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Abstract: U-Net is the most cited and widely-used deep learning model for biomedical image seg-
mentation. In this paper, we propose a new enhanced version of a ubiquitous U-Net architecture,
which improves upon the original one in terms of generalization capabilities, while addressing
several immanent shortcomings, such as constrained resolution and non-resilient receptive fields of
the main pathway. Our novel multi-path architecture introduces a notion of an individual receptive
field pathway, which is merged with other pathways at the bottom-most layer by concatenation and
subsequent application of Layer Normalization and Spatial Dropout, which can improve generaliza-
tion performance for small datasets. In general, our experiments show that the proposed multi-path
architecture outperforms other state-of-the-art approaches that embark on similar ideas of pyramid
structures, skip-connections, and encoder–decoder pathways. A significant improvement of the Dice
similarity coefficient is attained at our proprietary colony-forming unit dataset, where a score of 0.809
was achieved for the foreground class.

Keywords: U-Net; skip-connections; neural network; encoder–decoder; Layer Normalization

1. Introduction

U-Net [1] is arguably the most famous example of an extremely simple (but working)
deep learning architecture in the biomedical domain. It uses encoder–decoder pathways
alleviated with skip-connections [2] while visually resembling a U-shaped pathway. Many
successful applications of the U-Net architecture could be found in cell and nuclei seg-
mentations for digital pathology [3], tumor and organ segmentations [4,5] as well as
colony-forming units (CFUs) and other cell segmentation tasks [6–8]. This vast diversity
of applications has promoted credibility and trustworthiness in the U-Net architecture
among researchers.

Despite multiple success stories, segmentation of biomedical images is still far from
being a resolved issue. For instance, lesions in medical images demand a higher level
of accuracy than what is acceptable in natural images and, thus, it is not possible to rely
on a coarse-grained flow of information [9]. Furthermore, CFU segmentation seems to
suffer from drifting image acquisition conditions, background noise, an extreme diversity
of backgrounds, bacteria types, and possible shapes and textures since agar plates are
collected in different labs, environments, and conditions [10]. Microbial cell counting is one
of the basic quantitative measurements in microbiology. It relies on the “golden standard”—
counting of the CFUs [11]. This counting is an approved standard among procedures used
to assess a microbiological contamination of the food and other samples [12]. To detect a
colony, a user has to wait until it reaches a certain size to become visible. Typically, 24 h
are required to perform the reliable CFU counting; however, by that moment, some of
the colonies may have grown and merged too quickly. Therefore, there is a demand for
quick automated methods [10,13] to distinguish colonies while they are still small and not
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merged together. Smaller colonies are harder to detect since they could be easily classified
as artifacts, e.g., the food crumbs or working notes on the Petri dish surface.

Existing segmentation algorithms—as described in the following sections—are ren-
dered imprecise and unreliable when a colony or a single cell is overly minuscule. Conven-
tional segmentation algorithms, such as region-based segmentation relying on thresholds or
edge-based detection relying on the Sobel or Laplacian operator [14] utilize very simplistic
concepts. Among these concepts, we can pinpoint the thresholding on gray-scale informa-
tion or the presence of discontinuous local features in the image where the most significant
part of the image changes in local brightness. Compared to a deep learning U-Net model,
these approaches can be considered unsupervised and incapable of capturing nuanced
discriminatory features of the foreground class. All factors mentioned above undermine
the reliability of the existing segmentation approaches among biologists, practitioners,
and food safety experts, since these approaches frequently underperform and only allow
segmenting out too few or too many objects. Therefore, it is necessary to develop and test
new image segmentation approaches, such as enhanced U-Net architectures, which can
efficiently recover the very fine details of the foreground class.

