillion by the end of current decade [11].

Figure 3. IoT traffic trends for M2M communication over next 5 years.
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On the other hand, few researchers are looking to quantify IoT in novel ways by
pooling the total number of M2M connections in capital growth. One such research by
Frontier Economics forecasts a model that utilizes the projected data for the years 2018 to
2032. According to their model, a meager 10% growth in M2M connectivity could increase
GDP by $2.26 trillion for the US alone [42]. Another approach to look at IoT industry
patterns is through technology adaptation and Return on Investments (ROI). With the new
industrial revolution, every major participant in the industry will be forced to modify or
adapt to IoT-based infrastructure. However, from a research point of view, it is important to
remember how the consumer compares the value generated toward ROI by implementing
these devices or systems of interconnected devices [43].

According to Accenture Analytics, the true value of smart technology can only be
realised through a thorough examination of big data from these embedded devices when
exchanged with enterprise organisations. The research based on enterprise case study
demonstrates that about 73% of the businesses had already started to implement over 20%
of their technical budget in Big Data analytics [44]. This illustrates a rare chance that data
mining, artificial learning, and business analytics have become key topics, mostly in the
field of IoT. However, several businesses consider the security and privacy risks associated
with IoT-generated data to be critical. Enterprises believe that device heterogeneity and
limited on-board resources are the fundamental reasons that make IoT data vulnerable to
theft and cyber attacks at almost every layer [45]. While the IoT domain has not yet been
standardised, the severe privacy and governance standards on user data that govern the
whole data-centric business remain in place. Furthermore, privacy laws and data security
policies vary by area, making it nearly impossible for enterprises to compete in IoT and
anticipate comparable ROIs [46].

This section detailed the market dynamics, development, and commercial opportuni-
ties in the rapidly increasing field of IoT. The numbers accurately depict the progress of
these intelligent devices in terms of deployment and adaption. The rise in M2M traffic is
predicted to result in a significant increase in both mobile and ISP traffic. Businesses exam-
ine scenarios in order to solve existing problems and develop a comprehensive business
strategy that significantly increases their corporate position through capital development
and investment returns. However, a sizable proportion of enterprises and consumers are
concerned about the security of IoT data, presenting additional challenges to be addressed.

4. IoT Architectures, Platforms and Technology Stack

The modern Internet is a complex blend of Internet nodes, IoT devices, and smart
objects. Internet-enabled networks require the implementation of an IP stack for communi-
cation between networks of objects. With the expansion of Internet networks, enterprises
as well as research communities are investing in flexible and scalable IP networks for
the future [13]. Currently, the Internet-enabled networks vary greatly both in technical
implementations and in end-application needs. A conventional computing node (such as
Personal Computers, Laptops, Mobiles and Tablets) implements an entire TCP/IP stack
based on the Open Systems Interconnection (OSI) Model. However, due to the limited
resources available on IoT devices, a lightweight IP stack is normally implemented. The
on-board resource availability and energy consumption of the device primarily regulate
the implementation of suitable protocols and standards in IoT devices. Therefore, it is
fundamentally important to investigate the IoT architectures and platforms to understand
the role and behavior at every layer of the technology stack.

In this review, we investigate the heterogeneity of the IoT fabric, from physical to the
application layers, and refer to them as horizontal fabric [47]. On the one hand, researchers
are attempting to integrate AmI into the IoT technological core, which is expected to
improve business intelligence. In practise, however, IoT devices are primarily confined
to sensing and relaying data. The restricted availability of on-board resources (such as
processing, networking, and storage) directly contributes to these limitations, leaving the
heavy lifting to the cloud. At the same time, integration of middlewares and edge networks
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now supports an increase in consumer-specific application developments in the vertical
markets [48,49]. As a result, it is critical to investigate the technology stack (horizontal
fabric) in relation to the application goals (the vertical markets).

The horizontal fabric is made up of “Things” and the communication stack, whereas
middlewares, edge networks, and the cloud make application development simpler and
thus enable vertical markets on top of this fabric [50]. A closer look at Figure 4 reveals a
three-tier architectural model for IoT systems. A subtle balance between components and
processes is presented in this model, where devices or “Things” are the primary layer of
the architecture. It is apparent that this layer is open for vendor-specific implementations,
resulting in a myriad of distinct components, modules and operating systems.

Figure 4. IoT architecture model: technology fabric from physical (PHY) to application (APP) layers.
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This layer is responsible for translating and propagating the heterogeneity of the entire
IoT stack. The network layer exhibits similar variation in terms of component, module, and
operating system selection. Devices are connected to the cloud at this layer, either through
gateway devices or through a fog/edge network interface. The cloud layer is in charge of
handling raw data from billions of IoT devices. To integrate business intelligence, current
cloud-driven corporate systems offer solutions based on Artificial Intelligence (AI) and
Machine Learning (ML). The cloud layer is dominated mostly by enterprise solutions that
offer a variety of IoT network applications. While each cloud technology is different, the
heterogeneity of this layer is often defined by the efficacy of the application design.

Since the Internet of Things primarily relies on the internet to connect these devices to
services, most reference models and architectures use a layered approach to understanding
and defining the functions at each layer. [47]. The alignment of this reference architecture
model in layers that greatly simplify overall design goals is a popular trend. However,
it is important to remember that most of these reference models do not correspond to
the Internet or the TCP/IP stack [51]. It is indeed worth noting that the majority of
alliances and organisations contribute to the standardisation of IoT protocol and architecture
stacks by proposing their own reference models. This section looks into several of these
models, which range from three-layer to middleware and five-layer models, as given in the
literature [12,52,53].

Most architecture models now support the inclusion of middleware as a software-
based interface between IoT processes and components. Middleware enables reliable and
efficient communication between elements that are mostly not supported within the na-
tive operating systems. This results in simpler and standardised communication between
processes, components, and devices, thus enabling a software interface that can extend to
upper layers and promote vertical market integration. Cruz et al. [54] discussed one such
middleware reference model in-depth, thoroughly presenting the current implementations
and future perspectives of adopting one such standardised model. The researchers argued
that the component level heterogeneity can only be mitigated by a standardised interface
between processes that can be achieved through middleware platforms. In addition, the
difficulties in standardisation were deeply investigated, and a middleware-based archi-
tecture model was proposed as a reference mode. Spies et al. [55] presented a different
perspective on middleware technologies and challenges while focusing on a Service Ori-
ented Architecture (SOA) based model, where vertical integration seems possible with cost
effectiveness. The SOA-based middleware architecture presents layers as web services that
can be scaled and concurrently inherited [56,57].

uBiuitous, secUre inTernet-of-things with Location and contExt-awaReness (BUTLER)
is one of the first European consortium research projects to focus on pervasive computing
and security for IoT applications in various domains. One of the project’s main objectives
was to create context-aware and secure apps for a variety of deployment scenarios (such as
healthcare, transportation, smart offices, and smart homes). The researchers proposed a
device-centric architecture that included smartObjects, smartMobiles, and smartServers
as three key components. The BUTLER project examines technology versus integration
concerns using a five-layer architecture that closely resembles the internet layer model,
with enabling technologies that help develop the horizontal fabric and address vertical
integration problems [58] as shown in Figure 5.

Instead of incorporating middlewares into lower layers that enable vertical market
integration, another architectural alternative is to add a business layer on top. The top mar-
ket layer uses a service-oriented approach to provide application availability, sharing, and
cross-vendor deployment as necessary [59,60]. These models are mostly service oriented
in design, and they extend object extractions to middleware service management layers.
Thus, the application and business layers enable intelligence and integration of the SOA-
based fabric into vertical markets. Al-Fuqaha et al. [48] investigated various architecture
models and presented a comparison of a few architectures based on multiple layers toward
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the need to design a reference architecture that provides scalability, interoperability, and
easier integration.

Figure 5. BUTLER EU Project—layered IoT architecture model.

R. Khan et al. [53] proposed a basic IoT architecture model where the three-layered
approach aligns the IoT fabric close to the internet stack. The three layers, namely Per-
ception, Network and Application, as presented in Figure 6, outline the technology and
device-level information in the perception layer. The network layer is responsible for the
transport or communication of this information to the upper layers. The application layer
is a unique blend of managing the data and scaling vertical application-specific integration
in multiple domains.

Figure 6. The IoT architecture: layered model approach.

Modern internet-based systems are made up of billions of devices with varying com-
ponents, modules, operating systems, and thus standards implementation. Due to limited
equipment resources and energy usage requirements, the introduction of lightweight pro-
tocols and specifications is a common trend in IoT-based systems. This deviation from
the standard IP-based implementation necessitates a thorough examination of various
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technology layers. This section provided a reference IoT architecture model with device,
network, and cloud layers, with components and processes decoupled at each layer. There
are also several other reference models that support a layered architecture. Support for
middlewares and enterprise business layers to enable vertical market integration is one of
the most notable developments in comparison to IoT architectures. Reference IoT archi-
tectures were found to be mostly aligned with application-specific markets. In addition,
the reference models proposed a layered architecture that can be mapped to the OSI layer
models. However, a tradeoff in terms of complexity and scalability is on the horizon,
limiting the standardisation of IoT architecture even further.

5. Understanding IoT Functional Blocks

The IoT reference models are a step forward in understanding the availability of
resources, technologies, and business layer convergence in order to ensure vertical market
scalability. Similarly, the roles of the various elements operating on these layers must be
investigated. In this article, we present a novel viewpoint that decouples the fundamental
building blocks of IoT (identification, sensing and networking, computation, services, and
analytics) from their operations in different architectural layers as shown in Figure 7.

Figure 7. The IoT functional elements.

Sensing, communication and computation rely on the underlying hardware platforms,
whereas, the remainder of the blocks cover middleware, relay networks, and cloud com-
puting infrastructure, most of which constitute the vertical market. These building blocks
are now thoroughly investigated in the following sections.

5.1. Identification

Typically, data streams on the Internet are aggregated to monitor overall network
traffic. To successfully provision network resources and security policies on an IP-based
network, source identification is required. Traditional internet traffic relied on the IPv4
addressing scheme, which is gradually giving way to the IPV6 addressing scheme. The
IP stack implementation in IoT devices differs from that of traditional Internet nodes. The
Internet endpoint typically implements the entire TCP/IP stack, whereas IoT applications
frequently use a lightweight protocol implementation. With the number of IoT devices
expected to exceed 75 billion by 2025, the IPv4 addressing scheme may be insufficient. As
a result, almost every IoT implementation now uses the IPv6 addressing scheme. IEEE
protocols, such as 6LowPAN (IPv6 Low-power wireless Personal Area Network), provide
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a full-stack IPv6 protocol implementation alternative in low-power devices [61,62]. It en-
ables encapsulation and header compression, reducing network overhead while providing
unique node addresses for billions of devices.

Another important factor to consider when addressing IoT nodes is the various roles
that the node may take on (such as sensing, actuation, relaying or edge-gateway). The
aggregation of information based on common service roles is very popular, so nodes
must be identified using their Service IDs. An IPv6 address can only identify a node in the
network and cannot provide additional information about its roles or behaviours. Therefore,
service tag identification is also required for IoT nodes [63]. Radio Frequency Identification
(RFID) provides a typical example of service identification by assigning Electronic Product
Codes (EPC) to differentiate between various objects and services [64,65].

IP-based networks are becoming very large and complex as IoT applications grow at
such a rapid pace. A high volume of network traffic on a single route can degrade overall
network traffic, causing congestion and bottlenecks. It is therefore critical to logically
slice a larger network in order to ensure faster and more reliable network traffic routes.
Traditional IP-based networks logically subnetted a large network by using a private
addressing scheme and techniques like Network Address Translation (NAT). Maintaining
private routing information for billions of IoT devices, on the other hand, is a challenge.
IoT edge-gateway devices may be unable to maintain routing and translation tables due to
limited on-board computing and networking resources.

A lot of researchers are investigating smart addressing schemes for these devices.
One such interesting addressing mechanism is proposed by Moghadam et al. [4], where
traditional EPC codes are mapped over the IPv6 addressing scheme to uniquely identify
IoT objects. The mapping technique discussed in this research focuses on creating a
unique IPv6 address for every unique EPC code assigned to an IoT node based on its
functionality. However, one may argue that the proposed scheme may not scale well, as
multiple addresses are required to identify the same node. Hirotsugu Seiki et al. [66]
presented a unique concept of a de-centralizing blockchain-based µCode management
system that can also be implemented on IoT nodes, allowing scalability and a unique
addressing scheme.

5.2. Sensing

IoT networks sense, aggregate, and relay data from billions of smart objects all over
the world. In cloud data warehouses, a large amount of raw data is stored and analysed.
The knowledge gained from the data assists in the introduction of business intelligence
in order to make informed decisions. IoT sensors can be deployed as individual devices
(actuators, smart sensors, smart wearables) or as a network of devices (such as WSN) that
perform a similar function collectively [67].

WSNs are commonly used in military and industrial research applications where a
large number of IoT nodes sense, collect, and relay data collectively. The roles/behaviors
of on-board sensors may differ depending on the application. It is also common to see
IoT nodes equipped with a variety of sensors that can be triggered based on the situation.
These smart sensors’ operational requirements (such as degree of accuracy and/or power
consumption) may also vary. Figure 8 provides an overview of a range of sensors typically
deployed in industrial applications.
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Figure 8. Sensors and actuators currently deployed in the IoT domain [68].

Most of the sensors are passive in nature and require a hardware platform to process
the input. Usually a Single Board Computer (SBCs) is capable of processing the information
on-board. These SBCs then use the communication tools and built-in TCP/IP stack to
connect these nodes to the internet. Currently, we have several IoT-enabled plug and play
platforms available that are extensively used in IoT research (e.g., Arduino, Raspberry Pi,
Galileo, and BeagleBone). These devices are typically deployed as a single sensing node
or in a mesh network topology as the sensing requirements grow. These nodes can be
programmed to relay data within their network or to connect with a central management
portal where the data is offloaded, analyzed, and then presented on custom dashboards.

IoT nodes are energy-constrained devices that require optimal use of on-board com-
puting to conserve energy. Another consideration that regulates the use of energy-efficient
sensors is the overall price of the IoT device. A typical node usually integrates passive
sensing devices to reduce its cost. Therefore, smart sensing schemes [69] are required to
conserve and, in some cases, harvest energy for IoT nodes [70,71]. In addition, IoT devices
generate exabytes of data every day, which is relayed to data warehouses for process-
ing. Researchers have been investigating ubiquitous energy autonomy and compressing
schemes to provide smart sensing in recent years [71,72].

Energy autonomous compressing schemes aggregate the sensor data and relay the
critical information to the data warehouses. Amarlingam et al. [73] presented an exciting
compressed sensing technique for WSNs. The fundamental observation was based on
treating the WSN network as the sensing node for IoT networks. The researchers presented
the concept of dictionary learning of data over the wireless nodes that could be aggregated
to save energy by choosing the minimal transmission cost path from the data to the sink.
Such compressed sensing techniques can significantly help to save energy resources over
large-scale deployments.

5.3. Communication

IoT networks are a combination of heterogeneous smart objects, communication tech-
nologies, and protocols that collectively perform application-specific tasks. Most of the IoT
networks are built on top of the WSN that use low power wireless communications [74].
The IoT nodes must run in low power modes during their lifespan due to energy restrictions.
Low power radios and the (noisy) wireless channel contribute to their architecture and
working complexities. A typical communication protocol must provide instructions on data
coding, transmission and flow controls, sequencing, and error correction. The hardware
stack implements these protocols to develop basic applications and interfaces to transmit
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the data towards the target device. There are several technologies for IoT communication,
which currently range from close-to-short range communications. Examples of communi-
cations technologies commonly used in IoT networks include Near Field Communication
(NFC), Narrowband IoT (NB-IoT), Ultra-Wide Bandwidth (UWB), LTE-A, WiMax, WiFi and
LoRaWAN [75]. Table 2 compares some of the most utilised communication technologies
in IoT networks.

Table 2. Enabling communication technologies for IoT networks [76].

