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Abstract: Corrosion and crack defects often exist at the same time in pipelines. The interaction
impact between these defects could potentially affect the growth of the fatigue crack. In this paper,
a crack propagation method is proposed for pipelines with interacting corrosion and crack defects.
The finite element models are built to obtain the Stress Intensity Factors (SIFs) for fatigue crack.
SIF interaction impact ratio is introduced to describe the interaction effect of corrosion on fatigue
crack. Two approaches based on extreme gradient boosting (XGBoost) are proposed in this paper
to predict the SIF interaction impact ratio at the deepest point of the crack defect for pipelines with
interacting corrosion and crack defects. Crack size, corrosion size and the axial distance between
these two defects are the factors that have an impact on the growth of the fatigue crack, and so they
are considered as the input of XGBoost models. Based on the synthetic samples from finite element
modeling, it has been proved that the proposed approaches can effectively predict the SIF interaction
impact ratio with relatively high accuracy. The crack propagation models are built based on the
proposed XGBoost models, Paris’ law and corrosion growth model. Sensitivity analyses regarding
corrosion initial depth and axial distance between defects are performed. The proposed method can
support pipeline integrity management by linking the crack propagation model with corrosion size,
crack size and the axial distance. The problem of how the interaction between corrosion and crack
defects impacts crack defect growth is investigated.

Keywords: pipeline; fatigue crack; corrosion; stress intensity factor; finite element; XGBoost

1. Introduction

Pipelines are widely used to transport oil and gas products over long distances. Ensur-
ing pipeline safety is a prerequisite for the transportation of fuels such as oil and natural gas.
Researchers are committed to constructing more accurate and effective health management
models and improving the integrity management system of pipelines. Researchers [1–3]
summarized the existing models in the field of pipeline integrity management and pointed
out that, although the current models consider the accuracy of inline inspection tools, they
are still too ideal and challenging to accurately reflect the proper working conditions of
the pipeline. Metal-loss corrosion defects are significant threats to pipeline integrity. Some
researchers use stochastic processes to describe uncertainties associated with the degrada-
tion of wall thickness incurred by corrosion defects. Wang et al. [4] proposed a stochastic
corrosion growth model using the geometric Brownian bridge process. Ossai et al. [5] used
a non-homogeneous linear growth pure birth Markov model to predict the degradation of
internal corrosion defects in oil and gas pipelines. Bazan and Beck [6] employed a Poisson
square wave process to describe the corrosion growth rate and compared the proposed
non-linear stochastic model with the linear corrosion growth model. Qin et al. [7] proposed
a corrosion growth model based on Inverse Gaussian process and Markov Chain Monte
Carlo simulation method. Pan et al. [8] also used Inverse Gaussian process to characterize
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the degradation process of defects. Peng et al. [9] proposed a Bayesian framework of
Inverse Gaussian process models. Remaining useful life of pipelines with multiple defects
was predicted in refs. [10–12]. Although these corrosion growth models take multiple
corrosion defects into account, they hardly consider the interacting effects among these
defects, let alone the interactions between different types of defects.

There are a number of papers investigating pipelines with interacting corrosion defects.
Benjamin et al. [13,14] presented a detailed literature review of pipelines with interacting
corrosion defects and a database of corroded pipe tests. Amandi et al. [15] proposed a finite
element model combined with a curve fitting method to estimate the remaining strength
of pipelines with interacting corrosion defects. Sun and Cheng [16] also implemented a
3D finite element model to investigate mechano-electrochemical interaction of multiple
longitudinal corrosion defects. Soares et al. [17] presented a model to analyze the integrity
of pipelines with interacting corrosion defects under internal pressure and thermal stresses.
Chen et al. [18] used a nonlinear finite element model to study the failure pressure of X80
pipelines with interacting corrosion defects. Kuppusamy et al. [19] investigated the effect
of interaction of corrosion defects on the buckling strength of pipelines. Assessing and
managing crack defects is also a vital part of pipeline integrity management. The remaining
useful life prediction for pipelines with a single crack defect was conducted in refs. [20–22].
As for pipelines with interacting crack defects, Zhang et al. [23] presented a numerical
model and fatigue simulations to analyze the fatigue behaviors. The corrosive environment
will affect the growth of the crack, which is called Stress Corrosion Cracking (SCC). Hu
et al. [24] applied the Monte Carlo method to predict and evaluate SCC. Lu et al. [25]
established an SCC crack growth model in a high pH environment and verified it through
experiments. Sekhar [26] summarized the effects of various crack interactions. This study
shows that it is necessary to include the analysis of the interaction coupling between crack
defects. These studies are all about the interaction between different defects of the same
type. However, the exploration of interaction impact between different types of defects is
still lacking in the existing literature.

