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Abstract: The paper is devoted to the extension of Brown’s model of enzyme kinetics to the case
with distributed delays. Firstly, we construct a multi-substrate multi-inhibitor model using discrete
and distributed delays. Furthermore, we consider simplified models including one substrate and
one inhibitor, for which an experimental study has been performed. The algorithm of parameter
identifications was developed which was tested on the experimental data of solution conductivity.
Both the model and Kohlrausch’s law parameters are obtained as a result of the optimization
procedure. Comparison of plots constructed with the help of the estimated parameters has shown
that in such case the model with distributed delays is more chemically adequate in comparison with
the discrete one. The methods of generalization of the results to the multi-substrate multi-inhibitor
cases are discussed.

Keywords: electrochemical biosensor; enzyme kinetics; Michaelis–Menten model; Brown’s model;
mass action law; substrate; inhibitor; time delays; parameter identification

1. Introduction

Delayed systems play an important role in chemical kinetics [1,2]. Even for the
complex network of the first order reactions, it can be described by relatively simple system
of delayed differential equations, in which the effects of intermediates are replaced by time
lags [3,4].

The interaction between two chemicals A and B, forming the product C, is not instant
but is during some time interval τ > 0. Hence, the law of mass action as the fundamental
law of chemical kinetics should be reformulated schematically as:

A(t) + B(t) k−−→ C(t + τ)

leading us to the differential equation with delay:

dC(t)
dt

= kA(t− τ)B(t− τ), (1)

which is called the law of delayed mass action.
Since delay τ is rather a random variable than a deterministic one and can accept

various values according to some distribution laws, here, we offer a considerably more
advanced model which includes continuously distributed delays (or simply, distributed
delays), which can be described by the differential equation with distributed delay:

dC(t)
dt

= k
∫ 0

−∞
f (s)A(t + s)B(t + s)ds, (2)
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where f (s) is the probability density function of time delay τ. The model (2) can be referred
to as the law of mass action with distributed delay. In practice, we can consider an integral
with limited bounds in (2), using the properties of the distribution of random variables
such as Chebyshev’s inequality, as it will be shown in Section 3.1.

The reactions which are used in electrochemical biosensing come from the reactions
that are catalyzed by an enzyme. They are commonly known as reversible [5] or irre-
versible [6] reactions. The irreversible one-complex Michaelis–Menthen (IR1CMM) mecha-
nism is a keystone in modeling enzyme kinetics. Its reaction scheme

E + S
k1−−⇀↽−−

k−1
C k2−−→ E + P

represents a two-step process [7–9], where the enzyme E combines with the substrate S to
form a complex C, which then breaks down into the product P, releasing E in the process.
The mechanism IR1CMM is described with the help of ordinary differential equations:

dnS
dt

= k−1nC − k1nSnE,

dnE
dt

= (k−1 + k2)nC − k1nSnE,

dnC
dt

= k1nSnE − (k2 + k−1)nC,

dnP
dt

= k2nC.

(3)

Here, for any substance A, we denote its concentration at instant t as nA(t).
An application of the delayed mass action law to enzyme kinetics was inspired by

Brown’s model, formulated in [10], where complex C has a lifetime τ before being decayed.
We call the following reaction scheme:

E(t) + S(t)
kd−−→ E(t + τ) + P(t + τ)

the irreversible one-complex Brown’s (IR1CB) mechanism, which can be described with
the following system of delayed differential equations:

dnS(t)
dt

= −kdnE(t)nS(t),

dnE(t)
dt

= −kdnE(t)nS(t) + kdnE(t− τ)nS(t− τ),

dnP(t)
dt

= kdnE(t− τ)nS(t− τ).

(4)

When comparing mechanisms IR1CMM and IR1CB, Roussel, M.R has introduced the
notion of a chemically acceptable model [1]. While evidencing that the model using delayed
mass action law is more adequate, the most significant failure of the lag model was that the
solutions of these equations oscillate around the equilibrium point, which is forbidden by
the law of microscopic reversibility. Oscillatory enzyme reactions are found in a number of
enzymatic systems. Goldbeter, A. investigated the influence of Michaelis–Menten kinetics
on the oscillatory behavior in an enzyme system [11].

