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Abstract: This paper provides a summary of the recent developments with promising 2D MXene-
related materials and gives an outlook for further research on gas sensor applications. The current
synthesis routes that are provided in the literature are summarized, and the main properties of MXene
compounds have been highlighted. Particular attention has been paid to safe and non-hazardous
synthesis approaches for MXene production as 2D materials. The work so far on sensing properties of
pure MXenes and MXene-based heterostructures has been considered. Significant improvement of the
MXenes sensing performances not only relies on 2D production but also on the formation of MXene
heterostructures with other 2D materials, such as graphene, and with metal oxides layers. Despite
the limited number of research papers published in this area, recommendations on new strategies to
advance MXene heterostructures and composites for gas sensing applications can be driven.

Keywords: two-dimensional structures; MXene; heterostructures; gas sensor; metal oxides; non-fluorine
synthesis routes

1. Introduction

Gas sensing devices have currently become a part of our daily lives, and their applica-
tion areas continue to increase and demand the development of reliable, highly sensitive
and selective gas sensing materials as well as technologically developed sensor designs.
Among different types of gas sensing systems, chemoresistive gas sensors attract the most
interest due to the set of their functional characteristics, such as superior sensing per-
formance, low cost, smooth operation and possible miniaturization [1,2]. Since the first
chemoresistive metal oxide gas sensor based on ZnO film was developed [3], a vast amount
of work has been conducted to improve their working characteristics, including sensitivity,
selectivity and stability. On the other hand, the commercialized gas sensors still operate at
elevated temperatures, which leads to high-power consumption, reduced sensor stability,
limited selectivity, decreased lifetime and limited application areas [2,4,5]. Therefore, the de-
velopment and investigation of new materials is a crucial issue for obtaining new sensing
systems with improved performance and excellent room temperature sensing ability.

Two-dimensional structures, such as graphene, transition metal dichalcogenides,
transition carbides and hybrid 2D compounds, have attracted big interest for various
gas sensing applications due to their large surface area, controlled surface chemistry
and capability of sensing detection at room temperature [6,7]. The great progress in the
development of gas sensors, especially based on 2D materials, can be seen in the increasing
number of scientific papers published in this area (see Figure 1a). Sensing performance of
2D structures depends on several factors, including their thickness (which may vary from a
few nanometers to a few centimeters), composition, number and quality of the atomistic
layers [8]. The structural parameters of the 2D materials can be adjusted by optimizing
the synthesis route, among which the most popular ones are exfoliation techniques [9],
chemical and physical vapor deposition [10,11] and wet-chemical approaches [12]. In turn,
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the composition of 2D nanosheets or nanoflakes can be controlled due to the modification,
which allows the significant optimization of their functional properties [8].
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To date, several factors have been established that have a significant impact on the
sensor performance, including structural defects, surface-terminated groups (for instance,
oxygen-containing), surface functions and dopants [13]. The sensitivity of the nanostruc-
tured gas sensor system may be significantly improved due to the surface functionalization;
however, selectivity is still not satisfactory for most of the resistive gas sensors [13]. So far,
several strategies have been proposed for the enhancement of sensor selectivity, including
surface functionalization with a second phase using noble metals or metal oxides [14–16],
fabrication of composites or heterostructures [17,18], UV-illumination [19] or designing
of multi-array sensor systems [20]. For instance, it is known that the formation of hybrid
materials results in a combination of properties that are not available in single materials [8].
However, it shall be noted that the sensing mechanism of such hybrid materials becomes
more complicated due to the interaction of gas molecules with diverse material components,
as well as due to the interface interaction between different materials [13].

Among the big family of two-dimensional materials, MXenes and MXene-based
structures recently gained particular attention for gas sensor-related applications due to
their large surface-to-volume ratio, superior surface conductivity and surface-terminated
functionality [21]. Until now, MXene demonstrated great perspectives for the development
of energy storage devices. Since the first investigation of Mxenes’ gas performance in 2015,
the number of publications in this area increases each year (see Figure 1b) by multiplying;
however, the investigation of their sensing performance is still in the preliminary stage [22].
For instance, the selectivity of these systems still remains an issue, so further research
efforts shall be applied to enhance and optimize their gas sensor performance, for example,
by surface functionalization, coating or fabrication of hybrid materials [8].

Therefore, this review acts as a stepping stone to further research studies on MXene
structures applied for gas sensing by summarizing achievements and indicating weaknesses
of the past works and the up-to-date research. In this work, we discuss both theoretical
(e.g., theoretical simulation using density functional theory) and experimental studies
on gas sensing by MXenes that have been reported so far. Moreover, the strategies that
are employed for the improvement of their sensor performance, such as decoration with
metallic nanoparticles and creation of hybrid composite structures, have also been reviewed.
The approaches to obtain pure MXenes and MXene-based composites and heterostructures
with an emphasis on ecologically safe synthesis methods have been provided. Based on
the available studies, we aim to show that the resulting sensing characteristics may be
adjusted by modifying the final morphology by means of various synthesis techniques,
process parameters as well as the exfoliation method.
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2. Two-Dimensional Materials for Sensing Applications

The most important quality indicators of gas sensor performance (sensitivity, selectiv-
ity, response and recovery time, detection limit, etc.) strongly depend on characteristics of
the sensing material. For instance, the large surface area of sensing material contributes to
the interaction between the material’s surface and the target gas molecules, while the pres-
ence of active surface sites provides effective and selective adsorption of gas molecules [23].
From this point of view, two-dimensional nanostructures, unique material properties of
which are naturally different from the bulk structures and deserve special attention for the
development of high-performance gas sensors. Besides providing a large surface area and
more active sites, 2D materials are characterized by a number of additional advantages, in-
cluding a tunable electronic structure, facile surface functionalization, the possibility of 3D
architectures assembling, excellent flexibility, good combability with device integration and
outstanding mechanical robustness [8,24]. Due to the usage of 2D structures, the “4S” sensor
performance characteristics (sensitivity, selectivity, stability and speed—response/recovery
time) have significantly improved [8].