In pipelines, common pipeline defects, such as crack and corrosion, exist at the same
time. Specifically, there is an interacting effect between the fatigue crack and corrosion
defect in the same pipeline segment. Pipeline corrosion will change the strength of the
pipeline in the surrounding area. If the corrosion and crack defects are adjacent, a certain
interaction coupling will occur and impact the Stress Intensity Factor (SIF) of the crack
surface, thereby affecting the propagation of fatigue crack. Therefore, the crack propagation
model that considers the interaction between these two types of defects is conducive to
formulating more accurate detection and maintenance strategies. Motivated by this need,
this paper plans to study the interacting effects of corrosion and crack defects on pipeline
crack propagation.

In this paper, a method was developed for predicting the propagation of fatigue
crack for pipelines with interacting corrosion and crack defects. Crack length, crack depth,
corrosion length, corrosion depth and the axial distance between the crack and corrosion
defects are all considered when developing this method. The finite element models are
built to obtain the SIF values with and without considering the interaction impact between
these defects. The powerful regression model, XGBoost [27], is applied in this paper to
predict the SIF interaction impact ratio. With synthetic data from finite element analysis
modeling, two approaches are provided to fit and predict the SIF interaction impact ratio
at the deepest point of the crack defect, considering the interaction between corrosion
and crack defects. The first one uses the data samples to directly fit and predict the SIF
interaction impact ratio with a XGBoost model. As for the second one, it is an indirect
prediction approach. It fits the SIF with and without considering the interaction impact,
respectively. Therefore, two XGBoost models are acquired in this approach. The prediction
results from these two models are utilized to calculate SIF interaction impact ratio. SIF
interaction impact ratio is defined as the ratio of the SIF considering the interaction impact
divided by the SIF without considering the interaction impact. With the proposed XGBoost
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models and traditional crack and corrosion growth models, a crack propagation model is
proposed for pipelines with interacting crack and corrosion defects, and simulation results
are obtained for sensitivity analysis.

The novelty of this paper is three-fold: (1) it studies the interaction impact between
different types of defects in pipelines, viz. crack and corrosion defects, depending upon
the crack size, corrosion size and the axial distance between them; (2) it introduces SIF
interaction impact ratio to describe the degree of the interaction impact and employs an
advanced machine learning algorithm XGBoost to fit and predict the SIF interaction impact
ratio; and (3) it proposes a method to predict the propagation of fatigue crack considering
the interaction impact.

The rest of the paper is organized as follows. Section 2 presents the finite element
analysis model for a pipeline with interacting corrosion and crack defects. Section 3 presents
the proposed crack propagation model based on XGBoost. In Section 4, experimental results
are obtained to analyze the interaction impact. Conclusions are presented in Section 5.

2. The Pipeline Finite Element Analysis Model
2.1. The FEA Model

In this section, the finite element software ANSYS® is used to model the pipeline
with interacting fatigue crack and external corrosion defects. In the modeling process,
the pipeline models with and without corrosion defects are established, respectively, to
analyze the interaction impact of corrosion defect on crack propagation. The material of the
modelled pipeline is API 5L X70. The outside diameter of the pipeline is set as 914.4 mm,
and the wall thickness is 15.875 mm. The internal pressure is assumed to be 1 MPa for
modeling. The fatigue crack is modeled as a semi-elliptical shape with a length of 15.2 mm
and a crack depth in the range of 2 mm–12 mm. The SIF values corresponding to the
deepest point and edge point can be obtained through stress analysis. The internal pressure
of the pipeline is 1 MPa. At the same time, there are cuboid corrosion defects on the outer
surface of the pipeline, and the axial distance from the crack center to the corrosion center
moves from 150 mm to 500 mm. The depth of the corrosion defect is from 2 mm to 14 mm,
with an increment of 1 mm each time. The geometric modeling of a corroded pipeline is
shown in Figure 1, and the finite element model built in this paper is shown in Figure 2.
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2.2. Validation of FEA

Generally, fracture in engineering structures can be classified into three types: opening
mode (I), sliding mode (II) and tearing mode (III), and SIF is used to reflect these modes.
Compared with mode II and III, SIF corresponding to mode I is much larger, so the mode
I SIF dominates the propagation of fatigue crack. In this paper, mode I SIF was only
considered in the pipeline remaining useful life prediction. The method based on API579
for the partial verification of FEA model was employed. According to API579 criterion, the
SIF of mode I of the pipeline is calculated as follows:
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M1 =
2π√
2Q

(3G1 − G0)−
24
5

(9)

M2 = 3 (10)

M3 =
6π√
2Q

(G0 − G1) +
8
5

(11)

where p is the internal pressure; Ri is the internal radius; Ro is the outer radius; a is the
crack depth; Q is a parameter based on crack geometry; G0, G1, G2, G3, G4, M1, M2, M3, Ai,j
(i ∈ {0,1,2,3,4,5,6}, {j ∈ 0,1}), β are influence coefficients; φ is the included angle; c is the
half crack length; and K is the mode I SIF.

