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Abstract: Mental health issues are receiving more and more attention in society. In this paper,
we introduce a preliminary study on human–robot mental comforting conversation, to make an
android robot (ERICA) present an understanding of the user’s situation by sharing similar emotional
experiences to enhance the perception of empathy. Specifically, we create the emotional speech
for ERICA by using CycleGAN-based emotional voice conversion model, in which the pitch and
spectrogram of the speech are converted according to the user’s mental state. Then, we design
dialogue scenarios for the user to talk about his/her predicament with ERICA. In the dialogue,
ERICA shares other people’s similar predicaments and adopts a low-spirit voice to express empathy
to the interlocutor’s situation. At the end of the dialogue, ERICA tries to encourage with a positive
voice. Subsequently, questionnaire-based evaluation experiments were conducted with the recorded
conversation. In the questionnaire, we use the Big Five scale to evaluate ERICA’s personality. In
addition, the perception of emotion, empathy, and encouragement in the dialogue are evaluated.
The results show that the proposed emotional expression strategy helps the android robot better
present low-spirit emotion, empathy, the personality of extroversion, while making the user better
feel the encouragement.

Keywords: emotional interaction; experience sharing; human–robot conversation

1. Introduction

Emotional human–robot interaction (HRI) has received a lot of attention in recent
decades, with some applications in areas such as child care [1], mental therapy [2], per-
sonality presentation [3], and so on. These studies have demonstrated the importance of
emotional expression in human–robot interactions to enhance engagement and improve
the perception of intelligence [4,5]. So far, most of the research related to emotional interac-
tion has focused on non-verbal behavior in expressing robot’s emotions, which does not
necessitate a high level understanding ability on the part of the robot with respect to the
interaction context. However, in some scenarios, robots may be required to display both
semantic understanding and emotion comprehension to interact with humans verbally and
non-verbally, for example, the emotional comfort conversation [6].

Comforting conversation can be regarded as an emotional supporting behavior that
offers reassurance, encouragement, and compassion [7]. In human–human interactions,
comforting behavior requires verbal expressions of empathy that present an emotional
understanding of other people’s feelings from their perspective to convey motivational
content for encouragement [8–10]. In other words, the realization of the comforting di-
alogue requires the robot to convey semantic understanding, emotional understanding,
and empathy. These abilities need to be expressed in some way during the interaction,
which is difficult to achieve by simply using some constructed models or features, such as a
chatbot that has an emotional response [11] or personal information disclosure chatbot [12].
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The former does not allow robots to demonstrate that it can understand other people’s
views, while the latter does not allow robots to demonstrate that it can experience the
user’s feelings. In this paper, the focus is on the expression of the robot in comforting
conversations to demonstrate the robot’s ability to understand, feel, and empathize.

To this end, the concept of person-centered message was adopted. According to
some psychological studies [13], person-centered messages recognize and adapt to the
emotional, subjective, and relational characteristics of a given situation. High et al. [14]
discussed the effectiveness of the person-centered message in social support. They found
that people receiving the person-centered message are more likely to experience tangible
affective benefits. Moreover, they associated the person-centered message with people’s
experience of predicament. In the human–robot interaction field, some studies propose that
robots should be allowed to share people-related experiences during interactions [15–17] to
present perspective [18–20]. They found that the experience sharing strategy can help the
robot display mind-attribution, intelligence, while maintaining the long-term interaction
to better build the human–robot relationship. However, the effect of the combination of
experience and emotion in human–robot interactions is not discussed. Therefore, this work
mainly explores the emotion factor with an experience-sharing strategy in human–robot
comforting dialogues.

In this study, the possibility of using a robot for comforting dialogue is explored
as follows:

• We investigate how humans react to other’s emotions in human–human interactions
(HHI) based on the IEMOCAP [21] and MELD [22] datasets;

• We build an emotional voice conversion model to obtain ERICA’s emotional voice;
• We let an android robot, ERICA, provide scenario-based comforts to users by express-

ing corresponding emotions in verbal behavior;
• We construct people-centered messages in robot utterances by sharing related experi-

ences/situations of other people in historical human–robot interactions;
• We adopt the questionnaire-based evaluation with a Likert scale to examine the

effectiveness of emotional experience sharing in comforting dialogues;
• In addition, we evaluate ERICA’s personality based on BIG FIVE personality traits [23].