For the gas sensing applications, (i) metal oxide nanosheets [25–28], (ii) graphene-
based structures [29–31] and (iii) dichalcogenides [32–34] are the most studied 2D materials.

(i) Metal oxide-based structures are characterized by high sensitivity to gas molecules
and good stability. Besides their cheap and easy production in diverse and various
nanostructured morphologies can be achieved [5,35]. The principle for operating metal
oxide sensors is based on the sensing surface layer’s conductivity changes depending
on the presence of gas in the environment. In general, the sensing mechanism includes
several stages: adsorption of oxygen species on the semiconductor’s surface; electron
transfer between semiconductor and oxygen; adsorption of the detected gas; chemical
reaction; transfer of electron to the semiconductor; products desorption. In this case,
the nanostructure and morphology of sensing materials has a great influence on the
sensor performance. For example, a porous structure leads to an increase in the
surface-to-volume ratio, and a large specific area provides more active sites for the
adsorption of gas molecules [5,8].

(ii) Graphene-based materials are promising candidates for the detection of gaseous
molecules due to their high electrical conductivity, extremely high specific surface
area and high charge carrier mobility [8,36,37]. The sensing principle of the graphene
and graphene-derived structures is based on the direct charge transfer mechanism
due to the adsorption/desorption of gas molecules, which leads to a change in the
local charge carrier concentration [38]. Depending on the gas nature (electron donor
or acceptor), an increase or decrease in electrical conductivity occurs.

(iii) Two-dimensional layered structures of transition metal dichalcogenides, including
MoS2, MoSe2 and WS2, are also characterized by good semiconducting properties,
high surface area and excellent surface sensitivity, resulting in their widespread appli-
cation for gas detection [33,39,40]. The sensing mechanism of metal dichalcogenides is
similar to graphene-based materials and based on charge transfer between the surface
and adsorbed molecules [41].

Besides the good sensing performance, 2D materials can provide a good basis for the
development of gas sensors that are capable of low- or room-temperature operation [7].
For instance, Zhang and Yin demonstrated the high ethanol-sensing properties of SnO2
nanosheets at a low operating temperature of 165 ◦C. Regarding the good sensor perfor-
mance, the authors explained that the mesoporous texture of the obtained nanosheets,
in combination with small grain sized and surface defects, results in high response, fast
response/recovery and good selectivity [42].

In contrast to the metal oxide-based gas sensors, which are able to operate at low
temperatures, graphene-based materials and transition metal dichalcogenides offer the
possibility to develop room-temperature sensors. Thus, the formation of graphene/CNT
hybrid films or the decoration of graphene with Pd nanoparticles allow obtaining high-
performance NO2 sensors’ operation at room temperatures, opening the possibility for the
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development of low-power sensor devices [43,44]. Sensors based on WS2 nanoflakes or
WS2 and MoS2 thin films show great perspectives for the fabrication of room-temperature
ammonia sensors with high sensitivity and selectivity [40,45]. MXene is another class of
2D compounds that are ideal candidates for the development of high-performance sensor
devices, especially for the low- and room-temperature operation, due to their exceptional
electronic, physical, chemical and mechanical properties, including large specific surface
area, very narrow and tunable bandgap, fast electron transfer ability and adjustable surface
chemistry [24,46–48]. MXenes are characterized by 2D layered graphene-like morphol-
ogy, but in contrast to the other 2D materials, they exhibit higher responses with a high
signal-to-noise ratio, providing the relative intensity of the gas signal over the noise in-
tensity due to the strong binding of functional groups with analytes [6,48]. The near-free
electron states of the MXene structures are located around the Fermi level, allowing fast
charge-carrier transport through the electron transport channels [49]. Thus, in general,
the superior sensing properties of MXenes are attributed to the numerous surface functional
groups, which form strong bonds with analyte gases, and their metallic conductivity, which
allows fast electron transfer and mobility [48]. For instance, the selectivity of a sensor
based on MXene structures depends strongly on several factors, including the interaction
between surface and gas molecules; MXene compositions and charge states; MXene flakes
orientation [50]. Moreover, the controllable surface terminations provide great prospects
for the modification of MXene’s structures, resulting in the improvement of their properties
and sensing performance [6].

3. MXENES—Novel Two-Dimensional Compounds

The so-called MXene compounds were discovered by Gogotsi et al. and first described
in 2011 in the journal Advanced Materials [51]. MXene belongs to the group of transi-
tion metal carbides and nitrides and is synthesized from Mn+1AXn phases (n = 1–3) (see
Figure 2) by selectively etching the intermediate A layer using fluoride-ion-containing
solutions [51,52]. MXene compounds are characterized by the numerous oxygen, hydroxyl
and fluorine functional groups, which determine the material’s properties [53].
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MXene compounds’ most remarkable features include: graphene-like morphology,
metallic conductivity, large surface area, mechanical flexibility and strong hydrophilic
surface-terminated functionality [21]. The inherent structure and chemical composition
of MXenes bring them unique physical and chemical characteristics (see Figure 3), which
can be tailored to diverse applications [54]. The electronic properties of the exfoliated
MXene layers are a function of the surface terminations. Thus, excellent electrical con-
ductivity and semiconducting behavior due to the surface terminations (hydroxyl- or
oxygen-terminated surfaces are responsible for the metallic conductivity, while termination
with OH and F groups leads to the semiconducting character of the band structure) [51]
in combination with the large surface area, good adsorption properties, high surface reac-
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tivity and large number of active sites make MXenes the ideal candidates for gas-sensing
applications [21,23,55].
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3.1. Synthesis Approaches for the MXenes Production