The finite element simulation results are compared with the SIF results calculated
according to API 579 criterion. The results are shown in Figure 3. It can be found from the
figure that for the pipeline without corrosion defects, the SIF obtained by finite element
simulation is very close to the results of theoretical calculation for a large portion of crack
depth range, and the maximum error is less than 5%. The accuracy of finite element
simulation is proved. Then, the SIF of pipeline with corrosion defects is studied. As is
obtained from Figure 3, for the same crack depth, the SIF of the pipeline with corrosion
defects is greater than that without corrosion defects. With the increase in crack depth, SIF
also increases gradually. The comparison results demonstrate that there is an interacting
impact of corrosion and crack defects on SIF values. Therefore, it is necessary to study the
interacting impact between corrosion and crack defects.
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3. The Proposed Crack Propagation Method Based on Extreme Gradient-Boosting Algorithm
3.1. The Extreme Gradient-Boosting Model

Extreme Gradient Boosting (XGBoost) is an ensemble machine learning algorithm
based on Decision Tree and uses Gradient Boosting as the framework. It is developed
from Gradient-Boosting Decision Tree (GBDT). GBDT is an additive model based on
boosting, which is a general ensemble method. It employs a forward stagewise algorithm
for greedy learning in the training process. In each iteration, GBDT learns a Classification
and Regression Tree (CART), where Figure 4 is an example of CARTs, to fit the residual error
between the prediction result from previous CARTs and the actual value of the training
dataset. In other words, it is there to build a model from the training dataset and create
a second model to correct the residual error from the first model. Then, the models are
added until the training dataset is predicted relatively accurately, or a maximum number
of models is added.
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Several optimization strategies are added into XGBoost model. Firstly, in order to
improve computational accuracy, XGBoost uses the second-order derivative to optimize the
objective function. Conversely, GBDT only uses the first-order derivative for optimization.
In addition, the objective function of XGBoost utilizes regularization term to simplify the
model and avoid overfitting. On the contrary, the GBDT does not have any regularization
term in the objective function. XGBoost is able to automatically process default values and
compute in parallel through a block storage structure, which cannot be implemented in
GBDT. Since XGBoost has a high precision on the second-order derivative and fast parallel
computation speed, it is very efficient in data processing and data modeling. In addition,
XGBoost is relatively flexible, as it supports classification and regression, and it is able to
provide customized objective function. XGBoost can be used with multiple programing
languages and platforms. Therefore, XGBoost is widely used in the areas of data mining,
recommender system and so on.

The objective function of XGBoost in the training process consists of two parts: loss
function and regularization term:

Obj(Θ) = L(Θ) + Ω(Θ) (12)

where Θ is the parameters obtained from the training processing; L(Θ) is the training
error, which denotes the matching degree of the model to the training dataset; Ω(Θ) is
the regularization term, which represents the complexity of the model. Assuming that the
training dataset is S = {(x1, y1), (x2, y2), . . . , (x n, yn)}, the training error L can be expressed
as the following equation:

L =
n

∑
i=1

l(yi, ŷi) (13)

where yi and ŷi are the target output and the predicted output of the i-th sample xi (xi ∈ Rz, z
is the number of features of the dataset), respectively, and n is the number of samples in
the training dataset. For the proposed gradient-boosted machine, l(yi, ŷi) = (yi − ŷi)

2.
The objective is to minimize Obj(Θ), which means L(Θ) and Ω(Θ) should be relatively
small. During the training process, it is required to balance the tradeoffs between bias and
variance. Bias is controlled by L(Θ) and variance is controlled by Ω(Θ). L(Θ) and Ω(Θ)
would be relatively large if underfitting. If overfitting, Ω(Θ) would also be relatively large,
since the model is weak on scalability and stability. Assuming there are V CARTs in the
model, then

ŷi =
V

∑
v=1

fv(xi), fv ∈ F (14)
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where F is the function space of all the CARTs in the model. fv(x i) represents the weight of
the i-th sample falling on the leaf in the v-th tree. For the example in Figure 4,
f1(sample2) = w1-1, f2(sample2) = w2-2, f (sample2) = w1-1 + w2-2. Then, the model pa-
rameters that will be optimized from the training process are Θ = {f 1, f 2, . . . , f V}, where
fv denotes the weight distribution of the samples falling on the leaf in the v-th tree. The
objective function is shown in Equation (15):