Albornoz, J.M. and Parravano, A. have also shown that the models based on de-
layed differential equations (DDE) oscillate at small values of the Michaelis–Menthen
constant, which cannot be seen with the help of ordinary differential equations (ODE) [12].
Piephoff, D.E. et al. has described the conformation of non-equilibrium enzyme kinetics,
where a traditional Michaelis–Menten model is extended to a generalized form, which
includes corrections coming from informational currents within combined cyclic kinetics
loops [13].
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Hinch, R. and Schnell, S. studied the conditions of equivalence of enzyme–substrate
reaction mechanisms involving multiple complexes with a distributed delay system without
complexes [14]. It was shown that the distribution of the delay is determined by the number
of intermediate complexes and the rates of the individual reaction mechanisms.

In continuing the research [14] and applying the mass action law with the distributed
delay (2), we offer the following continuously distributed delay model:

dnS(t)
dt

= −kdnE(t)nS(t),

dnE(t)
dt

= −kdnE(t)nS(t) + kd

∫ 0

−∞
f (s)nE(t + s)nS(t + s)ds,

dnP(t)
dt

= kd

∫ 0

−∞
f (s)nE(t + s)nS(t + s)ds,

(5)

where f (s) is density function of delay distribution. In the manuscript [15], theoretical
knowledge about kinetics of single molecule associated with the Michaelis–Menten model
has been given.

This study was motivated by the desire to describe all possible complexes created
during enzyme–substrate interaction with the help of the delay density function. Moreover,
we offer an effective method for its parameter estimation in one special case.

2. Materials and Methods

In this study, the generalized model of enzyme kinetics describing multi-substrate
multi-inhibitor reactions was developed and analyzed. The model is described with the
help of differential equations with distributed time delays. This model was applied to
investigate the chemical kinetics in the cases of enzyme–substrate and enzyme–substrate–
inhibitor interactions.

2.1. Generalization to the Multidimensional Case of Competitive Inhibition

In the case of multi-substrate mutli-inhibitor reactions (which are of mixed inhibition
type, since they combine the effects of competitive and uncompetitive inhibitions), we
consider M substrates S1, · · · , SM, and N inhibitors I1, · · · , IN , acting due to the “mixed”
model. Namely, we assume that the substrates and inhibitors are acting independently due
to the flowchart of the enzymatic network offered in the work [4], which we call hereinafter
multi-substrate mutli-inhibitor enzymatic reactions (MSMIERs).

In order to generalize the typical Michaelis–Menten model for the case of “multi-
variate competitive inhibition”, we consider for some i, j the enzyme–substrate–inhibitor
(EIS) complex Ri,j meaning the binding of the enzyme with the substrates S1, · · · , Sj, and
inhibitors I1, · · · , Ii. Enzymatic reactions including Ri,j are presented in Figure 1 and can be
described by the following kinetic reactions:

Ri,j−1 + Sj
αi,j−−⇀↽−−−αi,−j

Ri,j
γi,j−−→ E + Pi,j,

Ri−1,j + Ii
βi−−⇀↽−−
β−i

Ri,j,

Ri,j + Sj+1
αi,j+1−−−−⇀↽−−−−αi,−j−1

Ri,j+1
γi,j+1−−−→ E + Pi,j+1,

Ri,j + Ii+1
βi+1,j−−−−⇀↽−−−−
β−i−1,j

Ri+1,j

where Pi,j is the corresponding reaction products.
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Ri – 1,j

Ri,jRi,j – 1 Ri,j+1

Ri+1,j

βi,jβ−i,j

αi,−j−1

αi,j+1αi,j

αi,−j

βi+1,jβ−i−1,j

Figure 1. Flowchart of enzymatic reactions with the respect to EIS-complex Ri,j.

Hence, we obtain the system of lattice ordinary differential equations:

dnSj

dt
=

N

∑
i=1
{αi,−jnRi,j − αi,jnSj nRi,j−1},

dnIi

dt
=

M

∑
j=1
{β−i,jnRi,j − βi,jnIi nRi−1,j},

dnRi,j

dt
=αi,jnSj nRi,j−1 − (γi,j + αi,−j)nRi ,j + βi,jnIi nRi−1,j − βi,jnRi ,j

− (αi,j+1nSj+1 + βi+1,jnIi+1)nRi,j + β−i−1,jRi+1,j + αi,−j−1Ri,j+1,

dnPi,j

dt
=γi,jnRi,j

i = 1, N, j = 1, M.