As mentioned above, MXenes production is achieved by the selective extraction
and exfoliation from MAX phases due to the higher chemical activity of the M–A bond
compared to the metallic M–X bonds [54]. Figure 4 presents the schematic illustration of the
MXenes synthesis. In MAX and MXene (M2XT2) formulas, M corresponds to the transition
metals (for instance, Ti, Zr, V, Nb, Ta, etc.), X represents C or N and A refers to the elements
from the 13 or 14 groups of the Periodic Table (such as Al, Si, P, Ge, Sn, etc.). In turn, Tx
in the MXene formula represents the surface functional groups (such as −O, −F or −OH)
introduced through the wet-chemical etching (see Figure 2) [57].
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First, MXene was synthesized by Naguib et al. from Ti3AlC2 by the selective etching
of Al with aqueous HF solution at room temperature. In this case, the synthesis process
can be represented with the following equations [58]:

Mn+1AXn + 3HF→ AF3 + 3/2H2 + Mn+1Xn, (1)

Mn+1Xn + 3H2O→Mn+1Xn(OH)2 + H2, (2)

Mn+1Xn + 2HF→Mn+1XnF2 + H2. (3)

The replacement of Al atoms by O, OH and F atoms leads to a decrease in the interac-
tion of Mn+1Xn layers, allowing their separation and the formation of 2D “graphene-like”
layers [59]. The typical synthesis process of MXene phases is illustrated in Figure 5 and
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includes several stages. First, MAX phases were treated with the etching solution, resulting
in the formation of the terminated 2D layers bonded via hydrogen and van der Waals
bonds [51]. In the next step, the cleaning procedures, including repetitive washing with
DI water, centrifugation and filtration of MXene powders, were conducted to remove the
residual acid and reaction products. Normally, this stage is performed until a pH of 6
is achieved. After the vacuum-assisted filtration followed by vacuum drying, the mul-
tilayered MXene structures can be obtained [57]. The production of the single-layered
MXenes with unique functional properties requires their intercalation and delamination
using sonication methods or by applying intercalating agents. Polar organic intercalants are
considered the most effective for the MXenes’ delamination, as their use results in the weak
interlayer interaction and increased interlayer distance [50]. Moreover, the hydrophilic
nature of the MXene structures allows producing well-delaminated layers by their mild
sonication or simple handshaking in water [60].
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In their work, Alhabeb et al. have shown how the synthesis methods to obtain MXene
structures have adjusted since their discovery in 2011 [57]. To date, MXene structures
passed through several developing stages (see Figure 6), including the first synthesis of
a multilayered MXene composition [51,61]; employment of intercalation/delamination
techniques to obtain single-layered MXenes [62]; improvement of the etching process by
using new etchants, such as ammonium bifluoride salt [63] and a LiF/HCl composition [64];
simplification through the shaking approach instead of sonication in the delamination stage
(so-called MILD method—the minimally intensive layer delamination) [65].

All development stages allowed not only to improve the existing synthesis method
but also to increase the diversity of the MXene family. As in the case of all nanomaterials,
the morphology and, as a result, the properties and performance of the MXene structures
in different applications can be controlled by adjusting the synthesis parameters, namely
the concentration of the etching solution, etching and ultrasonic time and the process
temperature. In turn, the quality and composition of MAX compounds, particle size,
intercalating agent, type of the etching solution, as well as etching time and temperature
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cause significantly influence the etching procedure. For instance, a higher atomic number
“M” requires the employment of more aggressive etching parameters, such as higher acid
concentrations or longer etching time [50].
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Sang et al. showed that Ti3C2Tx MXene could already be obtained using an etchant
solution with 2.7 wt% HF concentration. Moreover, the authors confirmed that the increase
in HF concentration leads to the formation of more defects in the MXene structures [65].
Conversely, low etchant concentration does not allow obtaining a well-isolated layered
morphology. Alhabeb et al. studied the effect of HF concentration on the efficiency of Al
elimination from the MAX phase, as well as on MXene morphology [57]. It was shown that a
5 wt% HF concentration is sufficient for etching aluminum selectively but demands a longer
etching time in comparison to a higher HF concentration. The morphology of the obtained
MXene structures is strongly affected by the etchant concentration, and an accordion-like
morphology can be achieved only by the employment of a higher HF concentration of
30 wt% (see Figure 7). The authors explained that the formation of the accordion-like
MXene morphology relies on the production of a large amount of H2 during the reaction
with a higher concentration of HF with Al.
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Thus, considering the influence of process parameters on the functional characteristics
and performance of MXene structures in the desired application field, considerable attention
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should be paid to choosing the synthesis route. For instance, the slight adjustment of the
HF-process results in the production of porous 2D MXenes with a larger specific surface
area and more opened structures [66], which can provide better adsorption properties
for gas sensing applications. The employment of the HCl/LiF etchant method not only
increases the MXene yield and provides a safer process but also allows achieving the
formation of clay-like materials, which can be easily shaped to obtain the desired forms for
further applications, including sensing electrodes [64].