Obj =
n

∑
i=1

l(yi, ŷi) +
V

∑
v=1

Ω( fv) (15)

Next, the objective function will be optimized in three steps. The first step is to use the
second-order Taylor series expansion to optimize the loss function. The predicted values
can also be expressed as

ŷ(u)i = ŷ(u−1)
i + fu(xi) (16)

which is the same as the expression of the GBDT. ŷ(u)i is the predicted value of xi in tree u
after the i-th iteration. Then, the objective function after the i-th iteration can be represented
using Equation (17):

Obj(u) =
n

∑
i=1

l(yi, ŷ(u−1)
i + fu(xi)) +

u

∑
v=1

Ω( fv) (17)

Using the second-order Taylor series expansion, the loss function becomes

n

∑
i=1

l(yi, ŷ(u−1)
i + fu(xi)) ≈

n

∑
i=1

[l(yi, ŷ(u−1)
i ) + gi fu(xi) +

1
2

hi fu
2(xi)] (18)

where

gi =
d(l(yi, ŷ(u−1)

i ))

d(ŷ(u−1))
(19)

hi =
∂2(l(yi, ŷ(u−1)

i ))

∂(ŷ(u−1))
2 (20)

and the objective function is expressed in Equation (21):

Obj(u) ≈
n

∑
i=1

[l(yi, ŷ(u−1)
i ) + gi fu(xi) +

1
2

hi fu
2(xi)] +

u

∑
v=1

Ω( fv) (21)

The second step is to optimize the regularization term by expanding the regularization
term and removing the constant term. Since forward calculation is adopted in XGBoost,
then the structure of the (u − 1)-th tree has been confirmed:

l(yi, ŷ(u−1)
i ) = constant (22)

u
∑

v=1
Ω( fv) = Ω( fu) +

u−1
∑

v=1
Ω( fv)

= Ω( fu) + constant
(23)

Then the objective function is expressed as follows:

Obj(u) ≈
n
∑

i=1
[l(yi, ŷ(u−1)

i ) + gi fu(xi) +
1
2 hi fu

2(xi)] + Ω( fu) + constant

=
n
∑

i=1
[gi fu(xi) +

1
2 hi fu

2(xi)] + Ω( fu) + [
n
∑

i=1
l(yi, ŷ(u−1)

i ) + constant]

=
n
∑

i=1
[gi fu(xi) +

1
2 hi fu

2(xi)] + Ω( fu) + constant

(24)
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After removing the constant term, the simplified objective function is

Obj(u) ≈
n

∑
i=1

[gi fu(xi) +
1
2

hi fu
2(xi)] + Ω( fu) (25)

The last step of the optimization process is to merge the coefficients of the first-degree
term and the quadratic term. Regarding the definition of a tree, the weight vector of leaves
is set as w ∈ RTand the mapping relationship between the leaves (viz. the structure of
the tree) is defined as q : RZ → {1, 2, 3, . . . , T} where T is the number of leaves in the
tree. Then, q(x) denotes the location of the leaf, for sample x. For the example in Figure 4,
q(sample2) = 1 in tree 1, q(sample2) = 2 in tree 2. ft(x) can be represented by

fu(x) = wq(x) (26)

Here, the number of leaves T and smoothness of leaf weight (viz. L2 norm of leaf
weights) are used to describe the complexity of the tree, so

Ω( fu) = γT +
1
2

λ
T

∑
j=1

wj
2 (27)

For the example in Figure 4, Ω( f1) = γ3 + 1
2 λ
(
w1−1

2 + w1−2
2 + w1−3

2), Ω( f2) =

γ2 + 1
2 λ
(
w2−1

2 + w2−2
2). Ij = {i | q(xi) = j} is the instance set in leaf j, j = 1, 2, . . . , T.