Parameters WiFi WiMAX LR-WPAN Mobile LoRa

Standard IEEE 802.11
a/c/b/d/g/n IEEE 802.16 IEEE 802.15.4

(ZigBee)

2G-GSM, CDMA,
3G-UMTS,

CDMA 2000,
4G-LTE

LoRa
WAN R1.0

Frequency Band 5–60 GHz 2–66 GHz 868/915 MHz,
2.4 GHz

865 MHz, 2.4 GHz 868/900 MHz

Data Rate 1 Mb/s–
6.75 Gb/s

1 Mb/s–1Gb/s(Fixed)
50–100 Mb/s (Mobile) 40–250 Kb/s

2G: 50–100 Kb/s
3G: 200 Kb/s

4G: 0.1–1Gb/s
0.3–50 Kb/s

Range 20–100 m <50 Km 10–20 m Entire Cellular
Coverage

<30 Km

Energy
Consumption High Medium Low Medium Very Low

Cost High High Low Medium High

RFID Technology has been extensively used in the last decade for M2M autonomous
communication. Several RFID-based systems (active, passive, and hybrid) for object
identification and communication have been developed in the past. RFID systems operate
on a data query signal that returns locally stored object information from the reader. RFID-
based systems are mostly passive, offering a low-transmission rate over a short range [77].
Logistics and warehousing is one of these industry applications [78]. Some very fascinating
IoT implementations focused on RFID have now emerged, including pervasive RFID
installations for real-time information systems [79].

Intelligent healthcare systems are one of the most active research subjects in electron-
ics, bioengineering, and computer science [80,81]. The current expenditure on Intelligent
Health Care is about $7 billion annually. Amendola et al. [82] presented an environment
of a health care system that included the implementation of body-centric wearable RFID
tags to track the patient’s motion and environmental features autonomously, generating a
real-time knowledge database. Wearable smart devices (smart tags, fitness trackers, smart-
watches) are increasingly being deployed for health and personal activity monitoring. A
wearable fitness tracker is mainly concerned with sensing personal activity and computing
a fitness rating. Low cost and low power consumption are some of the common design
considerations of wearable devices. Many of these devices combine identical sensors and
computational algorithms; there are considerable wireless technologies available. In [83],
Fan Wu et al. presented an interesting comparison in wireless technology that is suitable
for wearable nodes. Additionally, some of the widely deployed wireless radio technologies
for IoT applications are presented in Table 3.
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Table 3. Wireless radio technologies for IoT applications.

Product Module Cost Frequency Range Data Rate

STM32WL55JCI6 $11 150 MHz to 960 MHz 10 Km ~300 kbps

RFM95W $50 430/868/915 MHz ~100 Km ~300 kbps

RFM95W $8 430/868/915 MHz ~60 Km ~120 kbps

Sigfox S2-LP $3 452 MHz–527 MHz,
904 MHz–1055 MHz

~50 Km ~500 kbps

CC2640P $5 2.4 GHz ~300 m ~2 Mbps

DIGI XBEE-900HP $50 900 MHz ~5 Km ~200 kbps

LoRa is another networking technology that operates over longer transmission dis-
tances and consumes low power. The lower cost compared to cellular and WiFi systems is
a significant efficiency factor for LoRa. LoRa-based IoT systems are commonly used for
long-range communication where high transmission speeds are not required. One such
design and evaluation environment is presented by H. Lee [84], where LoRa is chosen as
the communication technology for a mesh network of IoT sensor nodes. The research also
proposed an architecture for improved coverage, with fewer gateways to reduce complexity
and overall deployment costs.

Cellular communication, especially 3G, 4G, LTE, and LTE-A (including the prospects
of 5G technologies), is thought of as a significant communication technology for IoT appli-
cations that demand multimedia transfer or streaming capabilities [85]. Current research
on 5G systems supports a design trend that enables LTE-A and beyond cellular technolo-
gies as major backbone network contenders for extended coverage, high throughput, and
lower latencies [85,86]. Although, by its design, the IoT architecture is heterogeneous, it
seems nearly impossible to use a single communication technology implementation for
IoT applications.

5.4. Compute

Computation is the process of calculating the system workload (both arithmetic and
non-arithmetic) for a set of I/O instructions. In traditional computer technology, micropro-
cessors handle the computing load in their CPU cores. High computation and efficiency
tasks necessitated the implementation of GPU in order to form computational clusters.
IoT systems are primarily governed by a number of factors, including device costs, lower
calculation loads, and low energy usage, necessitating the use of power and cost-effective
processing units (microprocessors, microcontrollers, System on Chip (SOC), and Field
Programmable Gate-Arrays (FPGAs)). The majority of IoT deployments include sensing,
processing, and relaying data to the cloud for intensive calculations. These requirements
necessitate a limited on-board processor and storage space, thereby reducing system costs
and complexity. CPU optimization is frequently essential when the idle CPU wastes a
significant amount of computing power. An under-provisioned CPU, on the other hand,
will quickly reach its processing peak, necessitating more resources and potentially causing
processing bottlenecks. As a result, workload optimization is critical and is taken into
account during the initial design stages.

Traditionally, workload optimization is performed by the CPU and is typically man-
aged by the device’s operating system. However, as the number of IoT devices grows
year after year, it is clear that a heterogeneous approach is required, with edge computing
playing a significant role. In comparison to low-processing, node-level IoT devices, such
a solution necessitates heavy computing devices. Processing platforms such as (Arduino,
Raspberry Pi, Intel IoT Development Boards, BeagleBone, and ARM Corstone) provide a
range of processing capabilities from low-power to full application-specific SoC platforms.
In terms of programming, the hardware is only as good as the operating system (OS) that it
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runs. IoT OS enables devices and applications to communicate with one another as well as
other devices such as cloud networks and utilities. The IoT OS also handles the computing
power and other services required to collect, transfer, and store data, essentially acting as
the device’s central nervous system.

We now have a plethora of IoT operating systems that can perform a variety of tasks on
a variety of hardware platforms. IoT OS examples include Contiki, RIOT, FreeRTOS, Mbed,
TinyOS, Windows 10 IoT, and Zephyr [87,88]. A few of the major considerations when
selecting an IoT OS are based on architecture, programming model, process scheduling,
and hardware platform support. Table 4 lists some of these design specifications, whereas,
IoT hardware platforms are discussed in Table 5. Leading IoT solution providers (such as
IBM BlueMix and AzureIoT) also support device emulation and virtualization, which aids
in the deployment of application-specific solutions [87]. A simulation environment enables
researchers to build and simulate real-world scenarios using various topologies, which
saves time and money. There are several cloud platforms that extend their network and
application connectivity via the Platform as a Service (PaaS) model to host IoT software.

Table 4. IoT operating systems design characteristics.

Contiki TinyOS RIOT FreeRTOS uClinux Mbed

Architecture Monolithic Monolithic Microkernel
RTOS

Microkernel
RTOS Monolithic Monolithic

Programming
Model

Event-driven,
protothreads Event-driven Multi-

threading
Multi-
threading

Multi-
threading

Event-driven,
single thread

Process
Scheduler Cooperative Cooperative Preemptive,

tickless
Preemptive,

tickless Preemptive Preemptive

Programming
Languages C nesC C,C++ C C C,C++

Supported
Hardware
Platform

AVR,
MSP 430,

ARM Cortex,
PIC-32

AVR,
MSP 430

AVR,
MSP 430,

ARM Cortex-M,
x86

AVR,
MSP 430,

ARM,
x86, 8052,
Renesas

ARM 7,
ARM

Cortex-M

ARM
Cortex-M

License BSD BSD LGPLv2 modified
GPL GPLv2 Apache

License 2.0

The cloud infrastructure model for IoT devices has matured in recent years. Market
leaders such as Amazon IoT, Google Cloud Server, ThingWorx, and IBM Watson are
attempting to turn their IoT platform (PaaS) into a service. Cloud systems, as opposed to
traditional IoT networks, have greater computational, storage, redundancy, and analysis
capabilities. Many exciting solutions (augmented by the cloud computing model) for
real-world challenges, such as traffic management in the Internet of Vehicles, are proposed
(IoV) [89,90]. It is one of the fastest growing areas of research that relies entirely on high-
speed cloud computing. The Open Automotive Alliance (OAA) is investing a great deal of
technical resources to realise an IoV-based Intelligent Transportation System (ITS) [91,92].
It is worth mentioning that future IoT systems need hybrid computing capabilities ranging
from low-power IoT nodes to mid-end gateways to high-compute cloud networks.
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Table 5. Comparison of IoT supported latest hardware platforms.

Parameters Arduino
Uno Rev3

Intel Galileo
Gen 2 Intel Edison ESP8266 BeagleBone

X15
Banana Pi

BPI-P2 Zero
Raspberry Pi

4 B

Date
Released

September
2010 10 July 2014 Q3 2014 August 2014 November

2015 July 2018 June 2019

Processor
ATmega

328 P
Intel Quark
SoC X1000

Intel Quark
SoC X1000

RISC based
L106
32-bit

TI AM5728
2 × 1.5 GHz

ARM
Coretex-A15
2 × 700 MHz

H2 Quadcore
Cortex-A7

Broadcom
SoC

BCM 2711

GPU No No No No
PowerVR
Dual Core

SGX544

Mali 400 MP2
Broadcom
VideoCore

VI

Clock Speed 16 MHz 400 MHz 100 MHz 80 MHz 800 MHz 800 MHz 800 MHz

System
Memory 2 KB 256 MB 1 GB 32 KB 512 MB 512 MB 4GB

Flash
Memory 32 KB 8 MB 4 GB 80 KB 4 GB 8 GB 4GB

Communications

IEEE
802.11

(b/g/n),
IEEE

802.15.4
433RF,

BLE 4.0,
Ethernet,

Serial

IEEE
802.11

(b/g/n),
IEEE

802.15.4
433RF,

BLE 4.0,
Ethernet,

Serial

IEEE
802.11

(b/g/n),
IEEE

802.15.4
433RF,

BLE 4.0,
Ethernet,

Serial

IEEE
802.11

(b/g/n),
IEEE

802.15.4
433RF,
BLE 4.0

IEEE
802.11

(b/g/n),
IEEE

802.15.4,
433RF,

BLE 4.0,
Dual Gigabit

Ethernet,
Serial

IEEE
802.11

(b/g/n),
IEEE

802.15.4
433RF,

BLE 4.0,
Ethernet,

Serial

IEEE
802.11

(b/g/n/ac),
IEEE

802.15.4
433RF,

BLE 4.2,
Ethernet,

Serial

Development
Environment

Arduino IDE Arduino IDE Arduino IDE,
Eclipse,

Intel XDK

Arduino,
ESP Easy,
Espruino

Arduino IDE,
Eclipse,

Cloud 9 IDE

NOOBS NOOBS

I/O
Connectivity

SPI,
I2C,

UART,
GPIO

SPI,
I2C,

UART,
GPIO

SPI,
I2C,

UART,
I2S,

GPIO

SPI,
I2C,

GPIO,
UART

SPI,
I2C,

UART,
I2S,

GPIO,
CAN Bus

SPI,
I2C,

UART,
I2S,

GPIO

SPI,
DSI,

UART,
SDIO,
CSI,

GPIO

Programming
Language Wiring

Wiring,
Wyliodrin

Wiring,
C/C++,
HTML5

C/C++,
Python,

Ruby

C/C++,
Debian,
Python,
Ruby,
Java,
Shell

C/C++,
Python,

Java

C/C++,
Python,

Java,
Scratch

Approximate
Cost $20 $70 $50 $4 $270 $30 $35

5.5. Services

The Internet of Things (IoT) is a vast network of heterogenous devices, infrastructure,
protocols, and applications. In the previous section, we looked at several IoT architectures
that provide a variety of services for vertical market integration. SOAs (Service Oriented
Architectures) provide an abstraction layer that connects objects to application layers.
The underlying device complexities in the technology stack are greatly simplified by an
abstraction layer, allowing for easier vertical market integration. However, the addition of
an abstraction layer alters the system architecture at both the OS and Middleware levels.
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A few researchers also proposed simplifying the architecture by integrating web services
directly into IoT sensors [93,94]. This strategy not only eliminates the need for abstraction,
but it also ensures rapid production and deployment.

Although several service models are available, the long-term objective is to incorporate
scalability, interoperability, and easier market integration. However, the categorization
will distinguish between different IoT service industries and service models in terms
of their services. Mathew Gigli et al. [95] presented an IoT service model based on
four categories, including, identity-related services, information aggregation services,
collaborative-aware services, and ubiquitous services. These categories use processes that
integrate components into various layers of the technology stack. The object identification
service helps to sense and identify the virtual object, which is passed on to the information
aggregation layer for data aggregation. Collaborative-awareness is achieved by aggregation
of information gathered from similar service profile end devices. The omnipresence of
IoT intelligence is the desired end goal that can be accomplished by creating collaborative-
conscious services that are intelligent enough to make automated decisions. Applications
that require user-related data (such as in banking, health care, smart homes) may contain
confidential information that can enable user-tailored ubiquitous services. However, the
actual implementation of ubiquitous services still seems complicated and challenging.

A category-specific application analysis is used to highlight the scope of these Services
in the following context. The goal is to link the literature to application scenarios in which
different services stack up to achieve ubiquitous computing. Intelligent automation and or-
chestration are expected to be features of future ubiquitous IoT environments. RFID-based
technologies are frequently used by early adopters of WSN and IoT-based technologies, in-
cluding application domains such as logistics, digital storage, and fleet management. M2M
systems, which include mobile, GPS, and internet technology, have been used in recent
years to automate logistics operations and track goods in real time [96,97]. These examples
classify applications on the basis of identity-related classes in the service model. Some
of the top developments in the logistics industry, where identity-related information is
mainly used, are location management systems and inventory and tracking systems [98,99].
Intel reports that almost 30% of perishable produce from farms never make it to the mar-
kets [100]. Object and inventory tracking can help track products such as farm produce,
pharmaceuticals, and industrial chemicals in real-time, thus saving a fortune annually.

Logistics 4.0 enables to monitor the shipment quality and object tracking in real-time.
Real-time logistics tracking systems are commonly used in the transportation of pharmaceu-
ticals, industrial hazardous chemicals, and life-saving drugs [101,102]. On-board sensors
transmit information on shipping in real-time, which lets companies not only monitor
items but also ensure the optimal consistency of handling procedures. Next, ITS systems
are known to be a core component of the information aggregation class. These networks
include a range of subsystems, such as smart parking, smart roads, traffic management,
and control systems. The sensor information from these subsystems is aggregated to ensure
a consistent and safe transport experience. The aggregated information is then passed
to the upper collaborative-aware services model in order to thoroughly investigate the
data and make smart decisions [97]. Connected vehicles utilize this concept to leverage
a collaborative-aware service model, to make real-time collaborative decisions. Driver-
less cars use this service model to adapt to road and weather conditions, avoid highway
congestion, and book parking spaces in advance [89,103].

Connected vehicles or smart vehicles use this concept to leverage information gathered
from all of the modules mentioned above and present it to the cloud via a Collaborative-
aware service mode, where real-time decisions are made, allowing for the driverless
self-driving vision of cars to become a reality. Google is widely regarded as a pioneer in
the development and deployment of self-driving vehicles. It creates a collaborative-aware
experience for driverless cars by combining user-generated data and cloud-based machine
learning models [104]. The technology has advanced so much that autonomous cars have
reportedly already driven more than 4 million miles [105]. Scientific standardisation is
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constantly updating its blueprint to keep up with such fast-paced research and deployments.
IEEE 802.11p included amendments to support short-range communication vehicles.

Wireless Access for Vehicular Environments (WAVE) [106] is an approved standard
for ITS systems. The National Highway Traffic Safety Administration, USA (NHTSA)
has been working closely with research organizations, standards bodies, and academic
institutions to advance the goal of Vehicle-to-Vehicle (V2V) communications [107]. Re-
searchers investigated the self-configuration capabilities of future IoV systems that support
the standardized technologies and protocols [108]. In a recent report on the readiness
of V2V Technology, NHSTA reported a decline in the annual deployment costs of V2V
technology. The study further proposed that cross-industry standardization not only de-
creases the cost of development but also assures a quick rollout. Standardization also helps
eliminate loopholes in the area of transportation which can be crucial, and in some cases,
life-saving. The report also stated that if V2V safety applications are adopted, it could
prevent 25,000 to 592,000 car crashes annually [109]. This report provides vital statistics
regarding technological advancement and the standardization efforts towards the internet
of connected vehicles.