The rest of this chapter is organized as follows. Related works are introduced in
Section 2. In Section 3, the emotional feedback provided in human–human interactions
is investigated. In Section 4, our method is described. In Section 5, the setting of the
experiment and results are demonstrated. Some limitations and future work are presented
in Section 6. Finally, the findings are discussed prior to concluding remarks.

2. Related Works
2.1. Human–Robot Comforting Interaction

The emotional robot has been explored in the field of human–robot interaction; how-
ever, there are few studies on comforting. Researchers are expected to relieve users’
stress, dissipate anxiety, and provide comfort through robots via emotional interactions.
Wada et al. [24] and Jagkapong et al. [25] used a seal robot for the therapy of elders suffer-
ing from dementia and autistic children. The experimental results showed that robots
could improve the therapy of elders and increase the communication, motivation of autistic
children. Later, Raihah et al. [26] used the same robot to investigate the effects of interaction
between people who have not been diagnosed with any mental health disorders along with
a social robot to assess psychophysiological stress responses. However, the above studies
focused on non-verbal behavior.

To extend this scenario into verbal emotional support and interaction, Silvia et al. [27]
used a social robot to interact with children to apply distraction strategies, to reduce anxiety
during vaccination. The authors developed some dialogue strategies, including small talk,
music sharing, and questioning. Results showed that the distraction strategies were able
to reduce fear and anxiety while increasing happiness. Baecker et al. [28] implemented a
robot to help otherwise-healthy older adults living in social isolation and loneliness. The
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author developed a dialogue function that listened to the user’s predicament to start a
conversation on that. Their experimental results showed that the proposed method was
able to provide emotional support through the designed conversation strategy. However,
emotional expressions were not included in their study, and no effective strategy was
considered for the expression of empathy by robots.

2.2. Robot’s Emotion in Human–Robot Interaction

To enhance the engagement of users in social human–robot interactions, it is important
that robots be capable of reacting to the emotions expressed by the human agent with
affective expressions [29]. According to Paiva et al. [30], emotional robots should perceive
the ambient environment (users’ mental state in this work) and emotionally respond to
it. This procedure can be placed in the affective loop. Affective loop is the interactive
process in which the user first expresses an emotion with interactions. The robot, in
turn, responds by generating emotional expressions, causing the user to respond and
gradually feel more and more engaged with the system. In this loop, the robot requires
emotion detection ability and emotion expression ability. With the development of deep
learning, the emotion detection can somehow be easily addressed [31–33]. Regarding
the emotional interaction of social robots, numerous works have attempted to address
this in recent decades. One of the most commonly used methods is mimicking the user’s
affective state [34,35]. The results of those studies suggest that the mimicking strategy
makes the robots’ responses more appropriate to the interaction context than without
mimicking. Another is the perspective-taking strategy. According to [36], there are at least
two dimensions of perspective-taking, perceptual and conceptual. Perceptual perspective-
taking is defined as the ability to understand how another person experiences things
through their senses. Conceptual perspective-taking is defined as the ability to comprehend
and take on the viewpoint of another person’s psychological experience (e.g., thoughts,
feelings). To present such abilities in human–robot conversation, the addressee (robot)
should use their knowledge of the user’s situation. Experience sharing can be a potential
way to allow robots to demonstrate “I learnt/obtained the knowledge from other people in
the past conversations”, expressing the viewpoint of the user’s psychological experience
indirectly. To date, the perspective-taking ability is considered an essential ability for
empathic robots [18–20]. These studies discovered that the robot’s perspective-taking
behavior is perceived as friendlier and facilitates the communication during human–robot
interactions. However, these studies did not explore how to leverage emotional expression
in human–robot comforting. Additionally, investigations on the effects of the combination
of emotions and experience sharing (perspective-taking) are lacking.

2.3. Audio Modality Emotional Expression for Robots

Voice synthesis technology has made it easier for robots to communicate with their
human counterparts through speech. A lot of studies have attempted to use modern speech
synthesizers to convey robots’ emotions. Crumpton et al. [37] and Nass et al. [38] generated
the robots’ emotional speech by manually modifying the vocal prosody. Roehling et al. [39]
investigated the text-to-speech (TTS) systems to synthesize emotional speech for robots,
such as DECtalk, Festival, and OpenMARY. However, these toolkits are created for English.