(6)

Following the ideas of the Brown’s model [10] and introducing time delays needed
for binding enzyme E with the substrate Sj through the EIS complex Ri,j as τi,j and needed
for binding E with the inhibitor Ii through the complex Ri,j as hi,j, we obtain the following
system of lattice differential equations with discrete delays:
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dnPi,j

dt
=αi,j,dnE(t− τi,j)nSj(t− τi,j),

dnSj

dt
=−

N

∑
i=1

αi,j,dnSj(t)nE(t),

dnE
dt

=
M

∑
j=1

( N

∑
i=1

αi,j,dnE(t− τi,j)nSj(t− τi,j)−
N

∑
i=1

αi,j,dnSj(t)nE(t)
)

+
N

∑
i=1

( M

∑
j=1

βi,j,dnE(t− hi,j)nIi (t− hi,j)−
M

∑
j=1

βi,j,dnIi (t)nE(t)
)

,

dnIi

dt
=−

M

∑
j=1

βi,j,dnIi (t)nE(t),

(7)

Introducing density functions fi,j, gi,j for distributed delays, corresponding to discrete
delays τi,j, hi,j, i = 1, N, j = 1, M, respectively, we come to the following generalized model
based on the system of lattice differential equations with distributed delays:

dnPi,j

dt
=αi,j,d

∫ 0

−∞
fi,j(s)nE(t + s)nSj(t + s)ds,

dnSj

dt
=−

N

∑
i=1

αi,j,dnSj(t)nE(t),

dnE
dt

=
M

∑
j=1

( N

∑
i=1

αi,j,d

∫ 0

−∞
fi,j(s)nE(t + s)nSj(t + s)ds−

N

∑
i=1

αi,j,dnSj(t)nE(t)
)

+
N

∑
i=1

( M

∑
j=1

βi,j,d

∫ 0

−∞
gi,j(s)nE(t + s)nIi (t + s)ds−

M

∑
j=1

βi,j,dnIi (t)nE(t)
)

,

dnIi

dt
=−

M

∑
j=1

βi,j,dnIi (t)nE(t),

(8)

The models (23) and (24) belong to the classes of lattice differential equations with
delays. The solution of the model (23) requires the setting of initial conditions on [−τM, 0],
where τM = maxi=1,N,j=1,M{τi,j, hi,j}. On the other hand, in order to solve system (24) with
the distributed delays, we need initial values for infinite temporal interval. Furthermore,
we will present how to reduce it to the finite one.

The dynamics of such type systems in a general case is studied in [16]. Some of our
previous results were also related to their behavior [17–19]. In the next section, we will
consider one simple case allowing us to develop the method of parameter identification for
the model such as (24).

3. Results

As a result of the general model of enzyme kinetics with distributed delays developed
in Section 2.1, we have developed and analyzed models of the enzyme–substrate and
enzyme–substrate–inhibitor complexes numerically and experimentally.

3.1. Enzyme Kinetics for the Case of One Substrate

In the given section, we apply continuously distributed delays for modeling the
enzyme–substrate binding. Pursuing the goal of mapping the processes of combining as
well as possible, here we have chosen to use the gamma distribution of delays τ ≥ 0 as:
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f (a, m, τmin, s) :=

{
0 s ≤ τmin,

am+1

Γ(m+1) (s− τmin)
me−a(s−τmin) s > τmin,

(9)

where a, m, τmin ≥ 0 are the parameters which are determining the corresponding prob-
ability density function. Namely, m determines the shape of the density curve, whereas
a stands for its rate parameter, and τmin ≥ 0 is the minimal possible value of the delay.
The distribution was considered earlier in a different context, for example, describing
cell maturation times (See [20], pp. 240–243), where an efficient method of distribution
parameter estimation based on experimental population data was offered. In addition, the
non-symmetricity of gamma distribution fits the processes of chemical kinetics better as
compared with the symmetric normal distribution.