Grouping all the training samples based on leaves and utilizing Equations (26) and (27),
then, the objective function is

Obj(u) ≈
T

∑
j=1

[(∑
i∈Ij

gi)wj +
1
2
(∑

i∈Ij

hi + λ)w2
j ] + γT (28)

At last, merging the first-degree term and the quadratic term, then

Obj(u) ≈
T

∑
j=1

[Gjwj +
1
2
(Hj + λ)w2

j ] + γT (29)

where
Gj = ∑

i∈Ij

gi, Hj = ∑
i∈Ij

hi (30)

For each leaf j, the objective function is expressed as follows:

f (wj) = Gjwj +
1
2
(Hj + λ)w2

j (31)

As the objective function of each leaf in the overall objective function is independent,
then the overall objective function will achieve the minimum value when each leaf’s
objective function is minimized. The optimal solution of the quadratic function of one
variable is

w∗j = −
Gj

Hj + λ
(32)

At this point, each leaf weight is optimized, and the overall objective function achieves
its optimal value, viz. the minimum value:

Obj∗ = −1
2

T

∑
j=1

Gj

Hj + λ
+ γT (33)
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The structure of the tree is also the best at this time. The optimal objective functions of
Figure 4 are shown in Figure 5. The fewer objective functions there are, the better the tree
structures are.
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In the actual training process, finding the optimal split point is a key problem. The
applicable methods include greedy algorithm, approximate algorithm, weighted quantile
sketch and sparsity-aware split finding. The greedy algorithm is the most commonly used.

3.2. The Proposed Model Based on XGBoost

In the proposed method, the scikit-learn wrapper interface for XGBoost was utilized
to construct models to predict the SIF interaction impact ratio at the deepest point of the
crack defect for pipelines with corrosion and crack defects. Based on the observations from
finite element modeling, the size of crack and corrosion defects, and the axial distance
between them, can affect SIF results. Therefore, the input variables of the proposed model
are the length and depth of the crack defect, the length and depth of the corrosion defect,
and the axial distance between the crack and the corrosion defects. The output variable is
the interaction impact ratio α. The input and output variables are shown in Table 1. The
crack length is assumed in the range of 15.2 mm–76.0 mm, and the crack depth is in the
range of 2 mm–12 mm. The axial distance between the corrosion and crack defects is from
150 mm to 500 mm. The depth of the corrosion defect is from 2 mm to 14 mm.

Table 1. Input and output variables of the proposed XGBoost models.

Input Variables Output Variables

Crack length SIF considering interaction impact (K*)

Crack depth SIF without considering interaction
impact (K)

Corrosion length Interaction impact ratio (α)
Corrosion depth

Axial distance between crack and corrosion defects

In this paper, two approaches are provided to fit α. The first one is to directly construct
a XGBoost model to predict α. The second one is to construct two XGBoost models to
fit SIF values with and without considering the interaction impact, which are K* and K,
respectively. Then, the interaction impact ratio can be calculated with the formula α = K*/K.
It is worth noting that only crack length and crack depth have an impact on SIF without
considering interaction impact. Then, in the process of fitting K, there are only two input
variables, viz. crack depth and crack length.



Sensors 2022, 22, 986 10 of 21

The samples used for modeling are synthetic data from finite element modeling. In
total, 385 pieces of data are generated. A share of 80% of these data was randomly selected
as the training set. The remaining data are the testing set. The scikit-learn API for XGBoost
regression has a lot of parameters to set. In this paper, five parameters are selected for
parameter tuning to get the best model structure and parameters: the number of gradient-
boosted trees, the maximum depth of a tree, the minimum sum of instance weight needed
in a child, L1 and L2 regularization terms on weights. The adjusting ranges for these five
parameters are shown in Table 2. Increasing the maximum depth of a tree will make the
model more complex, and it will be more likely to overfit, so the maximum value for
this parameter is set to 10 in this paper. If the sum of instance weight in a leaf node is
less than the minimum sum of instance weight needed in a child, the building process
will stop further partitioning. Regarding the L1 and L2 regularization terms on weights,
increasing their values will make the model more conservative. The learning rate is set at
0.1, which updates the weights to prevent overfitting and makes the boosting process more
conservative. For the other parameters, such as the initial prediction score of all instances
(global bias), minimum loss function required to make a further partition on a leaf node of
the tree, etc., the default values in the scikit-learn API are applied.

Table 2. Parameter tuning for XGBoost models.

Parameters Adjusting Ranges

Number of gradient-boosted trees {40,50,60,70,80,90,100,110}
Maximum depth of a tree {3,4,5,6,7,8,9,10}

Minimum sum of instance weight needed in a child {1,2,3,4,5,6}
L1 regularization term on weights {0.05,0.1,1,2,3}
L2 regularization term on weights {0.05,0.1,1,2,3}

In the training process, a grid search method with 5-fold cross-validation was ap-
plied to select the best combination of the tuning parameters based on the determination
coefficient R2, which describes the goodness of fit of the current trained model. In other
words, the original training set was re-segmented into the training set and validation set
with the ratio of 4:1 five times, as shown in Figure 6. For each combination of the tuning
parameters, the training set was used to train the model, and the validation set was used
to evaluate the model’s performance five times and compute the average performance,
viz. average R2, with these five times’ results. This method can reduce training bias and
improve the model’s stability. After all the combinations’ results are obtained, the model
with the highest R2 has the best combination of the tuning parameters. The values of R2

are between 0 and 1. A value much closer to 1 indicates the regression model has a higher
fitting degree.