Considering the Japanese emotional TTS, Lee et al. [40] adopted AItalk, a Japanese
TTS engine that generates emotional speech, to endow robot NAO with affective expression
ability. They also controlled the emotions with manual modification of acoustic features.
However, the voices in AItalk are specific to a few avatars. Considering that ERICA’s
voice should be based on her own characteristics, ERICA’s features should be maintained
when enhancing emotional characteristics. Therefore, the CycleGAN-based emotional
voice conversion model was trained to convert the neutral voice generated by ERICA’s TTS
to an emotional one.
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3. Investigation of Human–Human Interaction

To observe the human emotional feedback in human–human interactions according
to the interlocutor’s emotional status, we conducted an investigation based on the IEMO-
CAP [21] and MELD [22] datasets. The strategy for robot’s emotional responses can be
appropriately designed based on the findings.

The used datasets can be briefly summarized as follows: IEMOCAP dataset contains
videos of two-way conversations with 10 speakers. The actors performed selected emotional
scripts and also improvised hypothetical scenarios designed to elicit specific types of
emotions. In this study, 5683 samples from happy, sad, frustrated, surprise, angry, excited,
and neutral emotions were selected for analysis. Fear and disgust were not included
because of the small number of samples. The MELD dataset is a multi-party conversational
dataset collected from an American TV series. The 9989 samples selected for later analysis
consisted of disgust, joy, neutral, anger, fear, sadness, and neutral.

Tables 1 and 2 present the analysis results. It is observed that the interlocutor often
responds with the same or similar emotion of the speaker in the IEMOCAP dataset. In the
MELD dataset, the interlocutor prefers to use neutral emotion to respond to the speaker’s
emotion. In addition, it is also observed that, for a high percentage of the cases, the
interlocutors respond to the speaker using the same emotion. Based on the above results, it
is reasonable to have the robot respond using the same emotion or neutral emotion as the
speaker. The results also imply that the speaker and interlocutor tend to be emotionally
aligned. For example, if the speaker is happy, the interlocutor is happy; if the speaker is
sad, the interlocutor is sad.

Table 1. The percentage (%) of emotional responses between speaker and interlocutor in human–
human interaction (IEMOCAP). Bold numbers represent the highest value; italicized numbers
represent the second highest value.

Interlocutor’s Emotional Responses

Happy Sad Frustrated Surprise Anger Excited Neutral

Sp
ea

ke
r’

s
st

at
us

Happy 69.81 0.71 0.24 2.89 0 16.98 10.38
Sad 0.32 88.29 5.59 0.21 0.54 0.21 4.30

Frustrated 1.40 3.85 72.22 0.41 13.86 0 9.52
Surprise 10.26 1.28 10.26 39.74 2.56 24.36 8.97
Anger 0 0.97 38.37 0.19 57.95 0.58 1.94
Excited 9.42 0.11 0.11 1.71 0 81.69 6.00
Neutral 2.77 2.48 10.50 1.46 0.29 4.38 78.05

Table 2. The percentage(%) of emotional responses between speaker and interlocutor in human–
human interaction (MELD). Bold numbers represent the highest value; italicized numbers represent
the second highest value.

Interlocutor’s Emotional Responses

Disgust Joy Neutral Angry Fear Sadness Surprise

Sp
ea

ke
r’

s
st

at
us

Disgust 16.10 7.20 36.44 13.98 2.96 9.75 13.56
Joy 2.26 33.63 38.95 7.50 2.33 4.66 10.67

Neutral 2.29 14.89 55.53 8.30 2.19 5.00 11.80
Angry 2.40 10.72 35.87 31.46 3.01 7.14 11.16
Fear 1.65 13.22 41.32 13.64 11.57 7.43 11.16

Sadness 3.48 10.76 34.11 10.43 2.65 24.34 14.24
Surprise 2.58 15.38 45.30 10.41 2.76 7.09 16.48

According to the aforementioned facts in HHI, as well as the findings of mimicking
strategy [34,35], a mechanism for letting the robot exert some influence on the user with pos-
itive emotions should be implemented with the purpose of providing comfort to the subject,
transforming their mental status. In this study, sadness was defined as a negative emotion
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and happiness as a positive emotion instead of using the two-dimensional emotional model
(negative-positive and low–high arousal). It was assumed that the participants in the
experiment could better understand the defined negative and positive emotions without
the arousal dimension, which is also commonly mentioned in previous comfort-related
research [41,42].