Let τM be the largest value of the delay considered in (5), which is probably achiev-
able. Assuming τ is a random variable, which is gamma distributed given by f , we can
estimate its confidence interval with confidence level c ∈ (0, 1) with the help of applying
Chebyshev’s inequality to a gamma distribution, resulting in determining the largest value
of τ as:

τM := E(τ) +

√
Var(τ)
1− c

= τm +
m + 1

a
+

√
(m + 1)

a2(1− c)
(10)

Finally, assuming that binding a substrate to active or regulatory sites requires certain
random time τ ≤ τM, we reformulate the model in the following manner:

dnS(t)
dt

= −kdnE(t)nS(t),

dnE(t)
dt

= −kdnE(t)nS(t) + kd

∫ 0

−τM

f (s)nE(t + s)nS(t + s)ds,

dnP(t)
dt

= kd

∫ 0

−τM

f (s)nE(t + s)nS(t + s)ds,

(11)

The dynamics of (11) are determined by probability rate kd and the function of delay
density f (s).

3.2. Parameter Estimation

Suppose the following initial concentrations are given:

nS(t) ≡ 0, t ∈ [−τM, 0), nS(0) = n0
S, nE(t) ≡ n0

E, t ∈ [−τM, 0] (12)

Let nP(t) ≡ 0, t ∈ [−τM, 0].
The idea is to use the model (11) and (12) for estimating the time series of the product

with the respect to the enzyme–substrate reaction. In turn, these values correspond to the
initial conditions of nS, nE, and nP, which are known from experimental data in advance.
Estimation should include the rate constant and the gamma distribution parameters within
f function in the system given by (11).

In order to adjust the predicted data (product concentration nP), we need to make
them compatible with the data accessible from the experiment (“expected data”), namely,
specific conductance κ, which is related with the molar conductivity Λm as follows:

Λm =
κ

nP
. (13)

When analyzing the conductivity characteristics of the considered solution, we may
conclude that it is a strong electrolyte. It follows from the pH value of BSA (4.5–4.8) [21]
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that was primarily added when obtaining the CLEA. Hence, we can use Kohlrausch’s law
for a solution of a strong electrolyte:

Λm = Λ0
m − K

√
nP. (14)

Combining (13) and (14), we introduce the denotation for the specific conductance
obtained from (11), (12) as follows:

κpred(t) := Λ0
mnP,pred(t)− K(nP,pred(t))3/2, (15)

where the parameters Λ0
m and K are estimated.

Hence, the enzyme kinetics model (11) depends on six unknown parameters, namely:

Π =
{

kd, a, m, τmin, Λ0
m, K

}
∈ R6

+ (16)

In principle, this set of parameters can be estimated from a given time series of enzyme–
substrate interaction. Pursuing the goal to find parameter estimates as accurately as we can,
we conducted the experiments with different amounts of the initial dose of the substrate,
namely, nS(0) = n0

S,i, i = 1, l. Basing on our experiment design, we obtain l sets of n
pointwise experimental data in the time series, say

{
κexp,i(tj)

}
i=1,l,j=1,n, with t1, t2, . . . , tn

being the times of observations. The identification of parameters can be carried out with the
following constrained optimization calculations that are expressed in the following form:

minimize J(Π), Π ∈ R6
+

subject to ci(Π) ≥ Θ, i = 1, 2

}
(17)

Here,

J(Π) :=

(
l

∑
i=1

(
n

∑
j=1

(
(κexp,i(tj)− κpred,i(tj))

2

)))1/2

(18)

is the objective function and

g1(Π) = Π−Πlower ≥ Θ,
g2(Π) = Πupper −Π ≥ Θ,

(19)

are inequality constraints, where Θ ∈ R6 is a null-vector and Πlower, Πupper are the lower
and upper bounds for the parameter values, respectively.

The offered solution of the nonlinear optimization problem (17) is based on the
COBYLA Algorithm 1, which linearly approximates objective function and constraints on
6-simplex C = C(Π0, Π1, . . . , Π6) and optimizes the simplex on each algorithm iteration.
The algorithm transforms problem (17) to the problem without constraints with the help of
the following objective function:

Φ(Π) := J(Π) + ξ[max{−gi(Π), i = 1, 2}]+. (20)

We denote its linear approximation on the simplex C as Φ̂C(Π). An implementation of
COBYLA to the problem (17) can be reformulated as the Algorithm 1. Here, stop condition
covers the improvement of objective function, the changes of vertices, and allowed number
of iterations.
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Algorithm 1: COBYLA algorithm implementation to the problem (17).
Input data: Xexp, Πlower, Πupper, Πinit
Result: Πopt