Another important IoT area that is rapidly expanding is the Industrial Internet of
Things (IIoT). In most cases, IIoT systems are associated with high-volume, high-speed data
streams. A typical IIoT system is ideally a low-power, small-form-factor sensor or actuator
node with internet connectivity that can relay sensed data to the cloud. The cloud-based
ML models are then required to automate the industrial systems in near real-time.

Xu et al. [110] proposed a trustful resource allocation and management scheme
that can be wirelessly implemented on gateways as well as end devices. In contrast to
traditional resource allocation schemes, the researchers proposed a hierarchical structure
capable of real-time application that also ensures process privacy. Kumar et al. [111]
proposed a lightweight encryption scheme that enables fast hash-keys based encryption
for IoT modules in the perception layer. The proposed scheme can mitigate security risks
by only allowing communication between authenticated IoT devices. While we see a
substantial trend in the adoption of IIoT in Industry 4.0, the vast majority are still hesitant
to integrate it due to the added layer of system dependency, increased power usage, and
security concerns. In recent years, Stuxnext was the biggest cyber-security threat that IIoT
systems have experienced [112]. The industrial vulnerability is a huge threat vector for
cyber-security attacks, that may completely render the services non-operational and cause
millions in damages [113]. Therefore, many researchers [114–116] are studying pro-active
threat mitigation schemes for IIoT applications.

Many industrial IIoT architectures and their integration with existing automation
platforms require a layer of abstraction. Siemens, one of the world’s most prominent
industrial automation leaders, proposed the addition of a connectivity layer to the present
automation products and technologies. This concept is integrated into its cloud-based
industrial automation solution, the MindSphere [117]. Lastly, smart cities can be observed as
an application of the ubiquitous services class [118–120]. It is a system of numerous smaller
subsystems, including smart homes, smart grids, ITS and environmental response systems,
that form a completely pervasive system focused on collaborative awareness [121–124].

5.6. Semantics and Analytics

Intelligence and autonomy at the device level are needed in order to achieve ubiqui-
tous computing where devices can self-configure and adapt to their environment [125,126].
The autonomy of future IoT networks is projected to minimize working loads by accurately,
efficiently, and smartly collecting, processing, and modelling the information [127]. A
semantics framework is needed that provides granularity to distinguish between a multi-
tude of objects and their attributes in the IoT networks [127–129]. Such a system helps to
define and understand the correct object, and can demand the appropriate resource for the
desired feature or behavior, thus acting as the central intelligence or brain of the overall
operation [130].
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Resource Description Framework (RDF) and its variants have been widely deployed
to map attributes to the data. The semantic frameworks are used at various levels in the
architecture to make the overall data trustworthy. A semantic framework for translating
between different technologies and protocols may be used at the lower layers as a gateway,
whereas at the higher layers it can be used for data collection. Word Wide Web Consortium
(W3C) Semantic Sensor Network (SSN) ontology and annotation framework is one such
example [131]. Effective XML Interchange (EXI), a lightweight representation of Extensible
Markup Language (XML), is often commonly utilized for constrained devices [132].

The researchers investigated RDF frameworks to efficiently store and retrieve data
from IoT devices. Rahman et al. [133] proposed a lightweight, dynamic ontology-based IoT
scheme. The proposed scheme develops dynamic feature-based clusters using ML models.
This abstraction of the ML-based SSN ontology scheme reduces query response latency as
well as memory footprints. Padiya et al. [134] used the RDF model to analyze vast amounts
of IoT-based sensor data management. They used various RDF storage mechanisms to
store and retrieve data efficiently. The study also compares vertical portioning and hybrid
data-aware methodology, concluding that the latter technique yields a 12% increase in
results. Although the reviewers have analyzed a comprehensive data collection using
various data storage and retrieval models, it is still unclear how it compares with the other
EXI or JSON-LD techniques. It is also uncertain if the solution can be adequate to ensure the
interoperability between various layers and systems. In general, the research model and the
test bed will serve as excellent starting points for a detailed analysis of data management
in IoT systems.

Hasemann et al. [135] presented a rather fascinating use-case focused on asymmetric
data transfer by IoT devices. Their approach is based on IoT networks that publish a large
amount of data, but receive relatively few updates. They incorporated serialization for
RDF documents and opted for streaming Header-Dictionary-Triples (HDT) serialization to
encrypt sensor data, resulting in a reduced data lookup table size that enables the re-use of
searching entities to further save resources. Along the same lines, lightweight serialization
based on RDF documentation seems to be a promising approach, since it reduces the
size of data collection and can be conveniently integrated. WiseLib is one of the most
common lightweight serialization frameworks for constrained heterogeneous devices. The
serialization maps various device role and behaviors to the data by encoding at the device
level. On the one hand, reduced table sizes can help to store and retrieve data efficiently.
On the other hand, the devices use additional computational power for the encoding of
information. This also opens up debates about a major study gap in the benchmarks for
IoT-related energy saving schemes.

Maarala et al. [136] presented an evaluation model to test various sizes of IoT networks
and corresponding semantics reasoning data. Maintaining performance, scalability, and
interoperability as their primary goals, researchers calculated latencies imposed by various
semantic models. During the assessment of semantic models, the researchers suggested
data aggregation strategies suitable for the heterogeneous IoT network. The experimental
results claim that distributed reasoning with Entity Notation (EN) formats outperforms
other techniques. The results also summarized the possibility of having multiple reasoning
nodes with a short EN format as the best case. The researchers also proposed that time-
based aggregation produces a more stable output as compared to other strategies. Many
researchers also focus on content caching schemes that reduce the energy consumption
footprint for IoT networks [137].

The research provided a rigorous model for analysing emerging semantic technologies
and determining the best supply cases. The effects of data formats on centralised structures,
on the other hand, have not been reported. Another notable trend in their research is the
similarity and uniformity in latencies as system resources or overall throughput increase,
whereas this may not be the case in real-world heterogeneous IoT systems. Overall, this
study is a great way to compare different semantic data formats that can be used in
IoT networks.
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Table 6 summarizes IoT functional blocks and associated elements, as detailed in
this section.

Table 6. IoT functional elements and associated technologies overview [48].

IoT Functional Elements Standards/Technologies

Identification Naming EPC, µCode

Addressing IPV4, IPV6

Sensing
RFID Tags, Smart Sensors,
Wearable sensors, embedded sensors, Compact and Low power
sensors, actuators and relay sensors

Communication RFID, NFC, UWB, NB-IoT, Bluetooth, BLE, IEEE 802.15.4,
Z-Wave, WiFi, LTE-A, LoRa

Compute

Hardware Arduino, Raspberry Pi, Beaglebone, Banana Pi, Intel Galileo,
Intel Edison, Node MCU, Smartphones and Smart sensors

Software

Operating Systems:
(Windows 10 IoT), Raspbian,
Contiki, TinyOS, LiteOS, Riot OS
Cloud Solutions
(NodeRed, NimBits, Azure IoT,
IBM Watson, Kaa)

Services

Identity-related (Logistics)
Information Aggregation (Intelligent Transportation)
Collaborative-aware (Self-driving cars)
Ubiquitous (Smart cities)

Semantics & Analytics RDF, EN, JSON-LD, EXI

6. Characterizing Middlewares for the IoT

The middleware concept facilitates development by providing a scalable interface for
computing and communication that enables interoperability between various services and
applications. Middleware platforms have evolved in recent years to be primarily data-
centric, providing an interface for effectively managing objects and data. These platforms
primarily focus on sensor networks, but in our concept of IoT architecture, as discussed
in previous sections, there is a growing need for the management interface and data
reflected in M2M communications. As a result, in order to clearly understand the proposed
middleware platforms in this context, we define them in terms of the functions and services
that satisfy the specifications outlined in the previous section. This is accompanied by a
thorough examination of current middleware and data systems proposed to ensure the
heterogeneity required to build scalable cloud-enabled IoT networks. Table 7 presents some
of these characteristics [138].

Chaqfeh et al. [56] presented a complete overview of various middleware platforms
by categorizing different application services for proposed infrastructures. Their research
has broadly categorized the IoT domains, ranging from semantics infrastructure to sensor
networks, to fully autonomous and pervasive robotics. Figure 9 illustrates the data flow
within various applications with or without the integration of middleware.
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Table 7. IoT infrastructure and application characteristics.

Parameter Nature Impact

Characteristics of IoT Infrastructure

Heterogeneity

Multi-vendor, multi-capability
devices
from low-cost to high-end,
capable of performing heavy work

Making resources/environment dynamic, thus
adding complexity for middleware to support
interoperability

Resource Constraints Small size, low power, small memory
and computing capabilities

An additional challenge to implement
the middleware software layer

Spontaneous Interaction M2M communication, real-time
event triggers

Automated, real-time, machine to machine
interactions may require a system that is
ubiquitous and requires no human
intervention

Ultra large-scale Networks Ultra-large number of events in
multiples of billions every day

Event congestion, resource exhaustion, added
data backups and event aggregation workload

Dynamic Network
Conditions

Mesh, Ad-hoc, cellular networks or
in some cases relay gateways for
long-distance connectivity

Inadequate or disconnected network link
outages may result in truncated, duplicated or
lost data, which requires self-adjusting software
to account for transmissions over such networks

Context-aware application Spatial and temporal context from
sensing nodes

Requires adaptive and autonomous behavior in
software stack to analyze and interpret the data

Characteristics of IoT Applications

Diversity Applications range from event-driven
to time-driven IoT domains

Added complexity for middleware to adapt to
different application deployments providing
multiple services, such as: transportation and
logistics, that deploy the same hardware
but demand different services

Real-time Applications range from mission
critical to time-critical IoT domains

Real-time application deployments such as
in health-care, would demand an added layer of
reliability and data integrity

Security Global connectivity versus open
attack surface

Small computing capability, device and network
heterogeneity
and a provision for global access adds
complexity for middleware to mitigate
security threats

Privacy Personal versus critical data

IoT applications may contain data from
health-care, financial, internal stocks to
industrial deployments. The data privacy acts
vary from region to region, thus adding another
complexity for middleware to provide
flexibility to comply with data protection acts
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Figure 9. (a) Illustration of user data flow without middleware. (b) Illustration of middleware
integrated IoT network responsible for handling data flow between users and multiple applications.

Despite the fact that the specifics of IoT functional blocks were fine-grained in the
previous section, the following specifications are provided based on the implementation
requirements and the IoT infrastructure software layer [139]. In this study, we look at
middleware technologies based on the categories of security, privacy, and trust, which
are the most important open research areas in this field. Similarly, Razzaque et al. [138]
discussed that to lay out the fundamental requirements for middleware platforms, it
is critical to understand the characteristics of IoT infrastructure and the characteristics
of IoT applications. Table 8 presents some of the evaluated approaches that addressed
these challenges.

Table 8. Challenges in middleware approaches for IoT applications.

Domains Semantic Web & Web Services Sensor Networks & RFID Robotics
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Interoperability X X X X X X X

Scalability X X X X X
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I/O Hardware Devices X X X X X

H/S Interfaces X X X

Data Streams X X X X X X X X

Physicality X X X X X X X X

Development Process X X X X

Spontaneous Interaction X X X X X X

Unfixed Infrastructure X X X X X X

Multiplicity X X X X X X

Security and Privacy X X X
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Security and privacy are the most important areas of research that have yet to be
addressed. The middleware interfaces the technology stack with the vertical market. Hence,
it is of utmost importance to resolve data protection and privacy issues in this layer [8,140].
Various middleware characteristics and their impacts on user data are discussed in this
study. It is very important to categorize these elements on the basis of specifications (such
as infrastructure and application requirements) that will ensure potential standardization
and interoperability [141]. Along the same lines, Ngu et al. [142] presented various IoT
middleware use-cases by analyzing various architectures in the context of security, privacy,
and trust.

Fortino et al. [143] proposed a Smart Objects (SO) based architecture that incorporates
agent-based computing to support distributed deployments, whereas a backing cloud
architecture performs the heavy lifting with flexible and scalable cloud compute resources.
The researchers focused on existing middleware and cloud technologies to implement this
multi-tier extension to examine future deployment possibilities. There is currently a broad
variety of IoT middleware and development frameworks that differ in their implementation
and architectural layout. However, in comparison to open source consortia, the major
share is based on enterprise middlewares that are modular to service-based technology
solutions [142].

C. Perera et al. [144] presented an effective and feature-rich IoT middleware that can
be conveniently configured by non-IT experts. This semantic-driven architecture features a
context-aware sensor configuration model (CasCoM) implemented on the Global Sensor
Network (GSN) middleware. The semantics provide scalability and interoperability while
reducing architectural complexities at the device level. D. Conzon et al. [145] presented
a secure IoT architecture that is based on the XMPP protocol. The proposed middleware
addresses both the networking and security issues by providing a secure communication
channel for distributed applications. The proposed architecture allows data flow within
private networks that is made secure by authentication and encryption.

In this section, we identified middleware platforms that fulfill the necessary security
and privacy requirements, as well as being scalable and interoperable [146,147]. It is also
worth remembering that no standard model will emerge, and IoT networks will remain
heterogeneous from the physical layer to the application layer. Table 9 presents a variety
of middleware architectures and technologies that address the aforementioned key issues.
However, in order to protect these large-scale distributed deployments from privacy and
data leaks, a standardised security engine is required.

Table 9. Middleware services/platforms and their associated security models.

Platform Technology Addresses
Security & Privacy? Drawbacks

Service-based IoT Middleware

Hydra/LinkSmart

Web Services, XML,
Symmetric Keys using
Certificate Authority
(CA)

Partially, by encrypting
user data

Signed certificates for billions
of devices is
practically impossible.
No policy-based access model.
No secure user data storage

GSN Access Control
Partially, by encryption
and electronic
signatures

High complexity implementation.
Complex query and semantics
operation on data streams.
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Table 9. Cont.

Platform Technology Addresses
Security & Privacy? Drawbacks

Service-based IoT Middleware

OpenIoT

Message Digests,
Public/Private Key
Cryptography,
Flexible access controls

Fully

Generic security framework
model, which is very difficult to
implement.
No implementation details
provided for third-party
applications.

Virtus
XMPP, Event-driven
communications,
isolation of instances

Partially, by encryption
at Transport Layer
using TLS and
Authentication by
SASL protocol

Huge payloads.
Increased entity versus
digest bundles.

Cloud-based IoT Middleware

Webinos
Personal zones, Virtual
user defined overlay
networks

Partially, by de-coupling
contextualized data,
automatic filtering on
personal data

Limited object access and
identification outside overlay
networks

ThingWorx Query and Analysis
based engine

Partially, by intelligent
queries and innovative 3D
data offloading

Enterprise mode.
A limited number of devices
can be attached, which
further limits large-scale
deployments of distributed
networks.

Actor-based IoT Middleware

Node-Red
Server-side scripting,
event-driven flow-based
approach

None.
Open access to
IP and ports

Vulnerable to security threats
as it only provides a
programming interface and does
not implement security.
Can only be used as a visual
programming interface for rapid
prototyping

7. IoT Stack Optimization

In the preceding sections, we looked at IoT architectural criteria, fundamental building
blocks, and the role of middleware. The horizontal technology fabric is made up of these
components, which must be optimised for interoperability, scalability, and vertical market
integration. Tuning application-specific services, where hardware, software, and interfaces
are configured to make the most of a specific implementation, is commonly thought of as
optimization. In order to build an adaptive and scalable IoT stack that can support end-user
applications, these layers must be optimised for efficiency. Because the IoT technology
stack is heterogeneous, optimization entails improvements in all major layers (from PHY
to APP).

At each layer, optimization may necessitate improvements in processes, components,
protocols, or even technology. After a successful production and deployment cycle, tradi-
tional optimization processes are implemented. IoT domains, on the other hand, necessitate
a proactive optimization strategy due to their rapid development speed and application
requirements. A proactive optimization strategy ensures application-specific improve-
ments that begin at the design stage. This would imply a larger IoT network as well as
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a more robust business model. From a macro perspective, IoT implementation at the
enterprise level goes through various stages of maturity, which determines the amount of
room for business-specific optimization [148]. These phases translate solutions from basic
applications to complex ecosystems and include:

• First: complete vendor dependability to deploy one-off application solely run and
managed by the vendors in the cloud;

• Intermediary: on-premise solution deployment managed by end business as well as
vendors. Thus, opens room for expansion and optimization;

• Mature: an end-to-end ecosystem either deployed on-premise, on-cloud or a hybrid
solution that demands a complete optimization of the entire IoT stack.