Alternative Non-Fluorine Safe Synthesis Routes

Since their discovery, more than 30 stoichiometric MXene structures have been syn-
thesized, but the expanded research on MXene and their application in various fields
requires additional investigations on improving the MXene quality and their functional
performances [67]. In the case of sensing applications, synthesis not only controls the
material’s morphology but also directly affects sensory functions, and therefore, new syn-
thesis routes shall be explored and process parameters shall be adjusted. Considering the
harmful HF effect on human health and the environment, non-hazardous HF-free etching
methods deserve special attention due to their advantages, such as high exfoliation yield,
low sonification time, fewer defects and easier handling [47].

One of the first non-HF etching methods was proposed by Ghidiu et al. with the
employment of an HCl and LiF mixture, resulting in the HF generation during the process
reaction. This method allowed higher MXene yields while providing a safer, easier and
faster synthesis route [64]. Lipatov et al. developed a LiF-based etching method by
adjusting the MAX phase and ratio of LiF. In their work, the authors fabricated high-quality
Ti3C2Tx MXene layers with a well-defined, defects-free structure, which showed stable
performance and high conductivity [68].

Other safe, non-hazardous and non-toxic approaches for the MXene synthesis include
the usage of the Lewis acidic molten salts (ZnCl2 [69], CuCl2 [70], etc.); alkali-assisted ap-
proaches (NaOH-assisted hydrothermal process [71]; NH4OH electrochemical etching [72];
halogens (Br2, I2, ICl, IBr) utilization in anhydrous media [73].

Besides the green chemistry aspect, such alternative non-fluorine etching methods
allow increasing the number of MXene structures [70], as well as producing MXenes with
new or improved characteristics. Thus, Li et al. applied a ZnCl2-based method in their
work to synthesize Cl-terminated MXenes [69], which are expected to be more stable in
comparison with F-terminated MXene structures and showed enhanced electrochemical
characteristics [69,70]. Jawaid et al. proposed the efficient room-temperature etching
method using halogens and showed that the suggested method provides opportunities for
the controlled surface chemistry of MXenes, and as a result, the modulation of the MXene
properties [73]. Moreover, the absence of dangerous agents in the production process makes
non-fluorine etching methods appealing for industrial MXene materials production [72].

Despite the tremendous progress made in MXene synthesis routes, wet etching syn-
thesis approaches remained the main methods for MXene production. However, recently,
other processing techniques were suggested to obtain MXene structures. These include
the chemical vapor deposition method [74] and template synthesis [75,76]. For instance,
Xu et al. demonstrated the suitability of the CVD method for obtaining high-quality Mo2C
nanosheets with a large lateral size of ~10 µm and a few nanometers thick. Moreover,
the proposed CVD process allows obtaining ultrathin WC and TaC crystals, enabling the
expansion of the 2D materials family [77].

3.2. High-Performance MXene-Based Gas Sensors

Owing to the 2D layered graphene-like morphology, MXene structures are ideal materi-
als for building high-performance sensors, considering their adjustable surface terminations
and unique surface chemistry, metallic conductivity, tunable bandgap, easy functional-
ization and excellent mechanical strength [24,46,47]. To date, successful applications of
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MXenes in gas sensors, strain/stress sensors, electrochemical and optical detectors and
humidity sensors [24] have been published.

3.2.1. MXenes’ Sensing Mechanism

It can be immediately noticed that the sensing mechanism in the MXene structures
differs from that of the metal oxides and is more complicated than the surface adsorption
or charge transfer in conventional 2D materials [52]. It is well known that the sensing
mechanism of sensors based on metal oxides depends on the surface reactions of gas
molecules with pre-adsorbed oxygen species [78]. The fabrication of composites or hybrid
structures leads to changes in the sensing mechanism, while added compounds act as a
“catalyst” for the improvement of sensing properties of the base sensing material [8].

The sensing mechanism of the MXene materials depends on the charge transfer process,
which is based on the physisorption of gas molecules on the surface without involving
the adsorbed oxygen species [8]. Thus, the change in the electrical properties is caused
by the adsorption/desorption process. Figure 8 shows the schematic illustration of the
possible gas sensing mechanism in the Ti3C2 MXene compound. For example, in the case
of ammonia adsorption on the Ti3C2Tx surface, the resistance increase occurs due to the
combination of generated electrons with holes in MXene [24]:

2NH3 + 3O− → N2 + 3H2O + 3e−, (4)

NH3 + OH− → NH2 + H2O + e−. (5)
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Lee et al. proposed a possible sensing mechanism for the V2CTx-based sensor (see
Figure 9), suggesting that oxygen-terminated groups significantly contribute to the receptor
function similarly to the Ti3C2Tx MXene. The authors also concluded that hydrophilic
groups are preferred for the gas species adsorption compared to the hydrophobic and
fluorine groups [49].

Ti3C2Tx-based sensitive layers show the increasing resistivity for the detection of both
oxidizing and reducing gases, and due to the metallic-like conductivity, the complication
of charge transfer occurs with gas adsorption [23]. When detecting such gases, such as
ethanol, methanol, acetone or ammonia, Ti3C2Tx MXene shows p-type semiconducting
properties, which is probably attributed to the adsorbed water molecules introduced during
the Al etching process [7]. Lee et al. assumed that the sensing mechanism of the MXene
structures involves the gas adsorption both by structural defects and presented functional
groups. The replacement of the surface functional groups by gas molecules leads to the
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carrier transfer between adsorbent and adsorbed gases, resulting in the significant change
of MXene resistance value [7].
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3.2.2. Sensors Based on Pure MXenes

The potential of MXene compounds for gas sensor applications was firstly demon-
strated by Yu et al. using theoretical simulation [79]. Density functional theory (DFT) was
applied to investigate the electronic structure of Ti2CO2 monolayer for NH3 detection.
By using the first-principle simulation, the authors show high sensitivity and selectivity
of the Ti2CO2 layer to NH3. Moreover, the obtained value of NH3 adsorption energy
confirmed that the Ti2CO2 sensor could recover easily after gas detection (see Figure 10).
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Similar results using the DFT method were obtained by Xiao et al. for M2CO2 MXenes
(M = Sc, Ti, Zr, Hf). In addition, the authors concluded that the efficient release and capture
of NH3 gas on the MXene surface could be controlled due to the variation of the M2CO2
charge state [80].