1 form the initial simplex Cinit with the vertices Πinit
0 , Πinit

1 , . . . , Πinit
6 ;

2 repeat
3 for the current simplex C calculate the values Φ̂C(Πi), i = 0, 6;
4 search the vertex Πp determined by the equation

Φ̂C(Πp) = min
{

Φ̂C(Πi), i = 0, 6
}

;
5 calculate new vertex as Πnew := −θΠp + (1 + θ) 1

6 ∑i=0,6,i 6=p Πi, where
reflection coefficient θ ∈ (0, 1) being chosen as small as possible in order
Φ̂C(Πp) not were the least calculated function value so far;

6 form modified simplex Cnew replacing vertex Πp with Πnew;
7 search Πopt as a solution of the problem of linear optimization

minimize Φ̂Cnew(Π),
subject to Π ∈ Cnew

}
(21)

8 until stop condition;
9 return Πopt;

3.3. Enzyme Kinetics for Enzyme–Substrate–Inhibitor Interaction

Here, we consider the model (6) in case of M = 1, N = 1, that is, we have substrate S1
and inhibitor I1. Based on the multi-substrate multi-inhibitor model, we obtain the system
of lattice ordinary differential equations including enzymes E = R0,0 and complexes R0,1,
R1,0, and R1,1:

dnS1

dt
=α0,−1nR0,1 − α0,1nS1 nR0,0 + α1,−1nR1,1 − α1,1nS1 nR1,0 ,

dnI1

dt
=β−1,0nR1,0 − β1,0nI1 nR0,0 + β−1,1nR1,1 − β1,1nI1 nR0,1 ,

dnR0,0

dt
=− (γ0,0 + α0,−0)nR0,0 − β0,0nR0,0

− (α0,1nS1 + β1,0nI1)nR0,0 + β−1,0nR1,0 + α0,−1nR0,1 ,

dnR1,0

dt
=− (γ1,0 + α1,−0)nR1,0 + β1,0nI1 nR0,0 − β1,0nR1,0

− α1,1nS1 nR1,0 + α1,−1nR1,1 ,

dnR0,1

dt
=α0,1nS1 nR0,0 − (γ0,1 + α0,−1)nR0,1 − β0,1nR0,1

+ β1,1nI1)nR0,1 + β−1,1nR1,1 ,

dnR1,1

dt
=α1,1nS1 nR1,0 − (γ1,1 + α1,−1)nR1,1 + β1,1nI1 nR0,1 − β1,1nR1,1 ,

dnPi,j

dt
=γi,jnRi,j

i = 0, 1, j = 0, 1, i = j 6= 0.

(22)

Following the ideas of Brown’s model [10], and introducing time delays needed for
binding enzyme E with the substrate S1 through the ES complex R0,1 as τ0,1 through the
EIS complex R1,1 as τ1,1, for binding E with the inhibitor I1 through the EI complex R1,0
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as h1,0, and through the EIS complex R1,1 as h1,1, we obtain the following system of lattice
differential equations with discrete delays:

dnP0,1

dt
=α0,1,dnE(t− τ0,1)nS1(t− τ0,1),

dnP1,1

dt
=α1,1,dnE(t− τ1,1)nS1(t− τ1,1),

dnS1

dt
=− (α0,1,d + α1,1,d)nS1(t)nE(t),

dnE
dt

=α0,1,dnE(t− τ0,1)nS1(t− τ0,1) + α1,1,dnE(t− τ1,1)nS1(t− τ1,1)

− (α0,1,d + α1,1,d)nS1(t)nE(t)

+ β1,0,dnI1(t− h1,0)nE(t− h1,0) + β1,1,dnI1(t− h1,1)nE(t− h1,1)

− (β1,0,d + β1,1,d)nI1(t)nE(t),
dnI1

dt
=− (β1,0,d + β1,1,d)nI1(t)nE(t),

(23)