These different phases of IoT maturity will vary from processes to businesses. There-
fore, a more robust, vendor-neutral optimization strategy is required. Figure 10 outlines
this strategy by separating IoT stack layers and blocks, into which optimization is needed.
To optimize the physical layer, adaptive and low-power sensors and actuators are required
that can adapt to application requirements and reduce their energy footprint. It is also
suggested that these devices must have the capability to be programmed from the cloud
to adapt quickly to application-specific requirements. With improvements in the silicon
industry and the availability of low-cost system-on-chip (SoC), it is now possible to deploy
an SoC solution [149] at the nodes that is more energy-efficient and re-configurable [150].

Figure 10. Proposed approaches for optimizing the entire IoT technology stack.

A substantial percentage of IoT devices connect with gateway devices, which combine
and transfer the data into the cloud by relaying information. With modern technology and
the ability to integrate cost-effective gateway devices, the end nodes can be made more
resilient and efficient by bringing the computing closer to the device. Lin and Premsankar
describe how the gateway devices can optimize the technology stack and reduce the
infrastructure deployment costs where a single edge gateway can service thousands of IoT
nodes and maintain a reliable connection between the cloud and the devices [151,152]. IoT
deployments that use wireless technologies to communicate can be made more efficient
by incorporating modern low-power, long-range radios such as Lora. These low-power
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radios can further help to improve the life of end-nodes. Another aspect to consider is the
use of Software Defined Radios (SDR) in the communication stack that can self-heal, auto-
configure, and adapt the radio based on various environments [153]. With the deployment
of 5G technologies, it is critical to use SDR technology, which employs critical functions such
as Network Function Virtualization (NFV) to not only enable a virtualized re-configurable
environment of these radios, but also to provide an opportunity to extend overall network
coverage [154].

It is essential to consider middleware that enables the implementation of virtualized
functions in order to utilize hardware and processes efficiently in a modular manner. In
addition, many network resources can be saved by efficient network routing. Recently,
researchers are investigating the use of smart routing algorithms such as Evolutionary
algorithms (EA), Stochastic algorithms (SA) or, in some cases, Memetic algorithms (MA)
to provide network optimization for IoT ecosystems [30,155]. One of the most severe
overheads of IoT networks is the migration of data to the cloud for analysis. Heavy-
lifting is still achieved in the cloud, but with Fog/Edge computing developing as a crucial
option for future IoT networks, middleware will connect directly with edge networks. This
would greatly minimize data aggregation and transmission delays, resulting in the bulk of
processing occurring near the edge device.

Finally, the cloud-based enterprise solution requires the integration of Machine Intelli-
gence (MI) and Deep Learning (DL) to become self-adaptive ecosystems that can improve
independently. Optimizing the cloud interface, computing capabilities, and overall product
life-cycle management involves the automation and orchestration of data aggregation,
transmission, and analysis to create an intelligent system [156,157]. It is also essential
that cloud-based solutions support virtualized modular containers so that learning and
intelligence can be extended to the edge gateways. In a real sense, the optimization of
the entire IoT stack is feasible if IoT devices are able to do power-efficient processing near
their source. This can only be accomplished by incorporating edge computing into the
horizontal IoT fabric, over which vertical markets can be incorporated.

8. Fog/Edge Computing: Technological Advancements, Integration Challenges and
Edge-Enabled Vertical Markets

A modern IoT ecosystem envisions fast data collection, aggregation, and near real-
time analytics to create intelligent and adaptive applications. The current technological
advancements allow us to process massive amounts of data from billions of IoT devices in
the cloud. However, as we get closer to ubiquitous computing, we will need more real-time
analytics and process intelligence. The cognitive prognostics in the cloud enable machines
to learn and infer from these results in order to improve end processes. At the same
time, transferring exabytes of data to the cloud increases energy consumption, resource
consumption, and network latency. This is where the concept of Fog/Edge computing
comes into play, bringing the entire cloud processing power closer to the network edge.
The Fog/Edge computing architecture shares these objectives and promises to bring the
following benefits to future IoT networks, including:

• Reduced network latency;
• Enhanced compute, storage and network capacity;
• Increased network bandwidth;
• An overall increase in system response time;
• Privacy and node-aware security;
• Fault-tolerance and mitigation at node level;
• Energy conservation by reducing the amount of data sent to the cloud;
• Network robustness - by improving the network hierarchy.

These benefits are significant for future near real-time IoT systems, associated pro-
cesses, and data streams. Therefore, it is essential to understand and distinguish between
these concepts from an architectural and operational viewpoint. Fog and edge computing
have always appeared to be inter-related in literature where a strong and definite boundary
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is never established. However, if we look at these technologies from a data-offloading
viewpoint, we will obtain a better understanding of how these interchangeable technolo-
gies operate. Both technologies are envisioned to be deployed and used for future IoT
networks interchangeably and are sometimes also referred to as mobile computing in this
context [158].

It is essential to understand how these technologies relate and their differences if
deployed in an IoT network, whether directly part of the network architecture or as a
stub or parallel data offloading network. Fog Computing— is a concept which envisions
pushing intelligence down to the local network at the gateway level. Edge Computing—
on the other hand, brings cloud intelligence, computing power and storage capabilities to
the local gateway as well as the device level.

It is, without doubt, that any technical advancement will come with some trade-offs or,
in some scenarios, “no one-size-fits-all”. It is therefore important to examine the degree to
which these technical concepts can be deployed without introducing further complexity to
the system. Fog computing is defined as a horizontal system-level architecture in the IEEE
1934 specification established by the OpenFog Consortium. IEEE adopts fog computing
principles for computing, storing, managing, and networking in order to enable a things-to-
cloud continuum in the technology stack [159]. A reference fog/edge architectural model
is presented later in this article, supporting the idea of technology integration.

8.1. Fog/Edge Architecture Model

A future reference architecture for IoT networks will adopt some form of N-tiered
Fog/Edge deployment by loosely coupling the best of these concepts without adding
additional layers of complexity to the overall system architecture. A similar approach is
presented in Figure 11 by leveraging these concepts into the IoT architecture as presented
in Table 10.

Figure 11. A multi-tiered Fog/Edge level architecture for the Internet of Things (IoT).

Several fog-based IoT architectures have been proposed to enable device-to-device
(D2D) and machine-to-machine (M2M) communications. The architectures and reference
models mostly include a fog and edge layer on top of the existing IoT network hierarchy.
However, focusing on the challenges that the underlying technologies face from the PHY
to the upper layers reveals a pattern of virtual and flexible network topologies that provide
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over-the-top content and management services. With a multi-tiered deployment, future
IoT networks can benefit from the Fog/Edge haze. However, it is critical to strike a
balance between capabilities and complexities in order to prevent the disadvantages of
these concepts from overshadowing the heterogeneity and complexity of IoT networks.

Table 10. Edge market innovators and leaders.

Platform/Service Edge Solution

FogHorn The power of machine learning and advanced cognitive analytics
on-premise edge

Xnor.ai Scaled machine learning and deep learning models for edge networks

SWIM Consistent advanced real-time device-level analytics throughout
edge and cloud

Pixeom Software-Defined Edge computing platform that extends cloud
functionalities to on-premise

Deeplite Artificial Intelligence (AI) based deep neural network optimizer
from cloud to edge

Hailo Deep learning microchips for IoT edge and Fog devices

Always.ai A platform for developing deep learning-based computer vision
applications for edge solutions

Xi IoT AI-driven processing and real-time analytics at the edge

Zededa Edge virtualization service to provide Industrial IoT analytics

Project EVE An open-source edge virtualization engine allowing cloud-native
application development for Edge and IoT

Vertical markets can grow and scale on the network edges with middleware support
for edge networks, paving the way for next-generation applications and services. However,
in terms of network complexity, data aggregation, service value, and cost, it is arguably
still the most pressing question that businesses must address: how much data must be kept
on premises and on edge nodes? To address privacy and security concerns in the cloud,
applications such as military, health care, and real-time response seeking applications
such as intelligent transportation, ideally always require the data to be kept on-premises.
These concerns can be alleviated by bringing compute, storage, and flexible networking
capabilities to the network edge, but this raises another issue of edge node trustworthiness
as these gateway devices become vulnerable to physical access.

Another factor that can strictly delay the introduction of Fog/Edge nodes is the ad-
ditional hardware, related implementation and maintenance costs, and the complexity
of the network. Table 11 extensively surveys the underlying technologies and research
challenges in this domain. There is a major shift that edge enterprise technology developers
have begun to concentrate on the enterprise framework rather than the infrastructure. If
we allow vertical markets to expand on edge layers in terms of applications and services,
there is a need for data, control, and analytics management on these layers that extends
to the cloud. This can only be achieved together with the support of network operating
systems and middleware to work in conjunction. However, data integrity, privacy, and
trustworthiness remain open challenge in edge computing domains. With limited comput-
ing storage, and network abilities compared to the cloud infrastructure, a single point of
failure, and an increased threat vector surface, the edge-enabled IoT networks appear to be
more vulnerable to cyber-security attacks.
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Table 11. Key research areas and technological advancements in Fog/Edge computing.

Scope Articles Contributions & Impact on Edge Networks

Fog
based

IoT
Architectures

[160] The design approach to tackle resource management for underlying cellular networks

[161] A high-level programming model supporting distributed, large scale fog applications

[162] Trust evaluation using service templates to incorporate cloud-edge computing

[163] Fog presence and its characteristics viability to support IoT services and vertical applications.

[164] M2M communications, challenges and solutions in the air interface

Bandwidth
&

Resource
Management

on
Physical
(PHY)
layer

[165] Disaster recovery management design of reliable virtual infrastructures to support network
nodes during physical outages

[166] Bandwidth management and congestion control strategies for underlying communication links

[167] An Over-The-Top (OTT) virtual access network (VAN) architecture to support application-
specific resource scheduling

[168] A centralized resource management scheme that is queue-aware to support fair scheduling and
load-balancing

[169] Modeling of collective resource provisioning for mobile and cloud networks

Network
selection,

deployment
&

configuration

[170] A congestion avoidance architecture for adaptive applications

[171] Hysteresis based selection and convergence of radio access technologies (RATs)

[172] Network bandwidth allocation based on applications as well as device priorities

[173] User traffic offloading based on cellular budget and future predictive usage.

[174,
175]

Proposed cache-replacement technique while offloading IoT data on to Edge networks for
improved system latency.

[176] A mathematical model with multiple decision-making attributes for network selection

Network
Inference

[177] A network inference vision that employs relevance over the choice approach to utilize cloud
backed machine learning powers

[178] An experimental study to outline and eliminate the human intervention in crowdsourcing
applications improving inference

[179] Improving inferencing and associated network services by pairing network services with appli-
cations

[180] A framework to enable network inferencing from collaborative sensing and classification tech-
niques for large scale mobile phone-based deployment

[181] An architecture to mask context-aware information in order to manage value Versus risk on
sensor data

Content
Management

[182] Provided a framework to extend Telco content delivery network (CDN) with enhanced and
extended control plane for future edge applications

[183] A framework to incorporate Content-Centric Networks (CCN) to empower the Over-The-Top
(OTT) services in future IP networks

[184] Information-Centric Network (ICN) based IoT Middleware Architecture envisioning a unified
IoT platform

[185] A distributed name resolution scheme for future Information-Centric Networks (ICN)

[186] An insight into software-defined network coupled with network functions virtualization for
future Fog based networks

Edge
Analytics

&
Data

Mining

[187] A mobile sensing, efficient task distribution and adaptive platform that can be utilized on Edge
networks

[188] An adaptive cloud-based resource rate selection algorithm to support real-time stream mining
applications on the edge

[189] An improved edge cloud framework model featuring virtualization, edge computing and local
traffic offloading

[190] A comprehensive review of data stream mining challenges and available techniques

[191] A distributed dynamic data-driven mining scheme for adaptive edge vertical applications
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Table 11. Cont.

Scope Articles Contributions and Impact on Edge Networks

Security,
Privacy

&
Trustworth-

iness

[192] An insight into the reliability aspect of the network extending from cloud to edge networks

[193] A model framework based on offensive decoy to mitigate data attacks on the resident data in
the cloud and fog networks

[194] Third-party auditing based public data integrity auditing scheme with no exposure to content in
the clouds

[195] A light-weight privacy preservation data aggregation scheme for hybrid heterogeneous IoT
based networks

[196] A distributed Block-chain based software-defined network architecture to run on Fog nodes

8.2. Security and Orchestration

To address data integrity and trustworthiness, enterprise developers present an orches-
tration layer within their software frameworks to deploy secure applications that can run on
the edge. Unlike public clouds, fog cloudlets or edge level gateways provide public/private
and hybrid cloud functionality by confining the content and data stream locally within a
region that is governed by a specific security policy. The Edge networks, together with the
management and orchestration interface, are required to have a distributive mechanism to
counter security, privacy, and trustworthiness issues in IoT edge networks.

An interesting aspect that aims to resolve certain trust-management problems is the
self-adaptiveness and collaborative computing capability of an edge computing environ-
ment. Networks can be logically partitioned across an edge gateway where the devices
are geographically or spatially connected. In these environments, the communications are
likely to be between object-to-object (O2O) and peer-to-peer (P2P) settings, which require
either on-board or aggregated intelligence at the edge gateway level. Table 12 presents the
current research on the underlying technology in the edge computing domain to address
some of these concerns. Modern cellular and communication networks that support edge
computing can logically partition a network segment intelligently. These processes or
objects can be confined at the edge boundary level using network-function virtualization
(NFV), which isolates the data stream from the rest of the network.

In a typical cloud-based IoT network, the resources, either physical or virtual, scale
from “things” to the cloud. Thus, the scalability and centralized nature of these resources
provide an elastic pool of resources that can be extended to devices. On the one hand, Edge
computing, with its local processes, and object isolation, addresses most of the privacy
and security problems cloud-computing has long endured. Isolating resources in different
local networks, on the other hand, means that these compute and storage resources cannot
communicate and extend to other edge boundaries, limiting their usage despite increased
infrastructure. The spatial coherence, device accessibility, and environmental factors further
reduce the direct access to these resources, which is also true for their up-gradation and
maintenance.

These constraints pose an inherent challenge for technology developers and enter-
prise solutions where resource provisioning becomes the major decisive factor during
deployment stages. Security policies and resource management become a further daunting
challenge for edge network administrators and developers to monitor and utilize idle
resources. Therefore, a unified orchestration mechanism that extends from the edge to the
cloud is needed to manage the services. Cloud-based orchestration mainly emerged from
automation, where a specified pool of resources is orchestrated. It is imperative to consider
that the homogeneity of the resources is maintained in the cloud, which helps to scale and
manage these resources uniformly. The orchestration on the network edge brings other
challenges due to end-device constraints, heterogeneity of the fabric, varying connectivity
technologies and, in most cases, due to device failures. Devices on the edge have different
sensing capabilities, compute power, bandwidth, and deployment scenarios, making it
almost impossible to know their characteristics beforehand. To envision IoT Edge network
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orchestration, all these parameters must be accounted for, which can be investigated during
deployment staging.

Table 12. State-of-the-art research on mitigating security concerns of Edge networks.

Scope Articles Major Contribution

Resource
Management

[197]
Radio and Computational resource management in Mobile Edge Computing.
Summarized MEC Models.
Classification of Resource Management.

[198] Workload allocation estimation between fog and cloud.
Minimum power consumption versus service delays modeling.

[199]
Device-driven and human-driven ML based intelligence schemes.
Cross-layers optimization involving efficient MAC layer scheduling and
fog data offloading.

Access
Networks

[186] System architecture for F-Radio Access Networks (RANs).
Edge caching, software-defined networking and network-function virtualization.

[200] Model design of cache management in enhanced remote radios

Networks:
Management,

Virtualization &
Orchestration

[201]

Compute enabled Fog Nodes.
Process and resources isolation using virtual machine Fog Node architecture.
Inter and Intra Fog Nodes communication, VM migration and traffic
minimization by software-defined core.

[202] Models a Fog orchestration scenario for network functions.

[203] Virtual Fog framework to support Object and Network virtualization.

Security
&

Privacy

[204] The proposed model to revoke security certificates for improved privacy and
security in IoT Networks.