The U-Net was first introduced by Ronneberger et al. [1]. Many improvements have
been made since then, which utilize the same backbone architecture, but enhance it with the
better building blocks or revisit the structural composition of the main pathway. From the first
cohort of works the research by Isensee et al. [15] can be mentioned. The researchers won the
KiTS2019 challenge [5] with their enhanced “plain” U-Net architecture. This “plain” approach
does not make use of any residual or dense connections [16], it builds upon improving a
standard U-Net layer with instance normalization [17], leaky ReLU activations [18], and
replicated convolutional layers. On the other hand, Zhou et al. [9] proposed a modified
U-Net++ architecture, which utilizes redesigned skip pathways. In the latter approach, feature
maps undergo dense blocks of convolutions, whose numbers depend on the pyramid level. In
return, this brings the semantic level of the encoder feature maps closer to that of the feature
maps awaiting for concatenation in the decoder. While this approach is based on bridging the
semantic gap by means of additional skip-connections, Ibtehaz et al. [19] proposed to bolster
these connections with the MultiRes blocks, resting on the ideas of inception-like architectures.
Another interesting proposal by Gao et al. [20] was based on [9] by introducing a covariance
self-attention block [21] at the very bottom pyramid level. This block enables a so-called criss-
cross attention mechanism [22], which incorporates criss-crossed elements of a feature map
(in spatial dimensions) as opposed to flattening feature maps, and then applying an ordinary
self-attention calculus. Another promising BRAVE-NET model [23] was recently explored for
the brain vessel segmentation problem. The authors apply a multi-scale approach and context
aggregation for extending the encoder part of the U-Net with a so-called context path. This
path starts with a downsampling by average-pooling with 2× 2× 2 kernels and a stride of 2,
and is concatenated with the main path in the decoder. Finally, unsupervised learning may
be considered one more promising approach to solution of segmentation problems. Recently
an adaptive squeeze-and-shrink (ASAS) image denoising [24] was proposed for improving a
deep detection of cerebral microbleeds. This approach embarks on the ideas of an optimization
problem, which comes down to an ASAS operation on the underlying PCA coefficients and
can be efficiently coupled with a U-Net architecture to detect cerebral microbleeds.

In order to promote the usage of the U-Net architecture for biomedical image segmenta-
tion, a novel multi-path U-Net architecture designed to address many of the aforementioned
problems is proposed in this paper. The core proposition is based on two main innovations,
i.e., (1) individual receptive field pathways with a consecutive application of Layer Nor-
malization [25] to them, alongside with (2) the introduction of Spatial Dropout [26] to all
crucial ramification and concatenation layers. The individual receptive field pathway is the
core element of the proposed architecture, it is introduced to allow for the diversification of
high- and low-resolution feature maps with a segregated flow of information. The latter
is very important if visual information about a segmented-out object is not well-localized
in the input space. Furthermore, it is argued that having two or more pathways simpli-
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fies model learning and yields faster convergence rates [9]. According to the conducted
experiments, multi-path U-Net architecture yields better results than other state-of-the-art
approaches, which embark on similar ideas of pyramid structures, skip-connections, and
encoder–decoder pathways.

For practical reasons, the proposed approach is compared to the ones by Isensee
et al. [15], Zhou et al. [9], Ibtehaz et al. [19], and Kolařík et al. [27] because of inherent
similarities and brevity of the format. Any comparisons to the transformer [21], ViT [28,29]
architectures, and Gao et al. [20] are intentionally avoided because they comprise a self-
attention block, which suggests a completely different and in many cases more complicated
outlook on the same segmentation problem.

The remainder of this paper is organized as follows. The proposed methods along
with the datasets (materials) and experimental setup are discussed in Section 2, where two
core improvements to the U-Net architecture are described in detail. The experimental
results are illustrated in Section 3. In Section 4, we discuss the obtained results, pros, and
cons of the proposed approach and future work. Finally, Section 5 concludes the paper.

2. Materials and Methods

At the beginning of this section, two core innovations to the U-Net architecture are
introduced. The datasets used and experimental setup are discussed further, where the
performance metrics are presented in order to compare all evaluated approaches.

2.1. Multi-Path U-Net

The main proposal set forth in this approach evolves around the idea of individual
receptive field pathways with different strides applied for down- and upsampling the
spatial dimension. Instead of adjusting the stride of the last convolutional layer as in
Isensee et al. [15], the max pooling [30] operation is introduced. All other attributes of
the “plain” U-Net architecture are taken intact, e.g., instance normalization [17] and leaky
ReLU activations [18]. All receptive field pathways should have coherent strides in order
to obtain compatible (in terms of spatial dimensions) feature maps. All feature maps from
all pathways are concatenated at the bottom U-Net layer and Layer Normalization [25] is
subsequently applied to the output of the aforementioned concatenation. This enables a
cross-path normalization operation that effectively intertwines different receptive fields
and allows for efficient training and exchange of information.