In the actual training process, a pipeline of transforms with a final estimator (viz.
model to be fitted) is utilized. This method is to sequentially apply a list of transforms
and a final model. Intermediate steps of the pipeline must implement fit and transform
methods, while the final model only needs to implement the fit method. In this paper, a
pipeline consisting of a standard scaler and an XGBoost model is applied. The standard
scaler is to normalize data to make its features have zero mean and unit variance. The
standard scaler fits to the training set and transforms the training set and validation set.

The overall process of the first approach for constructing the XGBoost model is
as follows:

Step 1. Randomly split the samples (output variable is SIF interaction impact ratio α)
into training set and testing set with the ratio 8:2.

Step 2. Employ a pipeline consisting of a standard scaler and an XBoost model to the
original training set for training. In detail, the 5-fold cross-validated grid search method is
applied to the original training set to select the best model structure and parameters among
all the combinations of the tuning parameters. The model with the highest R2 is the best
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model. The best model is then saved and can be directly applied to new data to acquire
prediction values.

Step 3. Feed the testing set to the trained model to obtain the value of R2, which
indicates the ability fitting to new data with the trained model. The closer that R2 is to 1,
the better structured the model is. If the value is close to 1, then the trained model can be
used to directly predict interaction impact ratio α.
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Similarly, the overall process of the second approach for constructing the two XGBoost
models is:

Step 1. Randomly split the samples (output variables are SIF values with and with-
out considering interaction impact, viz. K* and K) into training set and testing set with
the ratio 8:2.

Step 2. When the output variable is K, the input’s variables are crack depth and crack
length, and employ a pipeline of a standard scaler and an XGBoost model to the original
training set for training. In the same way, the 5-fold cross-validated grid search method
is applied to the original training set to select the best model. The best model is saved to
predict K.

Step 3. When the output variable is K*, the input includes all the five input variables
and employs a pipeline of a standard scaler and an XGBoost model to the original training
set for training. In the same way, the 5-fold cross-validated grid search method is applied to
the original training set to select the best model. The best model is then saved to predict K*.
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Step 4. Respectively, feed the two testing sets to the two trained models to obtain the
values of R2. If the two values of R2are close to 1, then the two trained models can be used
to predict SIF with and without considering interaction impact, respectively.

Step 5. Calculate predicted interaction impact ratio α on the testing set with predicted
K and K* and compare the predicted values with the target ratio values by calculating R2.

3.3. The Pipeline Corrosion and Fatigue Crack Growth Models

In the proposed model, corrosion defect is assumed to grow linearly. The growth of
the corrosion depth is characterized by

d(t) = d0 + gdt (34)

where d0 represents the corrosion initial depth, gd is the growth rate of corrosion depth,
and t is the propagation time. The corrosion depth is used as the input variable in the
XGBoost model to calculate the SIF interaction impact ratio. In this paper, the corrosion
depth growth rate is assumed to be 0.3 mm/year [11].

Pipeline fatigue crack growth is predicted using the physics-based methods governed
by Paris’ law, which was employed in [28–30]. Based on Paris’ law and the proposed model
for evaluating the SIF interaction impact between corrosion and crack defects, the fatigue
crack growth model is introduced in the following equation:

da/dN = C(∆Kα)m (35)

where da/dN is crack growth rate; a is crack depth; N is the number of loading cycles; α is
the SIF interaction impact ratio; and ∆K is the range of SIF. C and m are material-related
model parameters, which can be estimated via experiments. In this paper, it is assumed that
model parameters C = 5 × 10−12, m = 3 [21]. Methods based on FE and XGBoost models
are employed to calculate the SIF and SIF interaction impact ratio at the deepest point of
the fatigue crack. In this study, this paper focuses on the crack depth growth, since the
length is mostly unchanged.

4. Results

When directly fitting the SIF interaction impact ratio, the average determination coeffi-
cient on the validation sets during cross validation is 0.9935, and the standard deviation
is 0.0041. Thus, it can be seen that the trained model has a relatively high stability. The
prediction result on the testing set is as Figure 7 shows. On the testing set, the determination
coefficient R2 is 0.9876, which means the developed model can accurately predict the SIF
interaction impact ratio. At this point, the number of gradient-boosted trees is 110, the
maximum depth of a tree is 6, the minimum sum of instance weight needed in a child is 1,
and the L1 and L2 regularization terms on weights are 0.05 and 0.1, respectively.