[205] Models a security attack on a Fog device.

[206] Security threats and solutions overview for Fog and IoT applications.

Edge computing in the IoT domain faces many challenges, and the most crucial of all
is the lack of standardization. The European Telecommunications Standards Institute (ETSI)
presented standardization directions for edge network orchestration. ETSI Multi-access
Edge Computing (MEC) standard is already making its way forward with the implementa-
tion of 5G networks by providing an ecosystem that operates at the Radio-Access Network
(RAN) edge to authorize third-parties for edge vertical solutions and applications. ETSI
also proposed an open-source Network Functions Management and Orchestration (MANO)
software stack closely aligned with the Network Functions Virtualization (NFV) frame-
work. MANO, together with edge operators running MEC, can utilize additional service
layer orchestration to realize a unified orchestration that runs from the network edge to
the cloud.

9. Discussion

The IoT domain has seen constant growth in its technology and adoption. The WSNs
provided a fundamental infrastructure for IoT applications that later included AmI through
the integration of pervasive CPS. This trend is expected to experience exponential growth
to achieve a truly ubiquitous computing platform. The rapid development cycle, market
requirements, and overall revenue make IoT domain a trillion dollar industry. This assures
a potential goal of merging diverse IoT ecosystems to create a genuinely smart digital
world. However, IoT innovations are seen as some of the most heterogeneous in existence
due to the lack of standardization. On the one hand, technological advancements in the
electronic industry enabled cost-effective, rapid IoT production. On the other hand, the
IoT market is strongly tied into various vendor-specific ecosystems. This research article
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aimed to closely investigate the IoT technology stack to outline current research challenges,
optimization opportunities, and frameworks to improve vertical market integration.

The first step in understanding IoT environments is to study their architecture closely.
We examined a number of reference architectures that allow effective technology deploy-
ment as well as market integration. IoT systems, at their heart, are supposed to collect
data, which is then analyzed to generate business insights. Therefore, most of the pro-
posed reference architectures involve a business adaptation layer that helps to integrate
the technology with business applications. IoT ecosystems can vary from time-critical
to mission-critical applications, but the fundamental objective is to gather and analyze
information in order to make better decisions. Therefore, the future IoT platform would
provide middleware and market adoption layers for smoother enterprise integration. It is
therefore very important to consider that the reference architecture model must be modular,
scalable, and interoperable.

Next, we examined the fundamental building blocks that operate on these architectural
layers. Billions of IoT devices need a flexible and reliable addressing scheme that can define
not only the device, but also the services at the same time. As these devices perform a
variety of application-specific activities, it is anticipated that a robust addressing scheme is
required. We have also experienced the transition to the IPv6 address scheme for Internet-
connected devices. It is reasonable to expect that future IoT devices will have some kind
of IPv6 implementation with service tag identification. The use of application-specific
SoC platforms, which are power-efficient and cost-effective, is a crucial component of IoT
implementation. Research in this area shows that energy harvesting and low-power sensing
devices will dramatically decrease the total energy footprint of IoT devices. Application-
specific SoC can also incorporate the required computing and communication modules to
further minimize the technical complexity. Similarly, we’ve seen a number of IoT domain
semantics and analytics frameworks that can allow scalable and genuinely ubiquitous
systems. However, it is crucial to understand that technical developments in individual
building blocks cannot be completely incorporated into a single solution, putting a strong
emphasis on standardization of technology. In addition, with application-specific SoC
platforms, businesses can lock end-users into their own ecosystems, which would further
jeopardise growth and interoperability.

The use of middlewares is an essential prerequisite to align the application stack with
vertical market solutions. IoT middleware connects the physical (hardware layer) and
virtual (application layer) worlds of devices and information management systems. It
provides the necessary features to simplify inter-process communication and to provide
an abstraction layer for connecting to business solutions. In other words, it is mediator
interface, a software layer between the “internet” and the “things”. Among the most
critical performance features for middleware platform design are interoperability, platform
independence and portability, scalability, and security. Security, trust and governance are
some of the most important problems that middleware is facing. It is very difficult to find a
balance between use and functionality. Middlewares revolve around processes, their data
and their integration, thus, must have inherent security.

Because middleware serves as an abstraction layer, having an open source framework
for middleware that can scale in both directions is ideal. Future IoT networks require
middle-ware architectures, interoperability with enterprise applications, open data format
support, and multi-service heterogeneous device support are all required to build future IoT
networks. In this article, various middleware characteristics that are based on infrastructure
as well as application requirements are presented. Towards the end, we listed some of
the current and market-leading middleware platforms that either do not completely meet
security needs or are too complicated to be integrated into current solutions. Therefore, the
current middleware goals and security aspirations are characterized for future IoT systems.

In Section 7, the IoT stack optimization opportunities and trends are discussed. It is
essential to consider that significant improvements can be made in the entire IoT stack.
However, the gateway devices and network layer provide a vast playground where many
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improvements are required, either based on the current technologies or by integrating
modern solutions and technologies into the existing infrastructure. It is also essential to
consider that current cloud-based solutions need optimization by incorporating AI-based
ML and DL models that will not only optimize the process and end solutions in the cloud,
but will also help to bring the same intelligence to the gateway devices, thus making the
network and edge layer of the technology stack more powerful.

Section 8 presented a detailed insight into fast-emerging edge computing networks
for IoT that promise to extend cloud resources to the network edge. The section presented
a unique perspective on underlying technologies and research in edge computing and how
to build vertical applications and services on the network edge. Fog/Edge computing
presents a promising future for the IoT domain, with added functionality and infrastructure
to achieve ubiquitous computing power. The idea of segmenting, isolating, scaling, and
extending network resources between different islands bordered by processes, objects, or
security policies is fascinating. However, a clear proof of concept is still missing.

Despite the fact that the Internet of Things has been making waves for over a decade,
we must admit that a typical IoT node is getting old. Future IoT networks will bring
intelligence and computational power from the cloud to the farthest reaches of the Internet,
thanks to the availability of more capable hardware at lower prices. Because all processing
was done in the cloud, traditional IoT networks with limited on-board computational power
experienced network latencies. Data off-loading causes network latency in the typical
integration of IoT devices with edge networks. We can now take real-world actions with
sub-millisecond latencies thanks to modern edge devices with plenty of processing power.
In addition, compared to traditional IoT nodes, we can collect more samples and feature rich
data thanks to the extended edge device capability. In a nutshell, edge computing analyses
some of the data from IoT devices at the edge of the local network rather than sending it to
the cloud, resulting in faster, redundant, and scalable IoT processing. However, replacing
traditional and cost-effective IoT nodes with edge devices is not financially feasible. As a
result, a middle ground must be established to ensure that these heterogeneous networks
operate optimally and provide near-real-time experiences.

Edge computing has many uses in today’s IoT world. Due to latency and connectivity
issues, some IoT use cases are impossible without such a distributed, local computing
framework. This essential technology is the backbone of IoT applications that use classified
data, involve significant or low-latency decision making, and operate in environments
where cloud connectivity is limited or nonexistent. Edge computing is critical in industrial
IoT scenarios, such as on a factory floor, to reduce downtime and data breaches while
improving data management. Furthermore, IoT integration with edge computing networks
ensures increased bandwidth and data integrity, resulting in higher resolution datasets.
Finally, integrating edge computing with IoT networks will improve security and privacy.
Edge computing is unlikely to be more secure than a private cloud, but it is more local.
In-house edge servers ensure that data never leaves the company’s local perimeter and
control all access to the data storage servers. However, edge providers must meet a few IoT-
specific requirements. Some IoT applications that require huge AI or business intelligence
at the edge may require specific hardware, such as GPU-capable servers. Edge gateways
enabling IoT devices will need to support multiple device communication protocols like
ZigBee, Bluetooth, cellular, and Wi-Fi. Operators should also think about IoT ecosystem
they are using and how it reinforces and integrates with their edge network.

The lack of standardization, privacy and trust-management concerns, and the need
for distributive orchestration that extends from edge to cloud are still some of the biggest
challenges in this domain and seriously hamper the growth of enterprise solutions in verti-
cal edge markets. Ubiquitous computing and the future vision of achieving interconnected
IoT systems are promising, yet far from being achieved. We expect device miniaturization
and platform availability for future IoT applications. However, without a standard archi-
tecture, technology blueprint, and integration readiness, the overall IoT heterogeneity will
only increase.
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Future research could look into the open issues in IoT to see if there are any new
approaches that could be used to solve them. A truly innovative middleware research
design may also be proposed, incorporating a fresh outlook for managing smart objects
and applications, as well as a solution for unsolved outstanding issues in a particular area
of expertise, such as security, privacy, and interoperability. In addition, the integration of
traditional IoT networks with edge networks, as well as the use of edge computing devices
for resource enhancement, must be investigated. Future research on next-generation IoT
networks should look into open-source middleware abstraction layers that support the
integration of IoT and edge devices. Aspects of data management, such as data offloading
on edge devices and inherent data security measures, must also be carefully considered.
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52. Krčo, S.; Pokrić, B.; Carrez, F. Designing IoT architecture(s): A European perspective. In Proceedings of the 2014 IEEE World
Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 79–84. https://doi.org/10.1109/WF-IoT.2014.6803124.

53. Khan, R.; Khan, S.U.; Zaheer, R.; Khan, S. Future Internet: The Internet of Things Architecture, Possible Applications and
Key Challenges. In Proceedings of the 2012 10th International Conference on Frontiers of Information Technology, Islamabad,
Pakistan, 17–19 December 2012; pp. 257–260. https://doi.org/10.1109/FIT.2012.53.

54. da Cruz, M.A.A.; Rodrigues, J.J.P.C.; Al-Muhtadi, J.; Korotaev, V.V.; de Albuquerque, V.H.C. A Reference Model for Internet of
Things Middleware. IEEE Internet Things J. 2018, 5, 871–883. https://doi.org/10.1109/jiot.2018.2796561.

55. Spiess, P.; Karnouskos, S.; Guinard, D.; Savio, D.; Baecker, O.; Souza, L.M.S.d.; Trifa, V. SOA-Based Integration of the Internet of
Things in Enterprise Services. In Proceedings of the 2009 IEEE International Conference on Web Services, Los Angeles, CA, USA,
6–10 July 2009; pp. 968–975. https://doi.org/10.1109/ICWS.2009.98.

56. Chaqfeh, M.A.; Mohamed, N. Challenges in middleware solutions for the internet of things. In Proceedings of the 2012
International Conference on Collaboration Technologies and Systems (CTS), Denver, CO, USA, 21–25 May 2012; pp. 21–26.
https://doi.org/10.1109/CTS.2012.6261022.

57. Guinard, D.; Trifa, V.; Karnouskos, S.; Spiess, P.; Savio, D. Interacting with the SOA-Based Internet of Things: Dis-
covery, Query, Selection, and On-Demand Provisioning of Web Services. IEEE Trans. Serv. Comput. 2010, 3, 223–235.
https://doi.org/10.1109/tsc.2010.3.

58. ITU. The BUTLER Project Overview. 2012. Available online: https://www.slideshare.net/legallf/butler-project-overview
(accessed on 3 November 2021)

59. Zhihong, Y.; Yingzhao, Y.; Yu, Y.; Yufeng, P.; Xiaobo, W.; Wenji, L. Study and application on the architecture and key technologies
for IOT. In Proceedings of the 2011 International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011;
pp. 747–751. https://doi.org/10.1109/ICMT.2011.6002149.

60. Patel, Z.D. A Review on Service Oriented Architectures for Internet of Things (IoT). In Proceedings of the 2018 2nd In-
ternational Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 11–12 May 2018; pp. 466–470.
https://doi.org/10.1109/ICOEI.2018.8553767.

61. IETF. 2007. Available online: IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN). https://tools.ietf.org/pdf/
rfc4919.pdf (accessed on 3 November 2021).

62. Korte, K.D.; Tumar, I.; Schönwälder, J. Evaluation of IPv6 over low-power wireless personal area networks implementations.
In Proceedings of the 2009 IEEE 34th Conference on Local Computer Networks, Zurich, Switzerland, 20–23 October 2009;
pp. 881–888. https://doi.org/10.1109/LCN.2009.5355015.

63. Aftab, H.; Gilani, K.; Lee, J.; Nkenyereye, L.; Jeong, S.; Song, J. Analysis of identifiers in IoT platforms. Digit. Commun. Netw.
2020, 6, 333–340. https://doi.org/10.1016/j.dcan.2019.05.003.

http://iot-analytics.com/wp/wp-content/uploads/2015/03/2015-March-Whitepaper-IoT-Market-analysis-Sizing-the-opportunity.pdf
http://iot-analytics.com/wp/wp-content/uploads/2015/03/2015-March-Whitepaper-IoT-Market-analysis-Sizing-the-opportunity.pdf
https://www.frontier-economics.com/media/1167/201803_the-economic-impact-of-iot_frontier.pdf
https://www.frontier-economics.com/media/1167/201803_the-economic-impact-of-iot_frontier.pdf
https://www.capgemini.com/wp-content/uploads/2018/03/dti-research_iot_web.pdf
https://www.capgemini.com/wp-content/uploads/2018/03/dti-research_iot_web.pdf
https://www.accenture.com/t20160909T042713Z__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_11/Accenture-Industrial-Internet-of-Things-Positioning-Paper-Report-2015.pdfla=en
https://www.accenture.com/t20160909T042713Z__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_11/Accenture-Industrial-Internet-of-Things-Positioning-Paper-Report-2015.pdfla=en
https://www.accenture.com/t20160909T042713Z__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_11/Accenture-Industrial-Internet-of-Things-Positioning-Paper-Report-2015.pdfla=en
https://doi.org/10.1109/SMC.2015.231
https://www.consumersinternational.org/media/154746/iot2017review-2nded.pdf
https://www.consumersinternational.org/media/154746/iot2017review-2nded.pdf
https://doi.org/10.1109/WF-IoT.2015.7389074
https://doi.org/10.1109/WF-IoT.2015.7389074
https://doi.org/10.1109/comst.2015.2444095
https://doi.org/10.1007/978-3-319-00491-4
https://doi.org/10.1109/access.2014.2347992
https://doi.org/doi:10.1002/9781119456735.ch3
https://doi.org/10.1109/WF-IoT.2014.6803124
https://doi.org/10.1109/FIT.2012.53
https://doi.org/10.1109/jiot.2018.2796561
https://doi.org/10.1109/ICWS.2009.98
https://doi.org/10.1109/CTS.2012.6261022
https://doi.org/10.1109/tsc.2010.3
https://www.slideshare.net/legallf/butler-project-overview
https://doi.org/10.1109/ICMT.2011.6002149
https://doi.org/10.1109/ICOEI.2018.8553767
https://tools.ietf.org/pdf/rfc4919.pdf
https://tools.ietf.org/pdf/rfc4919.pdf
https://doi.org/10.1109/LCN.2009.5355015
https://doi.org/https://doi.org/10.1016/j.dcan.2019.05.003


Sensors 2022, 22, 995 39 of 44

64. Kamina, T.; Aoki, T.; Eto, Y.; Koshizuka, N.; Yamada, J.; Sakamura, K. Verifying Identifier-Authenticity in Ubiquitous
Computing Environment. In Proceedings of the 21st International Conference on Advanced Information Network-
ing and Applications Workshops (AINAW’07), Niagara Falls, ON, Canada , 21–23 May 2007; Volume 2, pp. 403–408.
https://doi.org/10.1109/AINAW.2007.368.

65. Koshizuka, N.; Sakamura, K. Ubiquitous ID: Standards for Ubiquitous Computing and the Internet of Things. IEEE Pervasive
Comput. 2010, 9, 98–101. https://doi.org/10.1109/mprv.2010.87.

66. Seike, H.; Hamada, T.; Sumitomo, T.; Koshizuka, N. Blockchain-Based Ubiquitous Code Ownership Management System
without Hierarchical Structure. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced
& Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart
City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 271–276.
https://doi.org/10.1109/SmartWorld.2018.00081.

67. Bryzek, D.J. Roadmap for the Trillion Sensor Universe. 2013.Available online: https://www-bsac.eecs.berkeley.edu/scripts/
show_pdf_publication.php?pdfID=1365520205 (accessed on 26 November 2021).