Introducing density functions f0,1, f1,1, g1,0, and g1,1 for distributed delays, correspond-
ing to discrete delays τ0,1, τ1,1, h1,0, and h1,1 respectively, we come to the following model
based on the system of differential equations with distributed delays:

dnP0,1

dt
=α0,1,d

∫ 0

−τM,0,1

f0,1(s)nE(t + s)nS1(t + s)ds,

dnP1,1

dt
=α1,1,d

∫ 0

−τM,1,1

f1,1(s)nE(t + s)nS1(t + s)ds,

dnS1

dt
=− (α0,1,d + α1,1,d)nS1(t)nE(t),

dnE
dt

=α0,1,d

∫ 0

−τM,0,1

f0,1(s)nE(t + s)nS1(t + s)ds

+α1,1,d

∫ 0

−τM,1,1

f1,1(s)nE(t + s)nS1(t + s)ds− (α0,1,d + α1,1,d)nS1(t)nE(t)

+β1,0,d

∫ 0

−hM,1,0

g1,0(s)nI1(t + s)nE(t + s)ds

+β1,1,d

∫ 0

−hM,1,1

g1,1(s)nI1(t + s)nE(t + s)ds− (β1,0,d + β1,1,d)nI1(t)nE(t),

dnI1

dt
=− (β1,0,d + β1,1,d)nI1(t)nE(t),

(24)

Following (10), we let:

τM,i,j := τm,i,j +
mi,j + 1

ai,j
+

√√√√ (mi,j + 1)

a2
i,j(1− c)

, hM,i,j := hm,i,j +
ki,j + 1

bi,j
+

√√√√ (ki,j + 1)

b2
i,j(1− c)

,

i, j ∈ {0, 1}, i = j 6= 0,

where ai,j, mi,j, τm,i,j, and bi,j, ki,j, hm,i,j are the parameters of the corresponding density
functions fi,j and gi,j as in (9) and c is the confidence level.

4. Experimental Study
4.1. Enzyme–Substrate Interaction

Enzyme biosensors consist of enzymes immobilized at the surface of the transducer.
Hence, an immobilization step with the help of Bovine Serum Albumin (BSA) is very
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important as it affects the sensitivity and selectivity of biosensors. Enzyme products may
be electroactive, meaning their activity may be followed by amperometry.

In our study, Acetylcholinesterase (AChE) as an enzyme has been used, since it has
a very high catalytic activity. AChE is often used to design biosensors based on the
inhibition analysis.

Since conductivity (specifically, electrolytic conductivity) is the ability of a substance to
conduct an electric current, in solvents where electrical conductivity is present, particularly
water, ionisation will provide the necessary carriers. The electrical conductivity of a solution
is determined by both the physical characteristics of the carriers and the medium. The
measured conductivity comes from the ions of dissolved substances. The preliminary
measurement has been conducted in aqueous solutions.

The studies were carried out in aqueous solutions using the following substances:
protein—BSA; enzyme—enzyme acetylcholinesterase (AChE); and substrate—Acetylcholine
chloride (AChCl). The substances were purchased from Sigma Aldrich.

To the complex formed with BSA of 2 mg/mL (volume of 4 mL) and enzyme of
2 mg/mL (volume of 0.1 mL) (the complex is known as cross-linked enzyme aggregate
(CLEA) [22]), substrate of 2 mg/mL in different volumes (0.1 mL, 0.3 mL, 0.9 mL, 1.5 mL)
was added. As a result, four samples were obtained:

Sample 1. BSA + enzyme + 0.1 mL of substrate;
Sample 2. BSA + enzyme + 0.3 mL of substrate;
Sample 3. BSA + enzyme + 0.9 mL of substrate;
Sample 4. BSA + enzyme + 1.5 mL of substrate.

The conductivity of the BSA + enzyme + substrate complex was tested by using a
specially constructed measuring setup, during 500 s with signal sampling every 5 s. There
were 100 conductivity measurements made during 500 s.

4.1.1. Experimental Data

As a result of the experiments, the dependence of the conductivity changes in time was
obtained. In the initial stage (0–249 s), the conductivity of the BSA–enzyme complex was
tested. When the conductivity remained constant, in the 250th second of the measurement,
a substrate of different concentration was added to the BSA–enzyme complex. The addition
of a substrate rapidly changed the conductivity of the resulting complex, which may
indicate a rapid chemical reaction. By comparing the changes in conductivity as a function
of the volume of the substrate added, it can be said that the larger the volume of the
substrate added, the greater the change in conductivity was and the more dynamic the
increase in conductivity was.