4. Method
4.1. Emotional Voice

The generation of ERICA’s voice was originally based on a text-to-speech system,
which can only generate the neutral voice. To create the emotional voice for ERICA, in this
study, we built an emotional voice conversion model. To this end, a Japanese emotional
speech dataset [43] that contains happy, angry, sad, and neutral utterances was used. Each
category of this dataset has 1070 utterances in total. Sad emotion was regarded as low-
spirit, and happy as a positive voice. Because the sample of the Japanese emotional speech
dataset was non-paralleled, a model that could be trained on non-paralleled data was
required to realize the emotional voice conversion. To this end, we adopted the CycleGAN
framework structure, which had been widely demonstrated to have excellent performance
on non-paralleled data [44–46]. Figure 1 presents the structure of the CycleGAN model. The
generator first employed the convolution layer with a shortcut by multiplying the output
of the convolution layer and activation function. The convolution block was repeated
twice. Then, a similar block with the normalization layer was used. After that, a residual
convolutional block was employed and repeated six times, followed by a final convolution
layer. The discriminator module used the same convolutional block as the generator. Then,
a dense layer and a sigmoid function were used to output the real or fake label.

Figure 1. Neural networks for CycleGAN-based emotional voice conversion model.

During the training phase, the CycleGAN model was trained with (neutral, low-spirit)
and (neutral, positive) combinations to realize the emotion conversion. The F0 feature
and spectrogram were separately converted to assure that both prosody and phase were
transformed. Regarding the extraction of the F0 feature, we adopted the continuous wavelet
transform (CWT) to decompose the F0 contour with 10 temporal scales as performed in
previous research [45,47]. Equations (1) and (2) demonstrate the calculations, where F0(x)
indicates the input F0 signal; φ denotes the Mexican hat mother wavelet; τ = 5 ms, and
i ∈ [1, 10] are one octave apart.

W(F0)(τ, t) = τ−1/2
∫

F0(x)φ(
x− t

τ
)dx (1)

F0(t) =
10

∑
i=1

Wi(F0)(t)(i + 2.5)−5/2 (2)
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To extract the spectrogram from speech, cheaptrick [48] was employed. As presented
in Equation (3), this technology first smooths the spectrogram by using a window with a
width of 2w0/3.

P(w) =
3

2w0

∫ w0/3

−w0/3
P(w + σ)dσw0 = 2π/τ0 (3)

Then, liftering was applied to the quefrency domain to mitigate the fluctuations:

P(w) = exp(F [ls(τ)lq(τ)ps(τ)])

ls(τ) =
sin(πF0τ)

πF0τ

lq(τ) = q0 + 2q1cos(2πτ/τ0)

ps(τ) = F−1[log(P(w))]

(4)

where F and F−1 stand for the Fourier transform and its inverse, respectively; ls(τ)
indicates the liftering function to smooth the signal; lq(τ) stands for the liftering function
for spectral recovery; ps(τ) represents the cepstrum of P(w); q0 and q1 are set to 1.18 and
−0.09 as discussed in [48].

Furthermore, to better train the model, we designed a training strategy to adjust
the contribution of each loss. It is known that the CycleGAN model has three types
of loss: (1) consistency loss (Lcyc), (2) identity loss (Lid), and (3) adversarial loss (Ladv).
Generally speaking, the consistency loss mainly contributes to conversion; the identity
loss primarily contributes to the preservation of the original features; while the adversarial
loss maintains the integrity of the generated sample close to the real one. The total loss
of the adopted CycleGAN is expressed in Equation (5), where the α and β parameters are
adjusted during training.

L = Ladv + αLcyc + βLid (5)

The training strategy is presented in Algorithm 1. The α and β parameters were
initialized to 1. After 65% of the epochs during the training procedure, β was adjusted
to 0.5 while keeping α at 1, so that the model could pay more attention to the conversion.
Meanwhile, the learning rate was slightly decreased.