The prediction results of the SIF interaction impact ratio are shown in Figure 8. As
observed in Figure 8, it can be found that the interaction impact ratio decreases as the
crack depth a increases. From Figure 8a to Figure 8c, as corrosion depth increases from
4 mm to 10 mm, the SIF interaction impact ratio increases a lot when the axial distance
between two corrosion and crack defects remains the same. Thus, the corrosion depth
does affect the SIF interaction impact ratio a lot. The highest SIF interaction impact ratio in
Figure 8c is 1.1848, which means it is necessary to consider the interaction impact between
these two defects in the crack propagation process. The comparison results for different
corrosion depths when crack depth is equal to 6 mm are shown in Figure 8d. From all these
four figures, it can be found that the SIF interaction impact ratio is overall decreasing as
the axial distance increases. These ratios first decrease quickly when the axial distance is
smaller than around 175 mm and then decrease relatively slowly when the axial distance is
in the range of 175 mm and 240 mm. When the axial distance is bigger than 240 mm, the
decreasing speed is getting even smaller. This is because the corrosion defect moves away
from the stress concentration zone of the crack defect.
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For the second approach, the average determination coefficient on the validation sets is
1.0000 and the standard deviation is 0.0000 when predicting SIF values without considering
interaction impact, which means the trained model is relatively stable. Here, the number
of gradient-boosted trees is 110, the maximum depth of a tree is 3, the minimum sum of
instance weight needed in a child is 1, and the L1 and L2 regularization terms on weights
are both 0.05. The prediction result on the testing set is shown in Figure 9, where the
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determination coefficient R2 is 1.0000. When considering interaction impact, the average
determination coefficient on the validation sets is still 0.9998, and the standard deviation is
still 0.0001. However, the selected structure and parameters of the model are different. The
number of gradient-boosted trees is 110, the maximum depth of a tree is 4, the minimum
sum of instance needed in a child is 2, and the L1 and L2 regularization terms on weights
are 0.1 and 1, respectively. On the testing set, the determination coefficient R2 is 0.9992, and
the prediction result is as displayed in Figure 10. It can be seen that for these two predictive
models, the performance is quite stable on the validation sets and very accurate on the
testing set. Therefore, it can be concluded that these two XGBoost models can predict
SIF values with and without considering interaction impact efficiently and accurately.
Furthermore, this indicates these two models are able to predict interaction impact ratio
efficiently and accurately, since the ratio is calculated from the predicted results of these two
models. After the predictive results are obtained from these two models, the SIF interaction
impact ratio α can be calculated with the equation K*/K. For the testing set in this paper,
the result is shown in Figure 11. At this time, the determination coefficient R2 of the SIF
interaction impact ratio on the testing set is 0.9852. From the experimental result, it can
also be concluded that the two trained XGBoost models can predict SIF interaction impact
ratio at the deepest point of the crack defect, considering the interaction between corrosion
and crack defects accurately and efficiently.
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The comparison results of SIF values with and without considering interaction impact
are shown in Figure 12. When increasing the crack depth a from 2 mm to 9 mm, K* and
K values both gradually increase as expected. From Figure 12a to Figure 12c, K* values
gradually increase, while K values remain the same as the corrosion depths increases. From
the observations of these in Figure 12d, K* and K values have relatively big differences
when the axial distance between two defects is smaller than around 240 mm.
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The crack propagation models are built based on the proposed XGBoost model and
Paris’ law. The crack initial depth is set at 2 mm, since SIF interaction impact ratio is
relatively large when crack depth is small. The corrosion initial depth is assumed at 6 mm.
Figure 13a–d show the comparison results of crack depth growth models for different axial
distances between two defects using approach 1 and 2, respectively. The red dash lines
represent the crack critical depth, which is approximately 80% of the wall thickness. When
the crack depth exceeds the crack critical depth, it is considered a failure. The comparison
results shown in Figure 13 indicate that the crack depth predicted by approach 2 reaches
the threshold more quickly than approach 1. The comparison results of the crack depth
propagation curves for different axial distances based on approach 2 are shown in Figure 14.
If the interaction impact between two defects is not considered, it takes about 14.8 years
to fail. Meanwhile, when considering the interaction impact between two defects by
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implementing the proposed model, the failure time changes from 9.2 to 13.8, 14.0 and
14.5 years, as the axial distance changes from 150 to 200, 300 and 350 mm. There is a big
difference between the two crack propagation curves in Figure 13a, since the corrosion
defect is in the stress concentration zone (axial distance smaller than 175 mm).
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To perform sensitivity analysis regarding corrosion initial depth, the aggressive case
was studied, in which the axial distance was set at 150 mm. The corrosion initial depth
varies from 2 mm to 8 mm. Figure 15a–d show the results of crack depth growth models
for different corrosion initial depths. These figures indicate that the crack depth grows
more quickly using approach 2 than approach 1. The comparison results of the crack depth
propagation curves for different corrosion initial depths based on approach 2 are shown in
Figure 16. If not considering the interaction impact between two defects, it also takes about
14.8 years to fail. From the comparison results in Figures 15 and 16, the time to reach critical
crack depth is 10.8, 9.9, 9.2 and 8.8 years, respectively, as the corrosion initial depth changes
from 2 to 3, 6 and 8 mm. From the experimental results obtained from Figures 13–16, it
can be concluded that the interaction impact between corrosion and crack defects affects
the propagation of fatigue crack a lot. Thus, it is necessary to consider the SIF interaction
impact ratio in the remaining useful life prediction, especially when the corrosion defect is
in the stress concentration zone.
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5. Conclusions