As mentioned above, the perspectives of MXenes application to the chemoresistive gas
sensors are due to the large specific surface area, high conductivity, surface functionality
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and hydrophilicity [21]. The hydrophilic characteristic is introduced during the etching
process of MXene structures and depends strongly on the surface terminations (−OH, −O,
−F, −Cl terminal groups). As a result, MXenes may be ideal sensing candidates due to the
adsorption of polar (hydrophilic) gas molecules but may have limited functionality in the
detection of polar (hydrophobic) molecules [51].

The further investigation of MXene-based gas sensor devices proved their sensing
performance. Thus, the study of sensing performance of the Ti3C2Tx, obtained using
LiF/HCl etching method, showed good responses of Ti3C2Tx-based sensor under exposure
to several gases with the concentration of 100 ppm (see Figure 11a) [6]. The obtained results
also confirmed the difference in the sensing mechanism of MXenes in comparison to the
semiconducting materials. In contradiction to the semiconductor gas sensors, for which the
response depends strongly on the electron donor/acceptor properties and the type of charge
carrier, the resistance of MXenes under gas exposure always increases and is not affected by
the gas type (oxidizing or reducing). The last is connected with the complication of charge
carrier transport with gas adsorption. This additional sensing property is of importance for
simultaneous, selective sensing of NO, NO2 and CO, CO2 in mixed gas environments.
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temperature. Reprinted with permission from [81]. Copyright © 2019, American Chemical Society.

Wu et al. applied the NaF/HCl etching approach with subsequent delamination
with dimethyl sulfoxide to obtain single-layered Ti3C2 MXene [81]. Synthesized structures
were tested for 500 ppm concentration of different gases, including methane, H2S, ethanol,
methanol, acetone and ammonia. Among all tested gases, MXene structures showed higher
sensitivity and selectivity to NH3 with an almost linear sensor response in the concentration
range of 10–700 ppm (see Figure 11b). Furthermore, the authors concluded that the etchant
has a direct effect on the selectivity of NH3. Thus, the selectivity of Ti3C2 synthesized using
the NaF/HCl etching solution is significantly higher compared to the selectivity of MXene
structures obtained using the LiF/HCl etching method. This is probably connected with
the higher number of the adsorption centers due to the easier removal of Na ions from the
Ti3C2 surface in comparison with that of Li+.

Besides the synthesis method and altering the etching parameters, the functionaliza-
tion of MXene surfaces significantly contributes to the gas sensor performance. For instance,
it was possible to improve the MXene gas sensing properties by alkaline treatment [82].
In their work, Yang et al. synthesized Ti3C2Tx using the HF-etching method with the
following NaOH treatment to obtain an alkalized MXene structure. Figure 12a–d shows
the morphological characteristics of both Ti3C2Tx and alkalized Ti3C2Tx. The obtained
structures were tested with humidity and several different gases with a concentration of
100 ppm. Sensor devices based on the alkalized Ti3C2Tx structures showed considerably
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better sensor performance. For instance, sensor response to NH3 was 29% and 17% for alka-
lized and non-alkalized Ti3C2Tx, correspondingly (see Figure 12e). The authors explained
the enhanced sensing characteristics by Na+ intercalation and increment of O− terminals.
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Figure 12. Morphology and sensor response of Ti3C2Tx and alkalized Ti3C2Tx: (a,b) SEM images
of Ti3C2Tx; (c,d) SEM images of alkalized Ti3C2Tx; (e) gas sensor response of Ti3C2Tx and alkalized
Ti3C2Tx to the test gases with a concentration of 100 ppm. Reprinted with permission from [82].
Copyright © 2019, American Chemical Society.

To date, Ti3C2Tx structures are the most explored ones for gas sensor applications.
However, recently, Lee et al. demonstrated the perspective of vanadium carbide for the
fabrication of ultrahigh sensitive gas sensors [49]. The developed V2CTx-based sensors
showed a sensor response at room temperature for both polar (H2S, ammonia, acetone,
ethanol) and non-polar gases (H2 and Methane) with a concentration of 100 ppm (see
Figure 13a). Furthermore, the calculated theoretical detection limit for hydrogen and
methane of 1 ppm and 9 ppm, respectively, were obtained (see Figure 13b), which is
significantly lower than the values reported before.
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Figure 13. (a) Gas sensor response of V2CTx to the various gases with a concentration of 100 ppm at
room temperature. (b) The theoretical detection limit of the V2CTx-based sensor to various gases.
Adapted with permission from [49]. Copyright © 2019, American Chemical Society.

Zhao et al. showed new perspectives of V3C2T-based sensors for medical applications,
namely for the earlier diabetes diagnosis by detection of the trace acetone concentrations.
The developed sensor showed a detection limit that is lower than the diabetes diagnosis
threshold: 1 ppm in comparison with 1.8 ppm [83].