Formally, the bottom interconnecting layer is defined as follows: let Xi,j
n denote the j-th

output feature map from the i-th receptive field pathway before the interconnecting layer
for the n-th example. The final stack Xout

n of normalized feature maps for the n-th example
in the training batch can be represented as follows:

Xout
n =

g
σn

([Xi,j
n ]i∈[0,k[,j∈[0,l[ − µn) + b, (1)

where g and b denote, respectively, an adaptive gain and bias learned over all examples
jointly, µn and σn represent first- and second-order normalization statistics, which are
computed across channels/filters (per example) and [ ] denotes the concatenation layer. All
of the above g, b, µn, σn maintain the spatial dimensions of a single input feature map and
are properly broadcasted for the element-wise multiplication and addition. Finally, µn and
σn are computed as follows:

µn =
1
lk ∑

i∈[0,k[,j∈[0,l[
Xi,j

n , (2)

σn =

√√√√ 1
lk ∑

i∈[0,k[,j∈[0,l[
(Xi,j

n − µn)2. (3)
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2.2. Spatial Dropout

In order to enhance the proposed approach, several possibilities have been analyzed
to introduce regularization and robustness to the training process. The aforementioned
Spatial Dropout [26] has proved to be the best out of many choices. It significantly boosts
the generalization performance by promoting independence between feature maps in
combination with our novel multi-path U-Net architecture. The decision was made to
include the Spatial Dropout as the last layer after all convolution (at the same level of the
downsampling path) and deconvolution blocks so that all concatenated feature maps from
the upsampling path and skip-connections would have a dropout in place.

2.3. Overall Architecture

The overall multi-path U-Net architecture is presented in Figure 1. For the sake of
brevity, the simplest multi-path U-Net model was considered. It has only two receptive
field pathways with 2× 2 and 4× 4 pooling windows and identical strides for the max
pooling operation in each respective pathway. All other layers and their corresponding
parameters were transferred from the “plain” U-Net architecture, e.g., α = 0.1 of the
Leaky ReLU function or filter sizes and strides for convolutional layers. The latter is
initialized to 3× 3 for all filters in all convolution blocks along the downsampling path
with the stride being set to s = 1. For the upsampling path, deconvolution filter sizes
and strides are equal to the receptive field pathway’s max pooling window size. This
property ensures that all pathways and skip-connections produce compatible feature maps,
which can be concatenated together along the channel/filter axis. The number of filters
for the first pathway at each down- and upsampling level was set to [40, 240] and [240, 40],
correspondingly, while the max pooling window was set to 4× 4. The second pathway was
initialized as follows: [40, 80, 160, 220] for the downsampling path and [220, 160, 80, 40] for
the upsampling one, while the max pooling window was set to 2× 2. Before proceeding
to the interconnecting Layer Normalization, all pathways also have a middle (bottleneck)
convolution block, which has either 220 or 240 filters, depending on the pathway. Every
convolution block in all pathways consists of two convolutional layers with the number of
filters defined above.

It should be noted that different receptive field pathways should have coherent down-
sampling strides for the Max Pooling operation. More precisely, the number of max pooling
operations per pathway is strictly tied to the pooling window sizes. For instance, the
aforementioned pathways are coherent as 24 = 42. Additionally, it should be noticed
that the proposed multi-path architecture can easily be extended to three or more paths
given that middle (bottleneck) convolution blocks from all the paths are still compatible in
size. Due to a hardware resource limitation it was not possible to experiment with higher
resolutions and more diverse multi-path architectures comprising of three and more path-
ways. However, it was assumed that adding more pathways would benefit more difficult
image segmentation problems with 4D inputs where receptive fields have to capture an
additional dimension.