The existing reported work only focuses on pipeline life prediction with single or
multiple defects of the same type. The interaction impacts between different types of defects
are not considered. In this work, the interaction impacts between crack and corrosion
defects were studied, and a fatigue crack propagation method considering these impacts
was proposed based on XGBoost models and Paris’ law. Crack size, corrosion size, and the
axial distance between these two defects were all considered in the proposed method. In
addition, this paper introduced SIF interaction impact ratio to describe how the corrosion
defect affects the stress concentration zone of the fatigue crack. Two approaches were
implemented for SIF interaction impact ratio prediction. The first one directly fitted and
predicted SIF interaction impact ratio with the synthetic samples from finite element
modeling. The second one fitted and predicted the SIF with and without considering
interaction impacts, respectively, and then calculated the SIF interaction impact ratio.
Examples were used to demonstrate the proposed method. The determination coefficients
of these two approaches on the testing sets were 0.9876 and 0.9852, respectively, which
was quite close to 1. Therefore, it can be concluded that the developed method can predict
fatigue crack growth accurately. Several key findings are listed below:

The SIF interaction impact ratio decreases as the crack depth increases. It increases as
the corrosion depth increases.

The SIF interaction impact ratio is gradually decreasing as the axial distance increases.
This ratio is relatively large when the axial distance is smaller than 240 mm.

The time to reach critical crack depth decreases as the corrosion initial depth increases
or the axial distance decreases.

The method developed in this paper can support the decision making in pipeline
integrity planning, especially when the corrosion defect is relatively close to the crack
defect. However, the proposed method only considered the interacting impact between
two defects. More efficient crack and corrosion propagation models considering more
than two defects are desired in future research. Another research topic is to develop crack
propagation models for different types of crack shapes instead of semi-elliptical shapes.
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Nomenclature

p pipeline internal pressure
a crack depth
c half crack length
Ri pipeline internal radius
Ro pipeline outer radius
Q crack geometry parameter in API 579
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G0, G1, G2, G3, G4,
M1, M2, M3, Ai,j influence coefficients in API 579
(i ∈ {0,1,2,3,4,5,6},
j ∈ {0,1}), β

φ included angle in API 579
Obj objective function of XGBoost
Θ parameters obtained from the training processing in XGBoost
L training error in XGBoost
Ω regularization term in XGBoost
S training dataset
l training error of each sample in XGBoost
xi i-th sample
yi target output of the i-th sample
ŷi predicted output of the i-th sample
z number of features in the dataset
n number of samples in the training dataset
V number of classification and regression trees in XGBoost
v v-th classification and regression tree in XGBoost
fv weights of samples falling on the leaf in the v-th tree
F function space of all the classification and regression trees in XGBoost
gi first-order derivative of training error for i-th sample in XGBoost
hi second-order derivative of training error for i-th sample in XGBoost
w weight vector of leaves in classification and regression tree
T number of leaves in classification and regression tree
q mapping relationship between the leaves in classification and regression

tree (viz. the structure of the tree)
γ coefficient for number of leaves in regularization term in XGBoost
λ coefficient for L2 norm of leaf weights in regularization term in XGBoost
Ij instance set in leaf j
Gj sum of first-order derivatives of training error for leave j in XGBoost
Hj sum of second-order derivatives of training error for leave j in XGBoost
K SIF without considering interaction impact
K* SIF considering interaction impact
α interaction impact ratio
d corrosion depth
d0 corrosion initial depth
gd growth rate of corrosion depth
t propagation time
m, C material parameters in Paris’ law
N loading cycles
∆K the range of SIF
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