Table 1 presents the data and references on sensors based on pure MXene structures.
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Table 1. List of the selected sensors prepared using pure MXene structures.

MXene Preparation Method Test Gas Concentration
(ppm)

Detection
Limit

Sensitivity
(Rg−Ra)/Ra

Response/Recovery
Time Ref.

Ti3C2Tx LiF/HCl-etching
Ethanol

100
100 ppb 1.7 -/-

[6]Acetone 50 ppb 0.97 -/-
Ammonia 100 ppb 0.8 -/-

Ti3C2Tx LiF/HCl-etching

Methanol

100

- 0.143 -/-

[7]
Ethanol - 0.115 -/-
Acetone 25 ppm 0.075 -/-

Ammonia - 0.21 -/-

V2CTx HF-etching

Acetone

100

11.16 ppm 0.0226 -/-

[49]Methane 9.39 ppm 0.0167 8/5 min
H2 1.375 ppm 0.2435 2/7 min

H2S 3.504 ppm 0.005 -/-

Ti3C2 NaF/HCl-etching Ammonia 500 10 ppm 6.13% ~2 min/
~4 min [81]

Ti3C2Tx

HF-etching NO2 100 - 8% -/-

[82]NH3 100 - 17% -/-

HF-etching + Alkalization NO2 100 - 11% -/-
NH3 100 10 ppm 29% -/-

V4C3Tx HF-etching Acetone 100 1 ppm 2.5 -/- [83]

Ti3C2Tx Electrospinning technique
Acetone

ppb level 50 ppb
1.4%

<2 min [84]Ethanol 1.75%
Methanol 2.2%

Mo2CTx HF-etching Toluene 100 - 2.65% -/- [85]

3.2.3. MXenes-Based Heterostructures as Sensitive Layers

Besides varying the morphology, the formation of the MXene-based heterostructures
and composites is an effective way of improving their gas sensor performance. To date,
several works were conducted on the synthesis of MXene-based composites using the
hydrothermal route [86], wet spinning method [24,87], self-assembly process [48] and spray
pyrolysis [88] synthesis approaches. The study of gas sensing properties of the obtained
compounds showed great perspectives for their applications in this field.

One of the most often used methods for the improvement of MXene sensor properties
is their modification with metal oxides. For instance, Tai et al. demonstrated the enhanced
sensor performance of Ti3C2Tx nanosheets modified with TiO2 nanoparticles. Thus, a gas
sensor based on the TiO2/Ti3C2Tx composite showed a 1.6 times higher response and
0.65/0.52 shorter response time to 10 ppm NH3 in comparison to pure MXene [89]. In situ
growth of TiO2 nanowires on the Ti3C2 surface allows obtaining a composite with a signifi-
cantly increased surface area compared to pure Ti3C2 or TiO2 materials, resulting in the
production of a highly sensitive humidity sensor [90].

He et al. synthesized MXene structures decorated with SnO2 nanoparticles, which
exhibit excellent sensor performance to the NH3 with the detection limit at 0.5 ppm at room
temperature response/recover time shorter than 30 s [86]. The authors explained that the
superior sensing properties of the fabricated structures by the increased electron numbers
on the SnO2 surface are due to the difference in the Fermi level of the MXene and SnO2.
Moreover, MXene structures provide a unique matrix with selective adsorption abilities.

Herwaman et al. prepared hybrid heterostructures of CuO nanoparticles and Ti3C2Tx
MXenes using the electrostatic self-assembly approach and demonstrated that CuO/Ti3C2Tx
composite exhibits 5 times higher sensor response to toluene in comparison with pris-
tine CuO (see Figure 14). Moreover, the authors achieved improved selectivity and re-
sponse/recovery times due to the high MXene phase metallic conductivity [48].

Besides using metal oxides, the investigation of the enhanced sensing performance of
MXene’s by their modification with metals and the fabrication of MXene/carbon materials
composites was conducted.
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For instance, the decoration of MXene surfaces with Pd leads to the enhancement of
the gas sensor’s response to H2 at room temperature [91,92]. Doan et al. [91] have grown Pd
nanoparticles on the Ti3C2Tx using a polyol method (see Figure 15) and demonstrated that
the adjustment of the Pd concentration and Pd-particle distribution on the MXene’s surface
has an influence on the formation of high-performance hydrogen sensors that exhibited
sharp, concentration-dependent and selective responses even at room temperatures.
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Moreover, Doan et al. explained that the superior H2 sensing capability of the ob-
tained MXene/Pd structures depends on the formation of PdH due to the adsorption and
dissociation of H2 molecules promoted through the Pd catalytic nature (see Figure 16) [91].

The fabrication of MXene/GO fibers allows improving the sensor’s response compared
to other individual materials due to the MXene/graphene synergetic effect of electronic
and adsorption properties [87]. The obtained hybrids exhibit an improved sensing response
to NH3 at room temperature (see Figure 17), providing high mechanical flexibility, which
makes them a potential material for wearable gas sensor devices.