68. PostScape. What Exactly Is The Internet of Things. 2015. Available online: https://www.postscapes.com/what-exactly-is-the-
internet-of-things-infographic/ (accessed on 26 November 2021).

69. Wai, L.; Sharma, A. Smart sensing for IoT applications. In Proceedings of the 2016 13th IEEE International Confer-
ence on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, China, 25–28 October 2016; pp. 362–364.
https://doi.org/10.1109/ICSICT.2016.7998921.

70. Martinez, B.; Monton, M.; Vilajosana, I.; Prades, J.D. The Power of Models: Modeling Power Consumption for IoT Devices. IEEE
Sens.J. 2015, 15, 5777–5789. https://doi.org/10.1109/jsen.2015.2445094.

71. Kansal, A.; Hsu, J.; Zahedi, S.; Srivastava, M.B. Power management in energy harvesting sensor networks. ACM Trans. Embed.
Comput. Syst 2007, 6, 32. https://doi.org/10.1145/1274858.1274870.

72. Belleville, M.; Fanet, H.; Fiorini, P.; Nicole, P.; Pelgrom, M.J.M.; Piguet, C.; Hahn, R.; Van Hoof, C.; Vullers, R.; Tartagni, M.; et al.
Energy autonomous sensor systems: Towards a ubiquitous sensor technology. Microelectron. J. 2010, 41, 740–745.
https://doi.org/10.1016/j.mejo.2010.01.009.

73. Amarlingam, M.; Mishra, P.K.; Prasad, K.V.V.D.; Rajalakshmi, P. Compressed sensing for different sensors: A real scenario
for WSN and IoT. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14
December 2016; pp. 289–294. https://doi.org/10.1109/WF-IoT.2016.7845487.

74. Ali, O.; Ishak, M.K.; Bhatti, M.K.L. Adaptive clear channel assessment (A-CCA): Energy efficient method to improve wireless sen-
sor networks (WSNs) operations. AEU—Int. J. Electron. Commun. 2021, 131, 153603. https://doi.org/10.1016/j.aeue.2020.153603.

75. Al-Sarawi, S.; Anbar, M.; Alieyan, K.; Alzubaidi, M. Internet of Things (IoT) communication protocols: Review. In Proceedings
of the 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, 17–18 May 2017; pp. 685–690.
https://doi.org/10.1109/ICITECH.2017.8079928.

76. Ray, P. A survey on Internet of Things architectures. J. King Saud Univ.—Comput. Inf. Sci. 2018, 30, 291–319.
https://doi.org/10.1016/j.jksuci.2016.10.003.

77. Want, R. An introduction to RFID technology. IEEE Pervasive Comput. 2006, 5, 25–33. https://doi.org/10.1109/MPRV.2006.2.
78. Lian, X.; Zhang, X.; Weng, Y.; Duan, Z. Warehouse Logistics Control and Management System Based on RFID. In Proceedings

of the 2007 IEEE International Conference on Automation and Logistics, Jinan, China, 18–21 August 2007; pp. 2907–2912.
https://doi.org/10.1109/ICAL.2007.4339078.

79. Welbourne, E.; Battle, L.; Cole, G.; Gould, K.; Rector, K.; Raymer, S.; Balazinska, M.; Borriello, G. Building the Internet of Things
Using RFID: The RFID Ecosystem Experience. IEEE Internet Comput. 2009, 13, 48–55. https://doi.org/10.1109/MIC.2009.52.

80. Aghdam, Z.N.; Rahmani, A.M.; Hosseinzadeh, M. The Role of the Internet of Things in Healthcare: Future Trends and Challenges.
Comput. Methods Programs Biomed. 2021, 199, 105903. https://doi.org/10.1016/j.cmpb.2020.105903.

81. Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K. The Internet of Things for Health Care: A Comprehensive Survey.
IEEE Access 2015, 3, 678–708. https://doi.org/10.1109/ACCESS.2015.2437951.

82. Amendola, S.; Lodato, R.; Manzari, S.; Occhiuzzi, C.; Marrocco, G. RFID Technology for IoT-Based Personal Healthcare in Smart
Spaces. IEEE Internet Things J. 2014, 1, 144–152. https://doi.org/10.1109/jiot.2014.2313981.

83. Wu, F.; Rüdiger, C.; Redouté, J.; Yuce, M.R. WE-Safe: A wearable IoT sensor node for safety applications via LoRa. In
Proceedings of the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 5–8 February 2018; pp. 144–148.
https://doi.org/10.1109/WF-IoT.2018.8355234.

84. Lee, H.C.; Ke, K.H. Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation.
IEEE Trans. Instrum. Meas. 2018, 67, 2177–2187. https://doi.org/10.1109/tim.2018.2814082.

85. Alsulami, M.M.; Akkari, N. The role of 5G wireless networks in the internet-of- things (IoT). In Proceedings of the 2018 1st
International Conference on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 4–6 April 2018;
pp. 1–8. https://doi.org/10.1109/CAIS.2018.8471687.

86. Ijaz, A.; Zhang, L.; Grau, M.; Mohamed, A.; Vural, S.; Quddus, A.U.; Imran, M.A.; Foh, C.H.; Tafazolli, R. Enabling
Massive IoT in 5G and Beyond Systems: PHY Radio Frame Design Considerations. IEEE Access 2016, 4, 3322–3339.
https://doi.org/10.1109/access.2016.2584178.

https://doi.org/10.1109/AINAW.2007.368
https://doi.org/10.1109/mprv.2010.87
https://doi.org/10.1109/SmartWorld.2018.00081
https://www-bsac.eecs.berkeley.edu/scripts/show_pdf_publication.php?pdfID=1365520205
https://www-bsac.eecs.berkeley.edu/scripts/show_pdf_publication.php?pdfID=1365520205
https://www.postscapes.com/what-exactly-is-the-internet-of-things-infographic/
https://www.postscapes.com/what-exactly-is-the-internet-of-things-infographic/
https://doi.org/10.1109/ICSICT.2016.7998921
https://doi.org/10.1109/jsen.2015.2445094
https://doi.org/10.1145/1274858.1274870
https://doi.org/https://doi.org/10.1016/j.mejo.2010.01.009
https://doi.org/10.1109/WF-IoT.2016.7845487
https://doi.org/https://doi.org/10.1016/j.aeue.2020.153603
https://doi.org/10.1109/ICITECH.2017.8079928
https://doi.org/https://doi.org/10.1016/j.jksuci.2016.10.003
https://doi.org/10.1109/MPRV.2006.2
https://doi.org/10.1109/ICAL.2007.4339078
https://doi.org/10.1109/MIC.2009.52
https://doi.org/https://doi.org/10.1016/j.cmpb.2020.105903
https://doi.org/10.1109/ACCESS.2015.2437951
https://doi.org/10.1109/jiot.2014.2313981
https://doi.org/10.1109/WF-IoT.2018.8355234
https://doi.org/10.1109/tim.2018.2814082
https://doi.org/10.1109/CAIS.2018.8471687
https://doi.org/10.1109/access.2016.2584178


Sensors 2022, 22, 995 40 of 44

87. Angelo, G.D.; Ferretti, S.; Ghini, V. Simulation of the Internet of Things. In Proceedings of the 2016 International
Conference on High Performance Computing & Simulation (HPCS), Innsbruck, Austria, 18–22 July 2016; pp. 1–8.
https://doi.org/10.1109/HPCSim.2016.7568309.

88. McKee, D.W.; Clement, S.J.; Ouyang, X.; Xu, J.; Romanoy, R.; Davies, J. The Internet of Simulation, a Specialisation of the Internet
of Things with Simulation and Workflow as a Service (SIM/WFaaS). In Proceedings of the 2017 IEEE Symposium on Service-
Oriented System Engineering (SOSE), Francisco, CA, USA, 6–9 April 2017; pp. 47–56. https://doi.org/10.1109/SOSE.2017.12.

89. Dandala, T.T.; Krishnamurthy, V.; Alwan, R. Internet of Vehicles (IoV) for traffic management. In Proceedings of the 2017
International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 10–11 January 2017;
pp. 1–4. https://doi.org/10.1109/ICCCSP.2017.7944096.

90. Srivastava, J.R.; Sudarshan, T.S.B. Intelligent traffic management with wireless sensor networks. In Proceedings of the 2013
ACS International Conference on Computer Systems and Applications (AICCSA), Ifrane, Morocco, 27–30 May 2013; pp. 1–4.
https://doi.org/10.1109/AICCSA.2013.6616429.

91. Yang, F.; Wang, S.; Li, J.; Liu, Z.; Sun, Q. An overview of Internet of Vehicles. China Commun. 2014, 11, 1–15.
https://doi.org/10.1109/cc.2014.6969789.

92. Xu, X.J. Technology Is Changing What a Premium Automotive Brand Looks Like. 2018. Available online: https://hbr.org/2018
/05/technology-is-changing-what-a-premium-automotive-brand-looks-like (accessed on 27 November 2021).

93. Riedel, T.; Fantana, N.; Genaid, A.; Yordanov, D.; Schmidtke, H.R.; Beigl, M. Using web service gateways and code generation
for sustainable IoT system development. In Proceedings of the 2010 Internet of Things (IOT), Tokyo, Japan, 29 November–1
December 2010; pp. 1–8. https://doi.org/10.1109/IOT.2010.5678449.

94. Dohndorf, O.; Krüger, J.; Krumm, H.; Fiehe, C.; Litvina, A.; Lück, I.; Stewing, F. Towards the Web of Things: Using DPWS
to bridge isolated OSGi platforms. In Proceedings of the 2010 8th IEEE International Conference on Pervasive Comput-
ing and Communications Workshops (PERCOM Workshops), Mannheim, Germany, 29 March–2 April 2010; pp. 720–725.
https://doi.org/10.1109/PERCOMW.2010.5470527.

95. Gigli, M.; Koo, S. Internet of Things: Services and Applications Categorization. Adv. Internet Things 2011, 01, 27–31.
https://doi.org/10.4236/ait.2011.12004.

96. Yongfu, L.; Dihua, S.; Weining, L.; Xuebo, Z. A service-oriented architecture for the transportation Cyber-Physical Systems. In
Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 7674–7678.

97. Leng, Y.; Zhao, L. Novel design of intelligent internet-of-vehicles management system based on cloud-computing and Internet-of-
Things. In Proceedings of the 2011 International Conference on Electronic & Mechanical Engineering and Information Technology,
Harbin, China, 12–14 August 2011; Volume 6, pp. 3190–3193. https://doi.org/10.1109/EMEIT.2011.6023763.

98. Di, H. Logistics management inventory model based on 5G Network and Internet of Things system. Microprocess. Microsys. 2020,
103429. https://doi.org/10.1016/j.micpro.2020.103429.

99. Erika Maguire, Kasia Wandycz Moreno, H.S.M.; Gagnon, R. IoT Marches into the Enterprise, Transformation Follows Quickly.
2018. Available online: https://www.iotjournaal.nl/wp-content/uploads/2018/12/1-REPORT-FINAL-WEB.pdf (accessed on 27
November 2021).

100. Hullum, C. How Rogue Ales Makes a Great Beer from Wet Hops, Clean Water and Innovation. 2018. Available online:
https://blogs.intel.com/iot/2018/02/06/how-rogue-ales-makes-a-great-beer-from-wet-hops-clean-water-and-innovation/
#gs.hpkby6 (accessed on 27 November 2021).

101. Yang, G.; Xie, L.; Mantysalo, M.; Zhou, X.; Pang, Z.; Xu, L.D.; Kao-Walter, S.; Chen, Q.; Zheng, L.R. A Health-IoT Platform Based
on the Integration of Intelligent Packaging, Unobtrusive Bio-Sensor, and Intelligent Medicine Box. IEEE Trans. Ind. Inform. 2014,
10, 2180–2191. https://doi.org/10.1109/tii.2014.2307795.

102. Jara, A.J.; Alcolea, A.F.; Zamora, M.A.; Skarmeta, A.F.G.; Alsaedy, M. Drugs interaction checker based on IoT. In Proceedings of the
2010 Internet of Things (IOT), Tokyo, Japan, 29 November–1 December 2010; pp. 1–8. https://doi.org/10.1109/IOT.2010.5678458.

103. Gerla, M.; Lee, E.; Pau, G.; Lee, U. Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds.
In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 241–246.
https://doi.org/10.1109/WF-IoT.2014.6803166.

104. Stewart, J. Google Is To start Building Its Own Self-Driving Cars. 2014. Available online: https://www.bbc.com/news/
technology-27587558 (accessed on 27 November 2021).

105. Lumb, D. Waymo’s Autonomous Cars Have Driven 4 Million Miles. 2017. Available online: https://www.engadget.com/2017/1
1/27/waymo-autonomous-cars-drove-4-million-miles/ (accessed on 27 November 2021).

106. Uzcategui, R.A.; Sucre, A.J.D.; Acosta-Marum, G. Wave: A tutorial. IEEE Commun. Mag. 2009, 47, 126–133. https://doi.org/10.110
9/MCOM.2009.4939288.

107. U.S. Department of Transportation. Factsheet: Improving Safety and Mobility through Vehicle-to-Vehicle Communication
Technology, 2014. https://www.its.dot.gov/factsheets/pdf/safetypilot_nhtsa_factsheet.pdf(accessed on 01 November 2021).

108. Zhang, H.; Lu, X. Vehicle communication network in intelligent transportation system based on Internet of Things. Comput.
Commun. 2020, 160, 799 – 806. https://doi.org/10.1016/j.comcom.2020.03.041.

109. Transportation. Vehicle-to-vehicle Communications: Readniess of V2V Technology for Applications. 2014. Available online:
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/readiness-of-v2v-technology-for-application-812014.pdf (accessed on 27
November 2021).

https://doi.org/10.1109/HPCSim.2016.7568309
https://doi.org/10.1109/SOSE.2017.12
https://doi.org/10.1109/ICCCSP.2017.7944096
https://doi.org/10.1109/AICCSA.2013.6616429
https://doi.org/10.1109/cc.2014.6969789
https://hbr.org/2018/05/technology-is-changing-what-a-premium-automotive-brand-looks-like
https://hbr.org/2018/05/technology-is-changing-what-a-premium-automotive-brand-looks-like
https://doi.org/10.1109/IOT.2010.5678449
https://doi.org/10.1109/PERCOMW.2010.5470527
https://doi.org/10.4236/ait.2011.12004
https://doi.org/10.1109/EMEIT.2011.6023763
https://doi.org/https://doi.org/10.1016/j.micpro.2020.103429
https://www.iotjournaal.nl/wp-content/uploads/2018/12/1-REPORT-FINAL-WEB.pdf
https://blogs.intel.com/iot/2018/02/06/how-rogue-ales-makes-a-great-beer-from-wet-hops-clean-water-and-innovation/#gs.hpkby6
https://blogs.intel.com/iot/2018/02/06/how-rogue-ales-makes-a-great-beer-from-wet-hops-clean-water-and-innovation/#gs.hpkby6
https://doi.org/10.1109/tii.2014.2307795
https://doi.org/10.1109/IOT.2010.5678458
https://doi.org/10.1109/WF-IoT.2014.6803166
https://www.bbc.com/news/technology-27587558
https://www.bbc.com/news/technology-27587558
https://www.engadget.com/2017/11/27/waymo-autonomous-cars-drove-4-million-miles/
https://www.engadget.com/2017/11/27/waymo-autonomous-cars-drove-4-million-miles/
https://www.its.dot.gov/factsheets/pdf/safetypilot_nhtsa_factsheet.pdf
https://doi.org/https://doi.org/10.1016/j.comcom.2020.03.041
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/readiness-of-v2v-technology-for-application-812014.pdf


Sensors 2022, 22, 995 41 of 44

110. Xu, X.; Han, M.; Nagarajan, S.M.; Anandhan, P. Industrial Internet of Things for smart manufacturing applications using
hierarchical trustful resource assignment. Comput. Commun. 2020, 160, 423–430. https://doi.org/10.1016/j.comcom.2020.06.004.

111. Kumar, A.; Saha, R.; Alazab, M.; Kumar, G. A Lightweight Signcryption Method for Perception Layer in Internet-of-Things. J. Inf.
Secur. Appl. 2020, 55, 102662. https://doi.org/10.1016/j.jisa.2020.102662.

112. Kushner, D. The Real Story of Stuxnet. 2013. Available online: https://spectrum.ieee.org/telecom/security/the-real-story-of-
stuxnet (accessed on 27 November 2021).

113. Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A Survey on IoT Security: Application Areas, Security Threats,
and Solution Architectures. IEEE Access 2019, 7, 82721–82743. https://doi.org/10.1109/ACCESS.2019.2924045.

114. Khattak, H.A.; Shah, M.A.; Khan, S.; Ali, I.; Imran, M. Perception layer security in Internet of Things. Future Gener. Comput. Syst.
2019, 100, 144–164. https://doi.org/10.1016/j.future.2019.04.038.

115. Tung, T.; Malek Ben Salem, A.H. Security for the Industrial Internet of Things. 2016. Available online: https://www.
accenture.com/t20160823T035009Z__w__/ph-en/_acnmedia/PDF-28/Accenture-Security-Industrial-IoT-v3.pdf (accessed on 27
November 2021).

116. Chen, T.M.; Abu-Nimeh, S. Lessons from Stuxnet. Computer 2011, 44, 91–93. https://doi.org/10.1109/mc.2011.115.
117. MindSphere, S. MindSphere: Enabling the World’s Industries to Drive Their Digital Transformations. 2017. Available online: https:

//www.plm.automation.siemens.com/media/global/en/Siemens-MindSphere-Whitepaper-69993_tcm27-29087.pdf (accessed
on 27 November 2021).

118. Gea, T.; Paradells, J.; Lamarca, M.; Roldán, D. Smart Cities as an Application of Internet of Things: Experiences and Lessons
Learnt in Barcelona. In Proceedings of the 2013 Seventh International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing, Taichung, Taiwan , 3–5 July 2013; pp. 552–557. https://doi.org/10.1109/IMIS.2013.158.

119. Jin, J.; Gubbi, J.; Marusic, S.; Palaniswami, M. An Information Framework for Creating a Smart City Through Internet of Things.
IEEE Internet Things J. 2014, 1, 112–121. https://doi.org/10.1109/jiot.2013.2296516.

120. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014,
1, 22–32. https://doi.org/10.1109/jiot.2014.2306328.

121. Pan, J.; Jain, R.; Paul, S.; Vu, T.; Saifullah, A.; Sha, M. An Internet of Things Framework for Smart Energy in Buildings: Designs,
Prototype, and Experiments. IEEE Internet Things J. 2015, 2, 527–537. https://doi.org/10.1109/JIOT.2015.2413397.

122. Mohanty, S.P.; Choppali, U.; Kougianos, E. Everything you wanted to know about smart cities: The Internet of things is the
backbone. IEEE Consum. Electron. Mag. 2016, 5, 60–70. https://doi.org/10.1109/mce.2016.2556879.

123. Acampora, G.; Cook, D.J.; Rashidi, P.; Vasilakos, A.V. A Survey on Ambient Intelligence in Health Care. Proc. IEEE Inst. Electr.
Electron. Eng. 2013, 101, 2470–2494. https://doi.org/10.1109/JPROC.2013.2262913.

124. Wu, J.; Chou, D.; Jiang, J. The Virtual Environment of Things (VEoT): A Framework for Integrating Smart Things into Networked
Virtual Environments. In Proceedings of the 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), Taipei, Taiwan, 1–3
September 2014; pp. 456–459. https://doi.org/10.1109/iThings.2014.81.

125. Hall, M.W.; Gil, Y.; Lucas, R.F. Self-Configuring Applications for Heterogeneous Systems: Program Composition and Optimization
Using Cognitive Techniques. Proc. IEEE 2008, 96, 849–862. https://doi.org/10.1109/jproc.2008.917733.

126. Matsuda, M.; Hase, T. Self-configuring and auto-executing audio-visual system for consumer use. IEEE Trans. Consum. Electron.
2003, 49, 642–646. https://doi.org/10.1109/TCE.2003.1233791.

127. Sheth, A. Internet of Things to Smart IoT Through Semantic, Cognitive, and Perceptual Computing. IEEE Intell. Syst. 2016,
31, 108–112. https://doi.org/10.1109/mis.2016.34.

128. Datta, S.K.; Bonnet, C. Describing things in the Internet of Things: From CoRE link format to semantic based descriptions. In
Proceedings of the 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Nantou, Taiwan, 27–29 May
2016; pp. 1–2. https://doi.org/10.1109/ICCE-TW.2016.7520965.

129. Yu, J.; Kwon, S.; Kang, H.; Kim, S.; Bae, J.; Pyo, C. A Framework on Semantic Thing Retrieval Method in IoT and IoE Environment.
In Proceedings of the 2018 International Conference on Platform Technology and Service (PlatCon), Jeju, Korea, 29–31 January
2018; pp. 1–6. https://doi.org/10.1109/PlatCon.2018.8472745.

130. Barnaghi, P.; Wang, W.; Henson, C.; Taylor, K. Semantics for the Internet of Things. Int. J. Semant. Web Inf. Syst. 2012, 8, 1–21.
https://doi.org/10.4018/jswis.2012010101.

131. Compton, M.; Barnaghi, P.; Bermudez, L.; García-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C.;
Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 2012, 17, 25–32.
https://doi.org/10.1016/j.websem.2012.05.003.

132. Consortium, W.W.W. Efficient XML Interchange (EXI) Format 1.0 (Second Edition). 2014. Available online: https://www.w3.org/
TR/exi/ (accessed on 27 November 2021).

133. Rahman, H.; Hussain, M.I. A light-weight dynamic ontology for Internet of Things using machine learning technique. ICT
Express 2020. https://doi.org/10.1016/j.icte.2020.12.002.

134. Padiya, T.; Bhise, M.; Rajkotiya, P. Data Management for Internet of Things. In Proceedings of the 2015 IEEE Region 10
Symposium, Macao, China, 1–4 November 2015; pp. 62–65. https://doi.org/10.1109/TENSYMP.2015.26.

135. Hasemann, H.; Kröller, A.; Pagel, M. RDF provisioning for the Internet of Things. In Proceedings of the 2012 3rd IEEE International
Conference on the Internet of Things, Wuxi, China, 24–26 October 2012; pp. 143–150. https://doi.org/10.1109/IOT.2012.6402316.

https://doi.org/https://doi.org/10.1016/j.comcom.2020.06.004
https://doi.org/https://doi.org/10.1016/j.jisa.2020.102662
https://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
https://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/https://doi.org/10.1016/j.future.2019.04.038
https://www.accenture.com/t20160823T035009Z__w__/ph-en/_acnmedia/PDF-28/Accenture-Security-Industrial-IoT-v3.pdf
https://www.accenture.com/t20160823T035009Z__w__/ph-en/_acnmedia/PDF-28/Accenture-Security-Industrial-IoT-v3.pdf
https://doi.org/10.1109/mc.2011.115
https://www.plm.automation.siemens.com/media/global/en/Siemens-MindSphere-Whitepaper-69993_tcm27-29087.pdf
https://www.plm.automation.siemens.com/media/global/en/Siemens-MindSphere-Whitepaper-69993_tcm27-29087.pdf
https://doi.org/10.1109/IMIS.2013.158
https://doi.org/10.1109/jiot.2013.2296516
https://doi.org/10.1109/jiot.2014.2306328
https://doi.org/10.1109/JIOT.2015.2413397
https://doi.org/10.1109/mce.2016.2556879
https://doi.org/10.1109/JPROC.2013.2262913
https://doi.org/10.1109/iThings.2014.81
https://doi.org/10.1109/jproc.2008.917733
https://doi.org/10.1109/TCE.2003.1233791
https://doi.org/10.1109/mis.2016.34
https://doi.org/10.1109/ICCE-TW.2016.7520965
https://doi.org/10.1109/PlatCon.2018.8472745
https://doi.org/10.4018/jswis.2012010101
https://doi.org/10.1016/j.websem.2012.05.003
https://www.w3.org/TR/exi/
https://www.w3.org/TR/exi/
https://doi.org/https://doi.org/10.1016/j.icte.2020.12.002
https://doi.org/10.1109/TENSYMP.2015.26
https://doi.org/10.1109/IOT.2012.6402316


Sensors 2022, 22, 995 42 of 44

136. Maarala, A.I.; Su, X.; Riekki, J. Semantic Reasoning for Context-Aware Internet of Things Applications. IEEE Internet Things J.
2017, 4, 461–473. https://doi.org/10.1109/jiot.2016.2587060.

137. Xu, C.; Wang, X. Transient content caching and updating with modified harmony search for Internet of Things. Digit. Commun.
Netw. 2019, 5, 24–33. https://doi.org/10.1016/j.dcan.2018.10.002.

138. Razzaque, M.A.; Milojevic-Jevric, M.; Palade, A.; Clarke, S. Middleware for Internet of Things: A Survey. IEEE Internet Things J.
2016, 3, 70–95. https://doi.org/10.1109/jiot.2015.2498900.

139. Farahzadi, A.; Shams, P.; Rezazadeh, J.; Farahbakhsh, R. Middleware technologies for cloud of things: A survey. Digit. Commun.
Netw. 2018, 4, 176–188. https://doi.org/10.1016/j.dcan.2017.04.005.

140. Ali, O.; Ishak, M.K.; Bhatti, M.K.L. Internet of Things Security: Modelling Smart Industrial Thermostat for Threat Vectors and
Common Vulnerabilities. In Intelligent Manufacturing and Mechatronics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 175–186.

141. Yao, X.; Farha, F.; Li, R.; Psychoula, I.; Chen, L.; Ning, H. Security and privacy issues of physical objects in the IoT: Challenges
and opportunities. Digit. Commun. Netw. 2020. https://doi.org/10.1016/j.dcan.2020.09.001.

142. Ngu, A.H.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, M.Z. IoT Middleware: A Survey on Issues and Enabling technologies.
IEEE Internet Things J. 2016, 4, 1. https://doi.org/10.1109/jiot.2016.2615180.

143. Fortino, G.; Guerrieri, A.; Russo, W.; Savaglio, C. Integration of agent-based and Cloud Computing for the smart objects-oriented
IoT. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design
(CSCWD), Hsinchu, Taiwan, 21–23 May 2014; pp. 493–498. https://doi.org/10.1109/CSCWD.2014.6846894.

144. Perera, C.; Zaslavsky, A.; Compton, M.; Christen, P.; Georgakopoulos, D. Semantic-Driven Configuration of Internet of Things
Middleware. In Proceedings of the 2013 Ninth International Conference on Semantics, Knowledge and Grids, Beijing, China, 3–4
October 2013; pp. 66–73. https://doi.org/10.1109/SKG.2013.9.

145. Conzon, D.; Bolognesi, T.; Brizzi, P.; Lotito, A.; Tomasi, R.; Spirito, M.A. The VIRTUS Middleware: An XMPP Based Architecture
for Secure IoT Communications. In Proceedings of the 2012 21st International Conference on Computer Communications and
Networks (ICCCN), Munich, Germany, 30 July–2 August 2012; pp. 1–6. https://doi.org/10.1109/ICCCN.2012.6289309.

146. Palade, A.; Cabrera, C.; White, G.; Razzaque, M.A.; Clarke, S. Middleware for Internet of Things: A quantitative evaluation in
small scale. In Proceedings of the 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia
Networks (WoWMoM), Macau, China, 12–15 June 2017; pp. 1–6. https://doi.org/10.1109/WoWMoM.2017.7974340.

147. Autili, M.; Inverardi, P.; Tivoli, M. CHOREOS: Large scale choreographies for the future internet. In Proceedings of the 2014
Software Evolution Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
Antwerp, Belgium, 3–6 February 2014; pp. 391–394. https://doi.org/10.1109/CSMR-WCRE.2014.6747202.

148. Rajesh Rajagopalan, Vishal Kelkar, D.M. Optimizing the Internet of Things: Key Strategies for Commercial Insurers. 2017.
Available online: https://www.cognizant.com/whitepapers/optimizing-the-internet-of-things-key-strategies-for-commercial-
insurers-codex2295.pdf (accessed on 27 November 2021).

149. Ciccia, S.; Giordanengo, G.; Vecchi, G. Energy Efficiency in IoT Networks: Integration of Reconfigurable Antennas in Ultra Low-
Power Radio Platforms Based on System-on-Chip. IEEE Internet Things J. 2019, 6, 6800–6810. https://doi.org/10.1109/JIOT.2019.
2911557.

150. Adegbija, T.; Rogacs, A.; Patel, C.; Gordon-Ross, A. Microprocessor Optimizations for the Internet of Things: A Survey. IEEE
Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 7–20. https://doi.org/10.1109/TCAD.2017.2717782.

151. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies,
Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. https://doi.org/10.1109/jiot.2017.2683200.

152. Premsankar, G.; Francesco, M.D.; Taleb, T. Edge Computing for the Internet of Things: A Case Study. IEEE Internet Things J. 2018,
5, 1275–1284. https://doi.org/10.1109/JIOT.2018.2805263.

153. Chen, X.; Li, Z.; Chen, Y.; Wang, X. Performance Analysis and Uplink Scheduling for QoS-Aware NB-IoT Networks in Mobile
Computing. IEEE Access 2019, 7, 44404–44415. https://doi.org/10.1109/ACCESS.2019.2908985.

154. Morabito, R. Virtualization on Internet of Things Edge Devices With Container Technologies: A Performance Evaluation. IEEE
Access 2017, 5, 8835–8850. https://doi.org/10.1109/ACCESS.2017.2704444.

155. Jong, G.; Wang, Z.; Hendrick.; Hsieh, K.; Horng, G. A Novel Adaptive Optimization of Intragrated Network Topology and
Transmission Path for IoT System. IEEE Sens. J. 2019, 19, 6452–6459. https://doi.org/10.1109/JSEN.2019.2908702.

156. Lundqvist, C.; Keränen, A.; Smeets, B.; Fornehed, J.; Azevedo, C.R.B.; von Wrycza, P. Massive IoT Devices: Key Technology
Choices. 2019. Available online: https://www.ericsson.com/48f890/assets/local/publications/ericsson-technology-review/
docs/2019/key-technology-choices-for-optimal-massive-iot-devices.pdf (accessed on 27 November 2021).

157. Barcelo, M.; Correa, A.; Llorca, J.; Tulino, A.M.; Vicario, J.L.; Morell, A. IoT-Cloud Service Optimization in Next Generation Smart
Environments. IEEE J. Sel. Areas Commun. 2016, 34, 4077–4090. https://doi.org/10.1109/JSAC.2016.2621398.

158. Ning, H.; Li, Y.; Shi, F.; Yang, L.T. Heterogeneous edge computing open platforms and tools for internet of things. Future Gener.
Comput. Syst. 2020, 106, 67–76. https://doi.org/10.1016/j.future.2019.12.036.

159. IIConsortium. OpenFog: Reference Architecture for Fog Computing. 2017. Available online: https://www.iiconsortium.org/
pdf/OpenFog_Reference_Architecture_2_09_17.pdf (accessed on 27 November 2021). https://doi.org/OPFRA001.020817.

160. Fodor, G.; Dahlman, E.; Mildh, G.; Parkvall, S.; Reider, N.; Miklós, G.; Turányi, Z. Design aspects of network assisted device-to-
device communications. IEEE Commun. Mag. 2012, 50, 170–177. https://doi.org/10.1109/MCOM.2012.6163598.

https://doi.org/10.1109/jiot.2016.2587060
https://doi.org/https://doi.org/10.1016/j.dcan.2018.10.002
https://doi.org/10.1109/jiot.2015.2498900
https://doi.org/https://doi.org/10.1016/j.dcan.2017.04.005
https://doi.org/https://doi.org/10.1016/j.dcan.2020.09.001
https://doi.org/10.1109/jiot.2016.2615180
https://doi.org/10.1109/CSCWD.2014.6846894
https://doi.org/10.1109/SKG.2013.9
https://doi.org/10.1109/ICCCN.2012.6289309
https://doi.org/10.1109/WoWMoM.2017.7974340
https://doi.org/10.1109/CSMR-WCRE.2014.6747202
https://www.cognizant.com/whitepapers/optimizing-the-internet-of-things-key-strategies-for-commercial-insurers-codex2295.pdf
https://www.cognizant.com/whitepapers/optimizing-the-internet-of-things-key-strategies-for-commercial-insurers-codex2295.pdf
https://doi.org/10.1109/TCAD.2017.2717782
https://doi.org/10.1109/jiot.2017.2683200
https://doi.org/10.1109/JIOT.2018.2805263
https://doi.org/10.1109/ACCESS.2019.2908985
https://doi.org/10.1109/ACCESS.2017.2704444
https://doi.org/10.1109/JSEN.2019.2908702
https://www.ericsson.com/48f890/assets/local/publications/ericsson-technology-review/docs/2019/key-technology-choices-for-optimal-massive-iot-devices.pdf
https://www.ericsson.com/48f890/assets/local/publications/ericsson-technology-review/docs/2019/key-technology-choices-for-optimal-massive-iot-devices.pdf
https://doi.org/10.1109/JSAC.2016.2621398
https://doi.org/https://doi.org/10.1016/j.future.2019.12.036
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://doi.org/OPFRA001.020817
https://doi.org/10.1109/MCOM.2012.6163598


Sensors 2022, 22, 995 43 of 44

161. Hong, K.; Lillethun, D.; Ramachandran, U.; Ottenwälder, B.; Koldehofe, B. Mobile fog: A programming model for large-scale
applications on the internet of things. In Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing,
Hong Kong, China, 12–16 August 2013; pp. 15–20.