4.1.2. Parameter Estimation for the Experimental Study

Algorithm 1 was implemented in R package. For the integration of (11), Julia calling
was used. Initial parameter values together with the parameter bounds are presented in
Table 1. The solution of the optimization problem (17) is displayed in the column Πopt. The
root mean squared error of the prediction with the obtained model throughout all data
series (i.e., for different initial substrate volumes) is 48.74105. The number of iterations
was 50.

The density function f (s) for estimated parameters is shown on Figure 2. In Figure 3,
the results of integration of (11) and (4) for different initial volumes of substrate which are
based on the values of parameters estimated are shown.



Sensors 2022, 22, 980 11 of 17

Figure 2. Estimated density of distributed delay f (s) for model (11).

Figure 3. Cont.
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Figure 3. Plots of expected vs predicted trajectories with the help of (11). Additionally, a comparison

of modeling with the help of Brown’s model (4) with discrete delay is shown: κpred,distributed,

κpred,discrete κexp.

Table 1. Initial values and bounds for parameter identification based on the Algorithm 1. Column
Πopt contains the solution of (17).

Πinit Πlower Πupper Πopt

kd 0.04 1× 10−10 1 0.04042714
a 1 1× 10−10 1000 1.255818
m 20 1× 10−10 1000 6.703709

τmin 5 1× 10−4 1000 4.673685
Λ0

m 6000 1× 10−10 1× 106 729.2215
K 50 1× 10−10 1× 106 246.2885

4.2. Enzyme–Substrate–Inhibitor Interaction

The second experimental study used butyryl cholinesterase (BuChE) (EC 3.1.1.8, from
Horse Serum) with a specific activity of 13 U/mg solid bovine albumin (fraction V, 98%
purity), butyryl choline chloride (BuChCl) (98% purity), a-chaconine (95% purity) from
potato sprouts, and glutaraldehyde (grade II, 25% aqueous solution), which were purchased
from Sigma-Aldrich Chemie GmbH (Steinheim, Germany). All other reagents were of
analytical grade and were used without any further treatment.

Biologically active membranes were formed by cross-linking butyryl cholinesterase
with BSA on the transducer surface in a saturated glutaraldehyde vapour. The mixture
containing 5% (w/v) butyryl cholinesterase, 5% (w/v) BSA, and 10% (w/v) glycerol in
20 mM phosphate buffer (pH 7.2) was deposited on the sensitive surface of one transducer
by the drop method, while the mixture of 10% (w/v) BSA and 10 % (w/v) glycerol in 20 mM
phosphate buffer (pH 7.2) was placed on the surface of a reference transducer. The sensor
chip was then placed in a saturated glutaraldehyde vapor. After a 30 min exposure in
glutaraldehyde, the membranes were dried at room temperature for 15 min.

All measurements were performed in daylight at room temperature in an open glass
vessel filled with a vigorously stirred 5 mM phosphate buffer solution, pH 7.2. The 200 mM
stock solution of BuChCl in deionised H2O, and 2 mM stock solution of the a-chaconine
in 5 mM acetic acid were prepared. The concentrations of substrates and inhibitors were
adjusted by adding defined volumes of the stock solution of proper concentration. The
differential output signal between the measuring and reference Ion-Sensitive Field Effect
Transistors (ISFETs) was registered using portable device. After the response measurement
(determination of enzyme inhibition), the initial enzyme activity was restored by washing
out the biosensor enzymatic membrane in the working buffer solution for 10 to 15 min.
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4.3. Numerical Simulation of Enzyme–Substrate–Inhibitor Model

Algorithm 1 was modified for the estimation of the parameters of the model (24). The
optimal values of the parameters were used for the simulation using different initial values
for the inhibitor. The visualization of the simulations results is presented in Figure 4.

Figure 4. Numerical simulation with the help of (24) for different initial values of inhibitors.

5. Discussion and Conclusions

While analyzing the models of (11) and (4), with the help of plots on Figures 3 and 5,
we can conclude the following. It is clearly seen that “undesirable” oscillations in the
trajectories are appearing at the smaller initial volumes of the substrate. Then, oscillations
disappear for bigger ones. There are some differences between trajectories of models
with distributed and discrete delay (we mean that the model with discrete delay (4) is
constructed for the mean value of delay τ obtained using the density function f (s), i.e.,
for τ = τm + m+1

a τ) observable on the plots. Namely, we see differences in the phases of
oscillations. Using the distributed delay, the oscillation starts later. Moreover, for the bigger
values of initial substrate volume, the oscillations for the distributed delay model disappear
(as it can be seen in case of 1.5 mL of substrate). The amplitudes of the oscillations at
the smaller values n0

S are similar, whereas by increasing the initial substrate amount, the
oscillations for distributed delay models are not seen. Hence, when comparing two kinds
of delay models, which both demonstrate oscillations in certain sense, we conclude that (11)
is more chemically adequate for bigger values of the initial substrate dose than the discrete
delay model.