The incorporation of the carbon nanotubes in the MXenes structures allows preventing
the restacking of the Mxene nanosheets during the fabrication process (see Figure 18),
resulting in the enlargement of specific surface area and pore volume [93].
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In their work, Cai et al. showed perspectives of MXene/CNT composites for the
development of ultrahigh sensitive strain sensors due to the combination of good MXene
electric properties and excellent conductivity and stretching ability of the carbon nan-
otubes [94]. On the other hand, MXene/CNT hydride structures can be promising for the
development of high-performance gas sensor devices on their basis. For this purpose, novel
approaches for the CNTs growing and fabrication of MXene/CNT composite materials
may be considered [95,96]. Chen et al. demonstrated the enhancement of MXenes sensing
properties for the detection of oxygen-containing volatile organic compounds (VOCs) by
their hybridization with transition metal dichalcogenides [55]. Ti3C2Tx/WSe2 nanohybrid
composites, fabricated using surface-treating and exfoliation-based process, were tested for
the detection of several VOCs and showed significant improvement of sensor response to
the ethanol, methanol and acetone (see Figure 19a). Thus, the sensitivity of Ti3C2Tx/WSe2
nanohybrids to ethanol was increased by over 12-fold compared to the pristine Ti3C2Tx
MXene, showing an almost linear response at different ethanol concentrations (see Fig-
ure 19b). Interestingly, the formation of Ti3C2Tx/WSe2 composite led to the change in the
type of sensing behavior from p- to n-type.
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Based on the obtained results authors proposed the sensing mechanism for the
Ti3C2Tx/WSe2 nanohybrids, explaining the enhancement of sensing reactions due to the
flow of electrons from highly conductive MXene to WS2 surface (see Figure 20). At ambient,
the depletion layer is forming due to the trapping of electrons (see Figure 20a). Under the
gas exposure (for instance, ethanol), the release of electrons back to the conduction band is
occurring, resulting in the decrease in the depletion layer and a corresponding decrease in
sensor resistance (see Figure 20b).

Conductive polymers are the other very promising class of materials for gas sens-
ing applications, considering the number of their advantages. In comparison with metal
oxide-based sensor devices, they exhibit high sensitivity and short response time at room
temperatures, are characterized by good mechanical properties and are easy for manufactur-
ing [97]. To a date such conductive polymers, as polyaniline (Pani) [98,99], polythiophene
(PTh) [100], polypyrrole (PPy) [101–103], poly(3,4-ethylenedioxythiophene) (PEDOT) [104]
and polyacetylene (PA) [105] were used for the gas sensor fabrications, which showed good
respond to the variety of gasses, including NH3 [106,107], NO2 [108,109], H2S [110,111],
Ethanol [112], Methanol [113], etc.
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Among a list of potential polymers, PANI is the most widely used in sensors [114],
for instance, as an NH3 sensor, because the amine groups have excellent gas sensitivity to
the nitrogen-containing substances [115]. Conversely, MXenes contain a large number of
oxygen-terminated groups, which can strongly interact with NH3, resulting in an excellent
gas sensor response [86]. The formation of Mxene/PANI composites leads to superior
sensing properties not only to the NH3 but other gas substances as well. Thus, in their work,
Wang et al. achieved an improved NH3-sensing response in a high-humidity environment
by the development of Nb2CTx nanosheets/PANI nanofibers composites. The sensor device
based on the obtained composite showed a good linear response to NH3 in the concentration
range of 1–100 ppm at room temperature. The authors assumed that the reduced influence
of humidity could be the result of occupied active sites for water adsorption due to the
formation of intermolecular Nb2CTx/PANI hydrogen bonds [116].

Zhao et al. fabricated the Ti3C2Tx nanosheets decorated with PANI nanoparticles and
demonstrated that the developed composites are characterized by remarkable sensitivity to
ethanol at room temperature, providing fast response/recovery times and good mechanical
stability [117]. The authors explained that the improved sensor performance was due to
the synergetic properties of the nanocomposite, namely by the increased number of gas
adsorption sites due to the large surface areas of composite material and large number of
functional groups on the MXene’s surface.

PEDOT:PSS is another studied polymer for the fabrication of MXene/polymer-based
gas sensors due to its simple production and high conductivity [22]. The combination of
PEDOT:PSS with Ti3C2Tx results in a synergetic effect with enhanced sensitivity to NH3
in comparison to both pure PEDOT:PSS- and Ti3C2Tx MXene-based sensors due to the
large active sites on the MXene’s surface and direct charge transfer in PEDOT:PSS/Ti3C2Tx
composite structure [118]. Table 2 presents the information on sensors based on MXene
composites and heterostructures.

Table 2. List of the selected sensors based on MXene composite structures.

MXene Synthesis Method Test Gas Concentration
(ppm)

Detection
Limit (ppm)

Sensitivity,
(Rg−Ra)/Ra

Response/Recovery
Time Ref.

Ti3C2Tx/CuO electrostatic
self-assembly Toluene 50 - 11.4% * 270 s/10 s [48]

Ti3C2Tx/WSe2
Surface treating and

exfoliation-based process Ethanol 40 1 12% 9.7 s/6,6 s [55]

Ti3C2Tx/rGO wet spinning NH3 100 10 7.2% -/- [87]

Ti3C2Tx/ZnO spray pyrolysis NO2 100 - 41.9% 34 s/105 s [88]
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Table 2. Cont.

MXene Synthesis Method Test Gas Concentration
(ppm)

Detection
Limit (ppm)

Sensitivity,
(Rg−Ra)/Ra

Response/Recovery
Time Ref.

Ti3C2/TiO2 hydrothermal Humidity 7–97% - 1614 pF/%RF 2.0 s/0,5 s [90]

Ti3C2Tx/Pd polyol H2 100 - 56% -/- [91]

Ti3C2Tx/Pd
all-colloidal

solution-based
vacuum-filtration process

H2 4000 - 23% 37 s/161 s [92]

Nb2CTx/PANI NH3 100 - 301.31% 105 s/143 s [116]

Ti3C2Tx/PANI wet chemistry Ethanol 200 - 41.1% 0.4 s/0.5 s [117]

Ti3C2Tx/
SnO-SnO2

hydrothermal Acetone 100 - 12.1% * 18 s/9 s [119]

Ti3C2Tx/
Fe2(MoO4)3

hydrothermal VOCs 5−1000 5 43.1% 18/24 s [120]

Ti3C2Tx/PANI self-assembly NH3 50 - 400% -/- [121]

* S = (Rg/Ra).