Algorithm 1 Training strategy

1: lr = 2e− 4; optimizer = Adam(lr, beta_1 = 0.5);
2: α = 1; β = 1;
3: for epoch in epochs do
4: if epoch>(epochs × 65%) then
5: α = 1, β = 0.5;
6: lr+ = −5e− 8;
7: end if
8: end for
9: α = 1, β = 1;

Table 3 presents the objective results of the CycleGAN with curriculum learning
and the plain CycleGAN [47]. N indicates the neutral emotion; P indicates positive,
while LS indicates low spirit. The mel-cepstral distortion (MCD) was adopted to evaluate
the spectrogram conversion as in Equation (6) where MECPst

i indicates the target mel-
cepstrum, while MECPsc

i represents the converted one. The root mean squared error
(RMSE) is used to evaluate F0 conversion as in Equation (7); F0t

i and F0c
i represent the

target and converted F0 features, respectively. Both evaluation metrics prefer lower values.
From the results, it is observed that CycleGAN with curriculum learning achieves better
performance in converting the spectrogram and F0, in comparison to the baseline of the
plain CycleGAN.
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MCD[db] =
10

ln 10

√√√√2
24

∑
i=1

(MECPst
i −MECPsc

i )
2 (6)

RMSE =

√√√√ 1
L

L

∑
i=1

(F0t
i − F0c

i )
2 (7)

Table 3. Objective comparisons for emotional voice conversion.

MCD RMSE

Models N→P N→LS Avg. N→P N→LS Avg.

CycleGAN-CL (ours) 18.94 17.56 18.25 135.11 84.42 94.77
CycleGAN [47] 20.28 17.88 19.08 137.64 89.97 113.81

Figure 2 depicts the procedure of generating ERICA’s emotional voice. First, ERICA’s
built-in text-to-speech (TTS) system was used to convert text to speech. Note that, ERICA’s
TTS can only generate neutral voice. To obtain emotive speech, we used the trained
emotional voice conversion model in the CycleGAN framework to prepare low-spirit voice
and positive voice to convey empathy and encouragement, respectively. Note that, in
this study, the focus is on the effects of emotional expression of audio modality. That is,
emotional facial expressions and gestures of ERICA are not designed. Given the prepared
ERICA’s emotional samples, we invited ten subjects (M = 23.1, SD = 3.1) to conduct
pre-hoc evaluation to check whether the emotion is successfully converted using the
mean-opinion-score (MOS) with five-level Likert scale. −2 indicates low-spirit emotion; 0
indicates neutral emotion; and the 2 indicates positive emotion.

Figure 2. Flow of obtaining emotional voice.

Figure 3 presents the subjective evaluation results analyzed with pair-wise student-t
test. There were significant differences between the original voice and converted low-
spirit voice (t(9) = 1.9, p < 0.05), as well as the original voice and converted positive voice
(t(9) = 8.91, p < 0.05). These results suggested that the emotion was successfully converted
by the model, and subjects could distinguish the difference in emotions.

Figure 3. Emotion evaluation of the original and converted emotion. * indicates the found significant
difference.
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4.2. Measurements

We designed questionnaires to allow subjects to evaluate the robot’s ability to express
emotions with the audio modality. Furthermore, users’ perception of ERICA’s empathy
and the ability to convey encouragement were measured. In addition, the willingness of
users to talk to ERICA when depressed was evaluated.

The questionnaire designed to evaluate ERICA’s emotional expression and perfor-
mance is provided below:

- Emotional expression:

• I can feel the sad feeling of ERICA’s voice.
• I can feel the positive spirit of ERICA’s voice.

- Evaluation on ERICA:

• ERICA is empathetic.
• ERICA is encouraging me.
• I would like to talk to ERICA when I am feeling down.

To evaluate the personality of ERICA, ten item personality inventory (TIPI-J) [23]
was adopted as in previous research [49–51] containing the following questions. In the
questionnaire, all the questions were evaluated with a 7-level Likert scale.

- Extroversion:

• ERICA seems to be the active, outgoing type.
• ERICA seems to be the reserved, quiet type.

- Agreeableness:

• ERICA is prone to complaining and getting into trouble with others.
• ERICA is kind and cares about other people.

- Conscientiousness:

• ERICA seems to be a firm, self-disciplined type.
• ERICA seems to be the sloppy, careless type.

- Neuroticism:

• ERICA seems to be the type that worries and frets easily.
• ERICA seems to be the calm, emotionally stable type.

- Openness:

• ERICA likes new things and has unique ideas.
• ERICA is uninspired and mediocre.