2.4. Datasets

A total of five different cell segmentation datasets were used, out of which four are pub-
licly available. All public datasets are attributed to the Cell Tracking Challenge (2D + Time),
which provides datasets for both cell tracking and cell segmentation problems. These
datasets comprise the images obtained from mouse hematopoietic and muscle stem cells in
hydrogel microwells (BF-C2DL-HSC, BF-C2DL-MuSC), as well as glioblastoma–astrocytoma
U373 cells on a polyacrylamide substrate (PhC-C2DL-U373), and HeLa cells stably express-
ing H2b-GFP (Fluo-N2DL-HeLa). The training counterparts of these datasets were used,
where all segmentations were available upfront. The final proprietary dataset comprised
colony-forming unit (CFU) images with different types of bacteria being cultured on an agar
plate for later segmentation and estimation of the number of cells being initially present.
This dataset was collected in-house by our project partner (LTD “Laboratorija Auctoritas”),
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it comprised 150 images. The latter CFU dataset was annotated by the laboratory staff and
trainee students. A brief summary of all datasets is given in Table 1, providing direct links
to each dataset (except the proprietary CFU one) with the corresponding characteristics.
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Figure 1. Overall Multi-Path U-Net Architecture. The input layer is shown in terms of a typical CFU image followed by the ramification
into two separate pathways. All convolutional layers are shown in light-orange with the subscripted number of filters which amounts
to a 3 × 3 kernel, followed by Instance Normalization and Leaky ReLU activation. Spatial Dropout layer is shown in violet while
the Max Pooling layer in red and deconvolutional layer is shown in light-blue. Concatenation layers are depicted in light-grey.
Interconnecting and final output layers are captioned and displayed in green and yellow respectively. All normal pathways are
illustrated in green arrowed lines while skip-connections are depicted in blue. Best viewed in color.

U373 cells on a polyacrylamide substrate (PhC-C2DL-U373) and HeLa cells stably ex-161

pressing H2b-GFP (Fluo-N2DL-HeLa). We use only training counterpart of these datasets162

where all segmentations are available upfront. The final proprietary dataset is comprised163

of Colony-Forming Unit (CFU) images with different types of bacteria being cultured on164

an agar plate for later segmentation and estimation of the number of cells being initially165

present. This dataset was collected in-house by our project partner (LTD "Laboratorija166

Auctoritas") and comprises of 150 images. A brief summary of all datasets is given in167

Table 1 where we provide direct links to each dataset (except our proprietary CFU one)168

with corresponding characteristics.169

2.5. Experimental Setup170

We test all the architectures under the same experimental setup which accounts for
5-fold cross validation with equally-sized validation sets. During the training stage for
each epoch we keep track of the model’s performance on the validation set and report
the average of the best attainable Dice similarity coefficient (DSC) [30,31] across all folds.
DSC score can be computed as follows:

DSC =
2TP

2TP + FP + FN
, (4)

Figure 1. Overall, multi-path U-Net architecture. The input layer is shown in terms of a typical CFU
image followed by the ramification into two separate pathways. All convolutional layers are shown
in light-orange with the subscripted number of filters, which amounts to a 3× 3 kernel, followed
by instance normalization and leaky ReLU activation. The Spatial Dropout layer is shown in violet,
the max pooling layer in red, and the deconvolutional layer is shown in light-blue. Concatenation
layers are depicted in light-gray. Interconnecting and final output layers are captioned and displayed
in green and yellow, respectively. All normal pathways are illustrated in green arrow lines, while
skip-connections are depicted in blue. Best viewed in color.

Table 1. Dataset characteristics.

Dataset Type Cardinality Image Sizes

BF-C2DL-HSC Cell 57 1010 × 1010 × 3
BF-C2DL-MuSC Cell 100 1036 × 1070 × 3
PhC-C2DL-U373 Cell 36 520 × 696 × 3
Fluo-N2DL-HeLa Cell 184 700 × 1010 × 1
Proprietary CFU CFU 150 3024 × 3024 × 3

2.5. Experimental Setup

All architectures were tested under the same experimental setup, envisioning a five-
fold cross validation with equally-sized validation sets. During the training stage for each
epoch, the model performance on the validation set was tracked and the average of the
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best attainable Dice similarity coefficient (DSC) [31,32] across all folds was reported. DSC
score can be computed as follows:

DSC =
2TP

2TP + FP + FN
, (4)

where TP stands for true positives, FP—false positives, and FN—false negatives. All
constituents of the aforementioned equation are calculated in a pixel-wise fashion.