162. Wang, T.; Zhang, G.; Liu, A.; Bhuiyan, M.Z.A.; Jin, Q. A Secure IoT Service Architecture With an Efficient Balance Dynamics
Based on Cloud and Edge Computing. IEEE Internet Things J. 2019, 6, 4831–4843. https://doi.org/10.1109/JIOT.2018.2870288.

163. Bonomi, F.; Milito, R.; Natarajan, P.; Zhu, J., Fog Computing: A Platform for Internet of Things and Analytics. In Big Data and
Internet of Things: A Roadmap for Smart Environments; Springer International Publishing: Cham, Switzerland, 2014; pp. 169–186.
https://doi.org/10.1007/978-3-319-05029-4_7.

164. Lien, S.; Chen, K.; Lin, Y. Toward ubiquitous massive accesses in 3GPP machine-to-machine communications. IEEE Commun.
Mag. 2011, 49, 66–74. https://doi.org/10.1109/MCOM.2011.5741148.

165. Yeow, W.L.; Westphal, C.; Kozat, U. Designing and embedding reliable virtual infrastructures. In Proceedings of the Second ACM
SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures, New Delhi, India, 3 September 2010; pp. 33–40.

166. Mehrotra, S.; Chen, H.; Jain, S.; Li, J.; Li, B.; Chen, M. Bandwidth management for mobile media delivery. In Proceedings of
the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 1901–1907.
https://doi.org/10.1109/GLOCOM.2012.6503393.

167. Wamser, F.; Zinner, T.; Tran-Gia, P.; Zhu, J. Dynamic bandwidth allocation for multiple network connections: Improving user
QoE and network usage of YouTube in mobile broadband. In Proceedings of the 2014 ACM SIGCOMM Workshop on Capacity
Sharing Workshop, Chicago, IL, USA, 18 August 2014; pp. 57–62.

168. Salem, M.; Adinoyi, A.; Rahman, M.; Yanikomeroglu, H.; Falconer, D.; Kim, Y. Fairness-aware radio resource management in
downlink OFDMA cellular relay networks. IEEE Trans. Wirel. Commun. 2010, 9, 1628–1639. https://doi.org/10.1109/TWC.2010.
05.081548.

169. Niyato, D.; Wang, P.; Hossain, E.; Saad, W.; Han, Z. Game theoretic modeling of cooperation among service providers in mobile
cloud computing environments. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference (WCNC),
Paris, France, 1–4 April 2012; pp. 3128–3133. https://doi.org/10.1109/WCNC.2012.6214343.

170. Balakrishnan, H.; Rahul, H.S.; Seshan, S. An integrated congestion management architecture for Internet hosts. SIGCOMM
Comput. Commun. Rev. 1999, 29, 175–187. https://doi.org/10.1145/316194.316220.

171. Aryafar, E.; Keshavarz-Haddad, A.; Wang, M.; Chiang, M. RAT selection games in HetNets. In Proceedings of the 2013
Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 998–1006. https://doi.org/10.1109/INFCOM.2013.6566889.

172. Wong, F.M.F.; Joe-Wong, C.; Ha, S.; Liu, Z.; Chiang, M. Mind your own bandwidth: An edge solution to peak-hour broadband
congestion. arXiv 2013, arXiv:1312.7844.

173. Im, Y.; Joe-Wong, C.; Ha, S.; Sen, S.; Kwon, T.T.; Chiang, M. AMUSE: Empowering Users for Cost-Aware Offloading with
Throughput-Delay Tradeoffs. IEEE Trans. Mob. Comput. 2016, 15, 1062–1076. https://doi.org/10.1109/TMC.2015.2456881.

174. Zhou, W. PSO based offloading strategy for cache-enabled mobile edge computing UAV networks. Phys. Commun. 2021, 99, 1–8.
175. Zhou, W.; Chen, L.; Tang, S.; Lai, L.; Xia, J.; Zhou, F.; Fan, L. Offloading strategy with PSO for mobile edge computing based on

cache mechanism. Clust. Comput. 2021, 24, 1–13.
176. Wang, L.; Kuo, G.G.S. Mathematical Modeling for Network Selection in Heterogeneous Wireless Networks—A Tutorial. IEEE

Commun. Surv. Tutor. 2013, 15, 271–292. https://doi.org/10.1109/SURV.2012.010912.00044.
177. Demirbas, M.; Yilmaz, Y.S.; Bulut, M.F. Eywa: Crowdsourced and cloudsourced omniscience. In Proceedings of the 2013 IEEE

International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), San Diego, CA,
USA, 18–22 March 2013; pp. 193–198. https://doi.org/10.1109/PerComW.2013.6529480.

178. Rula, J.P.; Navda, V.; Bustamante, F.E.; Bhagwan, R.; Guha, S. No “one-size fits all” towards a principled approach for incentives
in mobile crowdsourcing. In Proceedings of the 15th Workshop on Mobile Computing Systems and Applications, Santa Barbara,
CA, USA, 26–27 February 2014; pp. 1–5.

179. Rula, J.; Bustamante, F.E. Crowd (soft) control: Moving beyond the opportunistic. In Proceedings of the Twelfth Workshop on
Mobile Computing Systems & Applications, San Diego, CA, USA, 28–29 February 2012; pp. 1–6.

180. Miluzzo, E.; Cornelius, C.T.; Ramaswamy, A.; Choudhury, T.; Liu, Z.; Campbell, A.T. Darwin phones: The evolution of sensing
and inference on mobile phones. In Proceedings of the 8th International Conference on Mobile Systems, Applications, and
Services, San Francisco, CA, USA, 15–18 June 2010; pp. 5–20.

181. Pipes, S.; Chakraborty, S. Multitiered inference management architecture for participatory sensing. In Proceedings of the 2014
IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS), Budapest,
Hungary, 24–28 March 2014; pp. 74–79. https://doi.org/10.1109/PerComW.2014.6815168.

182. Ibrahim, G.; Chadli, Y.; Kofman, D.; Ansiaux, A. Toward a new Telco role in future content distribution services. In Proceedings
of the 2012 16th International Conference on Intelligence in Next Generation Networks, Berlin, Germany, 8–11 October 2012;
pp. 22–29. https://doi.org/10.1109/ICIN.2012.6376029.

183. Saucez, D.; Barakat, C.; Turletti, T. Leveraging Information Centric Networking in Over-The-Top Services. 2012. Available online:
https://hal.inria.fr/hal-00684458 (accessed on 27 November 2021).

184. Li, S.; Zhang, Y.; Raychaudhuri, D.; Ravindran, R.; Zheng, Q.; Dong, L.; Wang, G. IoT Middleware Architecture over Information-
Centric Network. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December
2015; pp. 1–7. https://doi.org/10.1109/GLOCOMW.2015.7414119.

https://doi.org/10.1109/JIOT.2018.2870288
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1109/MCOM.2011.5741148
https://doi.org/10.1109/GLOCOM.2012.6503393
https://doi.org/10.1109/WCNC.2012.6214343
https://doi.org/10.1145/316194.316220
https://doi.org/10.1109/INFCOM.2013.6566889
https://doi.org/10.1109/TMC.2015.2456881
https://doi.org/10.1109/SURV.2012.010912.00044
https://doi.org/10.1109/PerComW.2013.6529480
https://doi.org/10.1109/PerComW.2014.6815168
https://doi.org/10.1109/ICIN.2012.6376029
https://hal.inria.fr/hal-00684458
https://doi.org/10.1109/GLOCOMW.2015.7414119


Sensors 2022, 22, 995 44 of 44

185. D’Ambrosio, M.; Dannewitz, C.; Karl, H.; Vercellone, V. MDHT: A hierarchical name resolution service for information-centric
networks. In Proceedings of the ACM SIGCOMM Workshop on Information-Centric Networking, Toronto, ON, Canada, 19
August 2011; pp. 7–12.

186. Peng, M.; Yan, S.; Zhang, K.; Wang, C. Fog-computing-based radio access networks: Issues and challenges. IEEE Netw. 2016,
30, 46–53. https://doi.org/10.1109/mnet.2016.7513863.

187. Rachuri, K.K.; Efstratiou, C.; Leontiadis, I.; Mascolo, C.; Rentfrow, P.J. METIS: Exploring mobile phone sensing of-
floading for efficiently supporting social sensing applications. In Proceedings of the 2013 IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom), San Diego, CA, USA, 18–22 March 2013; pp. 85–93.
https://doi.org/10.1109/PerCom.2013.6526718.

188. Ren, S.; Schaar, M.v.d. Efficient Resource Provisioning and Rate Selection for Stream Mining in a Community Cloud. IEEE Trans.
Multimed. 2013, 15, 723–734. https://doi.org/10.1109/TMM.2013.2240673.

189. Li, Q.; Niu, H.; Papathanassiou, A.; Wu, G. Edge Cloud and Underlay Networks: Empowering 5G Cell-Less Wireless Architecture.
In Proceedings of the European Wireless 2014; 20th European Wireless Conference, Castelldefels, Barcelona, 14–16 May 2014;
pp. 1–6.

190. Kholghi, M.; Keyvanpour, M. An analytical framework for data stream mining techniques based on challenges and requirements.
arXiv 2011, arXiv:1105.1950.

191. Won, S.; Cho, I.; Sudusinghe, K.; Xu, J.; Zhang, Y.; van der Schaar, M.; Bhattacharyya, S.S. A Design Methodology for Distributed
Adaptive Stream Mining Systems. Procedia Comput. Sci. 2013, 18, 2482–2491. https://doi.org/10.1016/j.procs.2013.05.425.

192. Madsen, H.; Burtschy, B.; Albeanu, G.; Popentiu-Vladicescu, F. Reliability in the utility computing era: Towards reliable Fog
computing. In Proceedings of the 2013 20th International Conference on Systems, Signals and Image Processing (IWSSIP),
Bucharest, Romania, 7–9 July 2013; pp. 43–46. https://doi.org/10.1109/IWSSIP.2013.6623445.

193. Stolfo, S.J.; Salem, M.B.; Keromytis, A.D. Fog Computing: Mitigating Insider Data Theft Attacks in the Cloud. In Proceedings
of the 2012 IEEE Symposium on Security and Privacy Workshops, San Francisco, CA, USA, 20–23 May 2012; pp. 125–128.
https://doi.org/10.1109/SPW.2012.19.

194. Wang, C.; Chow, S.S.M.; Wang, Q.; Ren, K.; Lou, W. Privacy-Preserving Public Auditing for Secure Cloud Storage. IEEE Trans.
Comput. 2013, 62, 362–375. https://doi.org/10.1109/TC.2011.245.

195. Lu, R.; Heung, K.; Lashkari, A.H.; Ghorbani, A.A. A Lightweight Privacy-Preserving Data Aggregation Scheme for Fog
Computing-Enhanced IoT. IEEE Access 2017, 5, 3302–3312. https://doi.org/10.1109/ACCESS.2017.2677520.

196. Sharma, P.K.; Chen, M.Y.; Park, J.H. A software defined fog node based distributed blockchain cloud architecture for IoT. IEEE
Access 2017, 6, 115–124.

197. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective.
IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. https://doi.org/10.1109/comst.2017.2745201.

198. Deng, R.; Lu, R.; Lai, C.; Luan, T.H.; Liang, H. Optimal Workload Allocation in Fog-Cloud Computing Towards Balanced Delay
and Power Consumption. IEEE Internet Things J. 2016, 3, 1. https://doi.org/10.1109/jiot.2016.2565516.

199. La, Q.D.; Ngo, M.V.; Dinh, T.Q.; Quek, T.Q.; Shin, H. Enabling intelligence in fog computing to achieve energy and latency
reduction. Digit. Commun. Netw. 2019, 5, 3–9. https://doi.org/10.1016/j.dcan.2018.10.008.

200. Park, S.H.; Simeone, O.; Shamai Shitz, S. Joint Optimization of Cloud and Edge Processing for Fog Radio Access Networks. IEEE
Trans. Wirel. Commun. 2016, 15, 7621–7632. https://doi.org/10.1109/twc.2016.2605104.

201. Sun, X.; Ansari, N. EdgeIoT: Mobile Edge Computing for the Internet of Things. IEEE Commun. Mag. 2016, 54, 22–29.
https://doi.org/10.1109/mcom.2016.1600492cm.

202. Wen, Z.; Yang, R.; Garraghan, P.; Lin, T.; Xu, J.; Rovatsos, M. Fog Orchestration for Internet of Things Services. IEEE Internet
Comput. 2017, 21, 16–24. https://doi.org/10.1109/mic.2017.36.

203. Li, J.; Jin, J.; Yuan, D.; Zhang, H. Virtual Fog: A Virtualization Enabled Fog Computing Framework for Internet of Things. IEEE
Internet Things J. 2018, 5, 121–131. https://doi.org/10.1109/jiot.2017.2774286.

204. Alrawais, A.; Alhothaily, A.; Hu, C.; Cheng, X. Fog Computing for the Internet of Things: Security and Privacy Issues. IEEE
Internet Comput. 2017, 21, 34–42. https://doi.org/10.1109/mic.2017.37.

205. Stojmenovic, I.; Wen, S. The Fog computing paradigm: Scenarios and security issues. In Proceedings of the 2014
Federated Conference on Computer Science and Information Systems, Warsaw, Poland, 7–10 September 2014; pp. 1–8.
https://doi.org/10.15439/2014F503.

206. Ni, J.; Zhang, K.; Lin, X.; Shen, X.S. Securing Fog Computing for Internet of Things Applications: Challenges and Solutions. IEEE
Commun. Surv. Tutor. 2018, 20, 601–628. https://doi.org/10.1109/comst.2017.2762345.

https://doi.org/10.1109/mnet.2016.7513863
https://doi.org/10.1109/PerCom.2013.6526718
https://doi.org/10.1109/TMM.2013.2240673
https://doi.org/https://doi.org/10.1016/j.procs.2013.05.425
https://doi.org/10.1109/IWSSIP.2013.6623445
https://doi.org/10.1109/SPW.2012.19
https://doi.org/10.1109/TC.2011.245
https://doi.org/10.1109/ACCESS.2017.2677520
https://doi.org/10.1109/comst.2017.2745201
https://doi.org/10.1109/jiot.2016.2565516
https://doi.org/https://doi.org/10.1016/j.dcan.2018.10.008
https://doi.org/10.1109/twc.2016.2605104
https://doi.org/10.1109/mcom.2016.1600492cm
https://doi.org/10.1109/mic.2017.36
https://doi.org/10.1109/jiot.2017.2774286
https://doi.org/10.1109/mic.2017.37
https://doi.org/10.15439/2014F503
https://doi.org/10.1109/comst.2017.2762345

	Introduction
	Research Design
	IoT Market Growth by Industry Sectors
	IoT Architectures, Platforms and Technology Stack
	Understanding IoT Functional Blocks
	Identification
	Sensing
	Communication
	Compute
	Services
	Semantics and Analytics

	Characterizing Middlewares for the IoT
	IoT Stack Optimization
	Fog/Edge Computing: Technological Advancements, Integration Challenges and Edge-Enabled Vertical Markets
	Fog/Edge Architecture Model
	Security and Orchestration

	Discussion
	References