3.2.4. Two-Dimensional MXene Layered Materials for Gas Sensor Application

Thus, considering the set of their functional properties, MXene materials are potential
candidates for sensing applications. However, the stacking of Ti3C2Tx nanosheets together
can lead to a decrease in specific surface areas, resulting in their limited sensing perfor-
mance [122]. It is well known that for gas sensing applications, 2D layered structures
deserve special attention due to their numerous advantages, including a large surface-to-
volume ratio, excellent flexibility, tunable electronic structure and excellent mechanical
stability [24].

The fabrication of MXene structures from MAX phases by etching process typically
leads to the formation of multilayered structures. As was shown above, the morphology of
the MXene structures can be adjusted by varying process conditions, namely the increase
in HF concentration leads to the formation of good isolated accordion-like MXene layers.
To obtain single-layered MXene structures, an additional exfoliation step is required (see
Figure 21), usually followed by sonication or mechanical shaking [60]. The intercalation or
delamination allows the discovery of unique properties of 2D materials.
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The first f-Ti2C2 MXene intercalation was achieved by Mashtalir et al. by inserting
organic molecules into the interlayers of accordion-like MXene structures. In their work,
the authors showed that the intercalation of dimethyl sulphoxide enabled the delamination
of the stacked f-Ti3C2 layers into separate 2D MXene sheets. Furthermore, the authors
confirmed that intercalated samples were characterized by electrical resistivity compared
to the non-intercalated MXenes [62].

The choice of the intercalant, as well as process parameters, has a significant effect on
the material’s functional and sensing properties. To date, several intercalants were used for
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the MXene exfoliation into single layers, including tetrabutylammonium hydroxide [60,124],
hydrazine [62,125], dimethyl sulfoxide [62,126], urea [62,126] and isopropyl amine [126].
For instance, Mashtalir et al. investigated the effect of the hydrazine intercalation on the
structure and properties of Ti3C2-based MXene and concluded that hydrazine intercalation
results in surface chemistry changes by decreasing the number of fluorine and OH surface
groups. Moreover, the opening of more active sites on the MXene surface occurs [125],
leading to better adsorption and sensing properties of the material.

Chia et al. showed that the exfoliation method has a strong influence on the sensing
performance. Thus, Ti3C2 structures, obtained via HF-etching and subsequent delamination
with tetrabutylammonium hydroxide, exhibited high selectivity and excellent electrocat-
alytic activity in the proposed biosensing system for glucose detection, opening the way
for the MXene applications in biomedical and food sampling areas [123].

The other important parameter of the layered MXene structures for gas sensor applica-
tions is the layers’ thickness (see Figure 22). Thus, thinner MXene films exhibit a higher
sensor response, which is apparently connected with active sites on the exposed MXene
structure, where −OH groups play an important role in the gas species adsorption [6].
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4. Conclusions

This review describes the most recent theoretical (using density functional theory
simulations) and experimental studies related to MXene-based compounds, especially for
gas sensing applications. Various synthesis approaches of the literature are introduced
detailing the production of Mxene, the development of pure Mxene compounds as well
as Mxene containing hybrid composite nanostructures. The literature indicates that the
synthesis method controls the material’s morphology. For instance, a varying etchant
concentration led to the formation of the well-isolated accordion-like structures that provide
a larger specific surface area and better adsorption properties. Additionally, these properties
are preferable for the development of high-performance sensing devices. In order to
eliminate the harmful effects of HF-based synthesis, the literature paid particular attention
to the employment of less hazardous, HF-free and greener etching methods. These are
mainly the usage of the Lewis acidic molten salts and alkali-assisted approaches.

Giving more emphasis to the gas sensors, the sensing mechanism of the developed
MXenes has been introduced, which differs from that of the semiconducting metal oxides.
It has been shown that the sensing mechanism in MXene structures follows a more com-
plicated route and depends on the charge transfer process based on the physisorption of
gas molecules on the surface without involving the adsorbed oxygen species. Gas sensor
applications employ pure MXenes and their composites, although the sensing mechanism
of MXene-based hybrid structures exhibits differences. Literature data indicate that the
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formation of MXene composite materials increases the specific surface area, which leads to
the bigger interlayer spacing and introduction of new active sites for gas adsorption.

Since the first discovery of MXene compounds, significant progress in their synthesis
and structural design has been achieved that expanded the MXene family. However, con-
sidering the ongoing demand for higher performance materials for different applications,
these studies can still be considered in their early stages. For instance, the controllable
synthesis of MXene compounds with a particular size, defects and surface terminations,
including monolayered structures, remains a challenge. The literature data shows that there
is a great perspective of MXene hybrid composites and heterostructures for gas sensing
applications; however, further and extensive investigation of their combinations with other
elements, compounds and stacking structures is needed.

The available, up-to-date research is devoted to the development of MXene-based
sensing devices, especially for room temperature applications. These display some thermal
instability problems. Therefore, future development should pay particular attention to the
improvement of their chemical and thermal stability, especially at high temperatures and in
humid environments, as well selectivity and sensitivity of the sensors. Moreover, additional
studies are necessary to be conducted by the employment of other sensor designs (e.g.,
avoid the usage of more costly interdigital electrode structures).
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