4.3. Hypotheses

It is expected that ERICA’s emotional changes through voice can enhance the percep-
tion of empathy and shape ERICA’s positive personality to some extent. According to the
questionnaire, the hypotheses are as follow:

• H1: The proposed method reinforces ERICA’s ability to express emotion with voice,
and obtain a higher score in terms of emotional expression;

• H2: The proposed method improves the perception of empathy and encouragement;
• H3: When feeling down, people prefer to talk with the ERICA equipped with the

proposed method;
• H4: Compared to the neutral voice, the emotional expression of the voice can better

shape the extroversion and openness of the robot to some extent.

5. Experiment
5.1. Scenarios and Conditions

In the designed three short human–robot conversion transcripts, ERICA asked about
the user’s recent situation and shares similar experiences of others. The transcripts included
the topics of job hunting, corona life, and loving relationship, with the aim of having the



Sensors 2022, 22, 991 9 of 15

user share the current dilemma, while ERICA tried to express empathy and encouragement
for the user. Since the conversation was set up to share the user’s predicament, a sad (low-
spirit) voice was set to share the similar history of others in presenting ERICA’s semantic
and emotional comprehension, namely, the empathy ability. After that, the positive voice of
ERICA was used to provide encouragement to the user. As a comparison, the neutral voice
of ERICA’s utterances was used for the control condition. Table 4 demonstrates an example
of the dialogue transcript, in which EXP. indicates the experimental condition, while CON.
indicates the control condition.

Table 4. An translated example of dialogue transcripts (the original script was in Japanese).

Utterance Emotion (EXP.) Emotion (CON.)

ERICA Hi, Yuki, meet you again,
how is it going? Neutral Neutral

User
Due to Covid-19, I haven’t

been able to go out for about
a week, I felt a little down.

Low spirit Low spirit

ERICA
(experience sharing)

That is tough. Delina once
told me that she had to wear
a mask every time she left the
apartment, which was quite

inconvenient.

Low spirit Neutral

User That’s right. I do not even
want to go out. Low spirit Low spirit

ERICA
(encouragement)

It is better to go out for a
walk sometimes to refresh
yourself! With a mask on.

Positive Neutral

5.2. Procedures and Subjects

First, a user was invited to talk with ERICA according to transcripts, and the conversa-
tion was recorded. Subsequently, we created a subjective evaluation questionnaire based
on the adopted measures. The questionnaire contained two conditions, the experimental
condition and control condition, each having three conversation videos. Subjects rated
ERICA’s performance after watching the recorded video according to each question. In the
experiment, the within-subject design was used, namely, each subject evaluated both the
emotional ERICA and neutral ERICA. Sixteen subjects (Male = 10, Female = 6, M = 23.94,
SD = 2.61) were invited as raters to participate in the questionnaire-based evaluation by
watching the recorded conversation video.

5.3. Results and Discussion

After collecting the subjective evaluation data, we used the paired student t-test to
analyze the results with alpha set to 0.05. Additionally, Cohen’s D was calculated and
annotated as D when reporting the results. Moreover, as some previous studies suggested
that gender differences need to be considered when robots take on the role of a self-
disclosing listener or companion [52,53], we investigated the gender effects in the designed
human–robot comforting dialogue.

Regarding emotional expression, which checked manipulation in this experiment, the
results show that, after implementing the emotional voice of ERICA, the experimental con-
dition (M = 4.75, SD = 1.12) strengthened ERICA’s ability to express low spirit (p < 0.001,
t(15) = 3.59, D = 1.27) in contrast to the control condition (M = 3.19, SD = 1.33), but only
incrementally on positive expression without significant difference. This suggested that the
manipulation of ERICA’s positive expression did not completely succeed.

Considering the evaluation of ERICA (see Figure 4), it was determined that the ex-
perimental condition (M = 4.88, SD = 1.45 ) better represented ERICA’s empathy ability
(p < 0.01, t(15) = 2.53, D = 0.91) than the control condition (M = 3.81, SD = 0.83).
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Additionally, subjects rated that the encouragement (p < 0.05, t(15) = 2.22, D = 0.78) was
better conveyed in the experimental condition (M = 5.19, SD = 1.17) compared to the
control condition (M = 4.25, SD = 1.24).