For the proprietary CFU dataset, the mean absolute error (MAE) of the CFU counts
is reported across all agar plates (images). The other metric of interest for this dataset is
the accuracy of binning the CFU counts into three intervals: [0, 40), [40, 300), and [300, inf).
The dynamic programming algorithm was used to keep track of the CFU count; it was
applied across all ground-truth and predicted segmentations. Additionally, in Figure 2, the
results of our own binning approach, across 20 equally-sized bins, are presented (only the
first 7 bins are displayed, as there are enough images to derive the meaningful statistics) in
order to gain more insights into the performance with more difficult cases and the working
regimes with extremely high CFU counts. This binning approach allows for the direct
application of classifiers on the top of the segmentation model for more straightforward
usage by biologists and food safety professionals. The choice of three binning intervals
is widely accepted in the field of food safety. All cell count verifications were performed
under the supervision of our project partner (LTD “Laboratorija Auctoritas”).

Figure 2. Accuracy of all U-Net models across the first seven bins resulting from the fine-grained
binning of CFU counts. Best viewed in color.

The maximum number of epochs was set to 200 and the training was stopped pre-
maturely if the training loss did not improve during 20 consecutive epochs. The sum of
Twersky [33] and cross-entropy losses was used as an optimization objective. The former
is initialized with α = 0.5 and β = 0.5, which effectively reduces to a smoothed version
of the Dice similarity coefficient. The Adam optimizer [34] was used for training all the
models and initial learning rate was set to 0.0001. In the course of training, the learning
rate was gradually decreased using time-based decay scheduler. As our initial learning rate
was small enough, this did not reduce the final rate too much. All images were re-scaled to
512× 512 spatial dimensions using Gaussian smoothing and normalized according to the
distribution (pixel-wise z-scores were computed using image mean and standard deviation)
before passing them to the segmentation model. For all datasets (except Fluo-N2DL-HeLa),
the 3-channel RGB inputs were used, while for Fluo-N2DL-HeLa, only the 16-bit grayscale
inputs were available.

Experiments were performed using TensorFlow [35] and MIScnn [36] frameworks. All
methods were implemented from scratch using the MIScnn [36] library (except for “plain”
U-Net of Isensee et al. [15], which was out-of-the-box available in MIScnn), along with the
original Jupyter Notebooks available at GitHub. All code and Jupyter Notebooks were
run under a Windows 10 operating system and Anaconda (conda 4.8.3) environment with
Python 3.8.8.

http://github.com/jumutc/MultiPathUNet
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3. Results

Table 2 presents the experimental results for all datasets as the mean Dice similarity
coefficient with standard deviations across all classes (background and foreground) and
validation folds. In Table 3, the mean Dice similarity coefficient across all validation folds is
provided only for the foreground class. Additionally, the number of model parameters is
presented in both Tables 2 and 3. For the multi-path U-Net architecture, the number of filters
in all convolutional and deconvolutional layers was deliberately configured to be on par
with “plain” U-Net. The number of filters in U-Net++, Dense U-net, and MultiRes U-Net
models was also altered to match closely the aforementioned “plain” U-Net architecture.
To provide a proper ablation study outlook in the aforementioned tables, the results of the
multi-path U-Net architecture without Spatial Dropout are reported as well. In all other
figures and tables “multi-path U-Net” architecture refers only to the complete setup with
Spatial Dropout.

Table 2. Mean segmentation results with standard deviations across all classes (background and fore-
ground) under the Dice similarity coefficient [31,32] for U-Net++, Plain U-Net, Dense U-Net, MultiRes
U-Net, and the proposed multi-path U-Net architecture with (2) and without (1) Spatial Dropout.

Architecture Params
Dataset

BF-C2DL-HSC BF-C2DL-MuSC PhC-C2DL-U373 Fluo-N2DL-HeLa CFU

U-Net++ 9.99 M 0.8272 ± 0.0483 0.9189 ± 0.0029 0.9554 ± 0.0074 0.9763 ± 0.0001 0.8866 ± 0.0082
Plain U-Net 10.20 M 0.9501 ± 0.0054 0.9146 ± 0.0016 0.9544 ± 0.0045 0.9787 ± 0.0001 0.8919 ± 0.0059
Dense U-Net 9.68 M 0.9599 ± 0.0029 0.9186 ± 0.0020 0.9550 ± 0.0055 0.9785 ± 0.0001 0.8930 ± 0.0053

MultiRes U-Net 10.03 M 0.5317 ± 0.0261 0.6594 ± 0.0401 0.9510 ± 0.0163 0.9789 ± 0.0001 0.8664 ± 0.0180
Multi-Path U-Net (1) 10.03 M 0.9498 ± 0.0062 0.9224 ± 0.0016 0.9553 ± 0.0048 0.9789 ± 0.0001 0.9007 ± 0.0044
Multi-Path U-Net (2) 10.08 M 0.9604 ± 0.0050 0.9238 ± 0.0013 0.9612 ± 0.0059 0.9796 ± 0.0001 0.9025 ± 0.0053