When analyzing the enzyme–substrate–inhibitor model (24), we observe a similar
oscillating behavior when increasing the initial amount of inhibitor. Namely, as it can be
seen in Figure 4, small oscillations in P disappear when we increase n0

I .
In summary, we can conclude that the modeling of the enzyme kinetics based on

dynamic systems with distributed delays can make the usage of the delayed differen-
tial equations more attractive since it shows more adequate chemical behavior, reducing
oscillations when compared with the discrete delays. This is due to more continuous
right-sides of the differential equations with distributed delays in comparison to discrete
ones. On the other hand, such types of models are complicated enough to demonstrate
complex nonlinear behavior, e.g., with the help of using parameters of the density of the
delay distribution.
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Figure 5. Error analysis of predicted trajectories with the help of (11) and (4): denotes the
errors of κpred,distributed, denotes the errors of κpred,discrete.
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One should bear in mind the computational complexity of the respective models. So,
in the case of multi-substrate multi-inhibitor modeling using the model (6), we need to
solve the system of N + M + 2NM equations. Using the models with delay (23) or (24), the
number of equations determined by the number of phase coordinates is N + M + NM + 1,
which is NM− 1 smaller. In the case of complicated computing, such as multi-iteration
process optimization for the purpose of parameter estimation, this difference in the order
of computational complexity is crucial. Even in the case of Julia computing, numerical
integration of the systems of differential equations is time-consuming when the system
order or accuracy is growing.

Algorithm 1 can be extended to the parameter estimation of M-substrate N-inhibitor
model (24). In such a case, the parameters to be estimated are reaction rates αi,j,d, βi,j,d, three
parameters for each density fi,j(s) and gi,j(s), i = 1, N, j = 1, M, Λ0

m, and K. That is, we
obtain 5NM + 2 parameters at the whole, which leads to the corresponding computational
complexity. The convergence of such an algorithm is also essential, which is closely dealt
with in the search of the initial approximation. We think that in some special cases, the
approach presented in Section 3.2 could be applied for experimental data as well.

The usage of delay models for enzyme kinetics is of importance in the multi-substrate
multi-inhibitor cases, as they demonstrate more complex qualitative behavior than the
models without delay; for example, outbreaks can repeat in the delayed model, whereas
we do not observe this in the case without delay. In the future, we will try to evidence this
using experimental data.

Here, we only mention that the application of the delayed models is also preferable
from the viewpoint of availability of experimental data. Namely, a typical Michaelis–
Menten model is based on the formation of multiple complexes. Their concentrations
cannot be assessed from a research point of view. In fact, we measure the product of the
reaction through the conductivity of the solution. By using time delays, we do not consider
concentrations, but we consider the appearance and disappearance of complexes without
having to give concentrations. Moreover, delays can be identified with the help of the
algorithm offered above.

In the given work, the study of an enzyme kinetics is based on the chemical response
using conductivity. The problem is that in modeling, with the help of mass action law, the
exact value of the concentration of the substance is required, whereas the experimental
results offer the conductivity. As a rule, they use concentration–conductivity dependencies
as linear ones, although it has been shown by Kohlrausch’s studies that the relationships
are more complex. In this paper, the assumption for strong electrolytes is used, allowing us
to apply the corresponding modification of Kohlrausch law, for which parameters Λ0

m and
K were experimental with the help of Algorithm 1. In the future, on the basis of the scheme
presented in the paper concerning chemical reactions, we plan to carry out experiments that
would take into account conductivity tests depending on many substances, applied one
after another and also applied simultaneously. Therefore, the effect of time delays in multi-
substrate multi-inhibitor enzyme kinetics modeling is still an open problem, requiring the
development of many techniques to apply real experimental data, which offers further
possibilities to explore it.
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