Figure 4. Emotion expression and evaluation of ERICA evaluated by all subjects. * indicates the
found significant difference, while N.S. indicates there is no significant difference.

The evaluation results of female (see Figure 5) and male (see Figure 6) subjects were
further compared separately. Because only partial data were reused, a Bonferroni correction
with 3 degrees was adopted to lower the alpha (α = 0.05/3). From the statistical results,
it was determined that females were more sensitive to ERICA’s low spirit expression
(p < 0.05/3, t(15) = 4.72, D = 2.43) in the experiment condition (M = 5, SD = 0.89) than
in the control condition (M = 2.67, SD = 0.82). Significant differences were observed for
the experiment condition (M = 5.67, SD = 1.37) (M = 6, SD = 0.89) and control condition
(M = 3.5, SD = 0.55) (M = 4, SD = 0.89) in terms of empathy (p < 0.05/3, t(15) = 3.61,
D = 1.86), and encouragement (p < 0.05/3, t(15) = 3.87, D = 1.99), while males only dis-
played marginal statistical significance for the experiment condition (M = 4.6, SD = 1.26)
and control condition (M = 3.5, SD = 1.51) in terms of perceiving ERICA’s low spirit voice
significantly (p = 0.0471, t(15) = 1.77, D = 0.92). In addition, it is worth mentioning that
the trend of female subjects was more significant for the experiment condition (M = 5.33,
SD = 1.21) and control condition (M = 4.17, SD = 1.17) in terms of preferring to chat with
ERICA with an emotional voice (p = 0.0602, t(15) = 1.7, D = 0.91).

Figure 5. Emotion expression and evaluation of ERICA evaluated by female subjects. * indicates the
found significant difference, while N.S. indicates there is no significant difference.

In the personality evaluation of ERICA, as in Figure 7, the emotional voice made
ERICA more outgoing (p < 0.05, t(15) = 2.06, D = 1.06) in the experiment condition
(M = 9.69, SD = 2.41) than in the control condition (M = 8.25, SD = 1.39). However,
when male subjects and female subjects were separated for analysis, it was determined
that the significant difference from the experiment condition (M = 10.83, SD = 1.83) and
control condition (M = 8.67, SD = 1.21) of ERICA’s extroversion mainly originated from
females (p < 0.05/3, t(15) = 2.41, D = 1.24), whereas males only expressed a similar
tendency without significant difference (see Figures 8 and 9). In addition, when equipped
with an emotional voice, subjects tended to evaluate ERICA with higher agreeableness
(p = 0.0555, t(15) = 1.64, D = 0.85) in the experiment condition (M = 8.38, SD = 1.15)
than in the control condition (M = 7.75, SD = 1).
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Figure 6. Emotion expression and evaluation of ERICA evaluated by male subjects. * indicates the
found significant difference, while N.S. indicates there is no significant difference.

Figure 7. Personality evaluation of ERICA with Big Five by all subjects. * indicates the found
significant difference, while N.S. indicates there is no significant difference.

Figure 8. Personality evaluation of ERICA with Big Five by female subjects. * indicates the found
significant difference, while N.S. indicates there is no significant difference.

Figure 9. Personality evaluation of ERICA with Big Five by male subjects. * indicates the found
significant difference, while N.S. indicates there is no significant difference.

Based on the statistical results, the hypotheses were corroborated to some extent. For
Hypothesis 1, the proposed emotional conversion model only enhanced the expression of
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the low spirit of ERICA, while the positive expression was not strengthened. It suggested
that the manipulation of positive expression might not completely succeed with our method.
This was possibly because ERICA’s original speech had already been positive, so that the
difference of the converted positive voice was not really distinguishable. This also implied
that the effects of the proposed strategy might mainly result from the low-spirit expression.
Therefore, the emotional conversion model needs to improve the performance of converting
positive speech. In future work, more modalities will be combined to generate the robot’s
emotions. For Hypothesis 2, the results show that our approach successfully improved the
perception of empathy in conveying encouragement. Considering the failure on controlling
positive speech, ERICA was better able to convey encouragement because of the expression
of low-spirit, which enhanced the perception of empathy. For Hypothesis 3, no significant
difference was found in the results, but only slight non-significance for female subjects
who talked with the ERICA equipped with emotional speech. The current strategy and
dialogue content were quite simple and the dialogue had fewer iterations. The purpose
of comfort could not really be achieved. We plan to go deeper into the investigation of
HHI, and acquire additional insights to enrich the way the robot responds and expresses
its emotions, especially facial expressions and body movements. For Hypothesis 4, our
approach helped the robot to demonstrate extroversion, but failed to significantly present
the openness. This was because the dialogue had fewer iterations, and the robot was not
able to share additional experiences. Future work is going to improve the dialogue strategy
and extend the dialogue, so as to provide more chance to the robot to present experiences.