The results show that the proposed multi-path approach outperforms the baseline
“plain” U-Net, U-Net++, Dense U-Net, and MultiRes U-Net architectures for all datasets.
This can be attributed to a novel prospect of individual receptive field pathways and an
enhanced wiring thereof, which provides a better flow of visual information (through
a different order of resolutions in each pathway) especially when segmented-out object
is not well-localized in the input space. Compared to U-Net++ and MultiRes U-Net
architectures, the proposed approach significantly boosts the performance and implies
that having only redesigned skip-connections with one backbone pathway might not be
sufficient for tackling some challenging cell segmentation problems. It should be also
noted that U-Net++ and MultiRes models significantly underperform on BF-C2DL-HSC and
BF-C2DL-MuSC datasets where segmented out regions of interest are scarce and extremely
small compared to the overall image size.

Table 3. Segmentation results with standard deviations for the foreground class under the Dice
similarity coefficient [31,32] for U-Net++, Plain U-Net, Dense U-Net, MultiRes U-Net, and the
proposed multi-path U-Net architecture with (2) and without (1) Spatial Dropout.

Architecture Params
Dataset

BF-C2DL-HSC BF-C2DL-MuSC PhC-C2DL-U373 Fluo-N2DL-HeLa CFU

U-Net++ 9.99 M 0.6554 ± 0.0965 0.8389 ± 0.0056 0.9161 ± 0.0143 0.9594 ± 0.0001 0.7784 ± 0.0158
Plain U-Net 10.20 M 0.9007 ± 0.0105 0.8302 ± 0.0030 0.9142 ± 0.0089 0.9634 ± 0.0001 0.7884 ± 0.0117
Dense U-Net 9.68 M 0.9202 ± 0.0057 0.8383 ± 0.0038 0.9151 ± 0.0108 0.9630 ± 0.0001 0.7903 ± 0.0104

MultiRes U-Net 10.03 M 0.1133 ± 0.0386 0.3630 ± 0.0712 0.9081 ± 0.0312 0.9637 ± 0.0001 0.7379 ± 0.0349
Multi-Path U-Net (1) 10.03 M 0.9002 ± 0.0121 0.8457 ± 0.0030 0.9159 ± 0.0094 0.9637 ± 0.0002 0.8057 ± 0.0086
Multi-Path U-Net (2) 10.08 M 0.9214 ± 0.0098 0.8487 ± 0.0025 0.9267 ± 0.0113 0.9648 ± 0.0002 0.8090 ± 0.0103
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It is important to note that the proposed multi-path model is also considerably more
accurate with respect to CFU images with very large number of segmented out colonies.
This is clearly observable in Figure 2, where the suggested method outperforms other
approaches by a large margin in terms of overall accuracy per bin for the number of
colonies over 130.

To give further insights and underpin the findings made, a comparative outlook on
the CFU segmentation results from all evaluated models on the images with small CFUs
is presented in Figure 3. The latter Figure 3 represents a zoomed-in region with small
colonies, ground-truth, and different segmentations obtained from all considered U-Net
architectures. As it can be noticed, the proposed multi-path U-Net architecture captures
CFUs that are either non-detected (by U-Net++, “plain” U-Net) or over-detected (by Mul-
tiRes U-Net) in a fine-grained way. Figure 4 presents different model segmentations with
high sensitivity to artifacts (e.g., reflections and captions). This figure represents a Petri
dish sample with differently sized CFUs along with text and lighting artifacts. As it may
be observed, the multi-path U-Net architecture outperforms other approaches on these
challenging artifacts as well. Figure 5 presents segmentation results on a very different
dataset, namely PhC-C2DL-U373 (glioblastoma-astrocytoma U373 cells on a polyacrylamide
substrate). The latter figure contains differently shaped U373 cells as well as some sub-
strate artifacts. Figure 5 demonstrates that the multi-path U-Net model delivers more
accurate segmentations and outperforms other approaches. All segmentations presented in
Figures 3–5 were obtained from the evaluations on the validation dataset.

(a) CFU sample (b) CFU ground-truth segmentation

(c) CFU segmentation by U-Net++ (d) CFU segmentation by Plain U-Net

Figure 3. Cont.
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(e) CFU segmentation by MultiRes U-Net (f) CFU segmentation by Multi-Path U-Net

Figure 3. CFU zoomed-in region on a Petri dish with small colonies, ground-truth, and different
segmentations obtained from all considered U-Net architectures. (a) Contains an unaltered image.
(b) Represents a ground-truth segmentation annotated manually by our partners. (c) Denotes
segmentations predicted by the U-Net++ model. (d) Denotes segmentations by the plain U-Net model.
(e) Denotes segmentations by the MultiRes U-Net model. Finally CFU segmentations predicted by
the multi-path U-Net model are given in (f). As it may be noticed, multi-path U-Net architecture
captures, in a fine-grained way, either non-detected (by U-Net++, Plain U-Net) or over-detected (by
MultiRes U-Net) CFUs. Best viewed in color.

(a) CFU sample (b) CFU ground-truth segmentation

(c) CFU segmentation by U-Net++ (d) CFU segmentation by Plain U-Net

Figure 4. Cont.
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(e) CFU segmentation by MultiRes U-Net (f) CFU segmentation by Multi-Path U-Net

Figure 4. CFU sample on a Petri dish with ground-truth and different segmentations obtained from
all considered U-Net architectures. The red bounded box highlights the region with the biggest
number of misclassified artifacts (e.g., reflections and captions). (a) Contains an unaltered Petri dish
image. (b) Represents a ground-truth segmentation annotated manually by our partners. (c) Denotes
segmentations predicted by the U-Net++ model. (d) Denotes segmentations by the plain U-Net model.
(e) Denotes segmentations by the MultiRes U-Net model. Finally CFU segmentations predicted by
the multi-path U-Net model are given in (f). It may be noticed that multi-path U-Net architecture
much better escapes challenging artifacts. Best viewed in color.

(a) PhC-C2DL-U373 sample (b) PhC-C2DL-U373 ground-truth segmentation

(c) PhC-C2DL-U373 segmentation by U-Net++ (d) PhC-C2DL-U373 segmentation by Plain U-Net

Figure 5. Cont.
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(e) PhC-C2DL-U373 segmentation by MultiRes
U-Net

(f) PhC-C2DL-U373 segmentation by Multi-Path
U-Net

Figure 5. PhC-C2DL-U373 sample with ground-truth and different segmentations obtained from all
considered U-Net architectures. (a) Contains an unaltered image with differently shaped glioblastoma-
astrocytoma U373 cells. (b) Represents a ground-truth segmentation available from the Cell Tracking
Challenge. (c) Denotes segmentations predicted by the U-Net++ model. (d) Denotes segmentations
by the plain U-Net model. (e) Denotes segmentations by the MultiRes U-Net model. Finally, cell
segmentations predicted by the multi-path U-Net model are given in (f). Best viewed in color.

To further substantiate the claims regarding the superiority of the multi-path U-Net
architecture, additional, MAE and accuracy scores are presented in Table 4. The best MAE
score is attained by the considered multi-path architecture. It should also be highlighted
that the accuracy score is of immense importance in the food safety applications. As it can
be seen, considering the more fine-grained binning of CFU counts, the proposed method
indeed outperforms other approaches by at least 6%. Hence, it can be implied that the
proposed multi-path U-Net model is highly suitable for CFU classification problems where
an improved U-Net architecture might ensure much more accurate early-stage detection of
the expired and contagious food samples.

Table 4. CFU segmentation results under MAE and accuracy scores at 3 and 20 bins (for the CFU
counts) for U-Net++, Plain U-Net, Dense U-Net, MultiRes, and multi-path U-Net with Spatial Dropout.

Architecture
Metrics

MAE Accuracy@3 Accuracy@20

U-Net++ 36.81 0.9000 0.5400
Plain U-Net 31.49 0.9000 0.5266
Dense U-Net 33.96 0.8867 0.5133

MultiRes U-Net 44.33 0.7750 0.4750
Multi-Path U-Net 29.40 0.8933 0.6000

4. Discussion

This paper discussed a novel approach to a ubiquitous U-Net architecture for solution
of biomedical cell segmentation problems. The proposed multi-path U-Net model embarks
on the idea of individual receptive field pathways with different resolutions provided by
differently-strided max pooling operations. At the very bottom layer, all the pathways
are intertwined using Layer Normalization. To strengthen the proposed architecture and
provide higher generalization capabilities, it has been proposed to include the Spatial
Dropout layer, which promotes independence between feature maps.