6. Where Next

In this section, we acknowledge the limitations of this work along with plans to
address them in future works.

6.1. The Effect of Experience Sharing

This work validated the effects of the combination of emotional speech and experience
sharing in human–robot comforting dialogue. However, which of these two factors pro-
vided the major contribution to enhancing the perception of empathy remains to be verified.
Furthermore, this work adopted the experience sharing strategy of previous works [15–17],
which could facilitate the human–robot interaction. What needs to be discussed is whether
a robot sharing an experience similar to other people could demonstrate perspective-taking
in the human–robot comforting dialogue. One possible future direction is to systemati-
cally examine the effects of experience sharing by adding another independent condition,
in which the robot only talks about the current user without mentioning other people’s
experiences.

6.2. The Design of Robots’ Emotional Responses

In the experiment condition, ERICA responded to user’s emotions with similar affec-
tive expressions to reveal insight from the findings of HHI [34,48]. However, these results
were not the emotional responses in the conversational context of Japanese. Although
positive results were obtained by using this strategy, the appropriateness needs to be ver-
ified and further improved. Therefore, Japanese emotional conversation data should be
collected to analyze how Japanese people conduct emotional interactions. Moreover, our
aim is to explore how robots can provide emotional comfort to people. In many of the
current studies, including this one, robots are mimicking people performing comforting
behaviors in HHI. Perhaps, there could be a way of comforting that is unique to robots.

6.3. Multi-Modality Emotional Expression

This study only implemented the audio-modality emotional expression for ERICA,
which was also a preliminary study for examining the emotional voice conversion model.
This robot platform is able to perform multi-modality (i.e., facial expression, gesture)
emotional expressions. Therefore, future work will generate ERICA’s multi-modality
emotional expression for the human–robot comforting dialogue. It is also assumed that



Sensors 2022, 22, 991 13 of 15

the multi-modality method can enhance the perception of positive expression. Future
investigations should be based on the two dimensional emotion framework (negative and
positive, low and high arousal) to offer better generalizability.

6.4. Gender Effects

From the experimental results, some gender effects of the designed human–robot
comforting dialogue were observed preliminarily; however, the sample size was relatively
small. The next step is to increase the number of participants to confirm if this phenomenon
is applicable on a larger scale to more numerous subjects. After confirming this, the
emotional behaviors of the robot can be modified according to the discovered gender effect
to design strategies more applicable for men and women.

6.5. Experiment with Practical Comforting Interaction

There were some technical difficulties in conducting the practical human–robot com-
forting dialogue in real-life. Thus, video-based evaluations were used with a third-party
perspective in this work. Even though the scripts were designed with recent common
topics, such as the impact of the epidemic, bad experiences in job hunting, and quarrels
with the partner, it is only in real scenarios that the improvements provided by our method
can be better validated. Therefore, in our future work, first, the technical problems (making
people willing to share their predicament with robots) will be solved in human–robot
comforting, and then a practical comforting interaction experiment will be conducted.

7. Conclusions

This paper introduced a preliminary study on human-robot comforting conversation.
The main contributions are summarized as follows: (1). CycleGAN-based emotional
voice conversion model was trained with curriculum learning on a Japanese emotional
speech dataset to obtain ERICA’s emotional voice; (2). Emotion and experience sharing
strategies were combined to let ERICA present an understanding of the user’s utterance and
emotion status to enhance the perception of empathy and personality. The experimental
results showed that the proposed method might be able to help ERICA better convey
encouragement and low spirits in emotion, empathy, the personality of extroversion,
especially for females. In future work the objective is to construct a practical emotional
experience sharing dialogue system for human–robot interaction. The implementation
of our emotional voice conversion model and experiment videos can be found at https:
//github.com/CZFuChason/emotional-voice-conversion-with-CycleGAN (accessed on 9
December 2021).
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