Empirical evaluation of the considered approach on five diverse cell and CFU seg-
mentation datasets supports the findings and promotes investigation into multi-pathway
structures, while proving the superiority of the corresponding architecture. All evaluated
datasets, albeit being very different in terms of RGB palettes, pixel intensities, and textures,
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share some common characteristics (e.g., the presence of an agar plate) and provide a solid
generalization ground for the presented model, which is capable of capturing fine-grained
discriminative features across different receptive fields. The latter clearly differentiates the
proposed approach from the existing state-of-the-art U-Net implementations, which deal
with a single hard-coded backbone pathway. Finally, our ablation study indicates that an
overall success of the proposed architecture cannot be attributed just to the presence of
Spatial Dropout, which promotes generalization and feature independence.

An intriguing finding of the analysis of the multi-path U-Net model is associated
with the interconnecting bottom layer, which at first performs concatenation across the
channel/filter axis of all the pathways and then applies Layer Normalization. The choice
of the latter is crucial for the overall success of the proposed architecture and our fur-
ther research might be focused on this promising direction as well. It is anticipated that
fine-tuning of the bottom-most layer’s hyperparameters or even replacing it with some
other conceptually different layer, such as in [20] or [29], might considerably improve the
generalization performance. Another promising future research avenue is an investigation
into the number of pathways needed to achieve even better generalization. Here, it is
anticipated that it is possible to make further improvements, to reach some feasible upper
bound, which is linked to the input dimensions before encountering any severe overfitting.
Future work will also be dedicated toward multi-head attention layers, which can play an
important role in the biological and medical video analysis.

Compared to the previous studies of Isensee et al. [15], Zhou et al. [9], Ibtehaz et al. [19]
and Kolařík et al. [27], the demonstrated multi-path U-Net architecture delivers better
results in terms of almost all considered metrics, and it proves to be an efficient model in
regard to eliminating image artifacts. While bolstering the standard U-Net architecture with
multiple pathways and intertwining layers, it should be noted that it can be more difficult
to understand the inner dynamics of such a system and to apply gradient-based attribu-
tion methods [37] for model explainability. The other evident limitation of the proposed
approach is the necessity for all pathways to provide consistent and compatible output
dimensions at the bottleneck layers, where they are coupled by means of concatenation and
Layer Normalization. Finally, we must admit that without a proper multi-GPU paralleliza-
tion, when nodes and operations of a TensorFlow graph are executed sequentially on one
GPU, we get a near-linear increase in computational time with each additional pathway in
the proposed approach compared to the “plain” U-Net architecture with a single backbone.
The latter can be solved implicitly by assigning each pathway to a separate GPU card.

To wrap up the discussion section, we summarize the pros and cons of the proposed
approach as follows.

1. Pros of the proposed approach:

• Resilient multi-pathway backbone with individual receptive field pathways.
• Better flow of visual information through a different order of resolutions in each

pathway.
• Enhanced generalization performance by means of the pathway wiring, Layer

Normalization, and Spatial Dropout.
• Possibility to introduce an implicit multi-GPU parallelization.

2. Cons of the proposed approach:

• Necessity for all pathways to provide consistent and compatible output dimen-
sions at the bottleneck layers.

• Near-linear increase in computational time on a single GPU card.
• Difficulties in the application of gradient-based attribution methods.

5. Conclusions

The analysis of biomedical images plays an important role in the healthcare and food
safety domains. In this article, a novel deep learning architecture was developed to address
several shortcomings of the original U-Net architecture. The proposed multi-path U-Net
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model combines individual receptive field pathways, which are merged together at the
bottom-most layer by concatenation and subsequent application of Layer Normalization
and Spatial Dropout. By experimental validation, better segmentation and generalization
results are achieved for all evaluated datasets. In this paper, the proposed method was
validated on cell and CFU segmentation tasks and proved to be a perspective approach
for practical considerations in the assessment of a microbiological contamination of food
samples, as well as for the monitoring of a cellular morphology, in vitro.
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