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Abstract: This paper considers the application of signal processing methods to passive indoor
positioning with acoustics microphones. The key aspect of this problem is time-delay estimation
(TDE) that is used to get the time difference of arrival of the source’s signal between the pair of
distributed microphones. This paper studies the approach based on generalized phase spectrum
(GPS) TDE methods. These methods use frequency-domain information about the received signals
that make them different from widely applied generalized cross-correlation (GCC) methods. Despite
the more challenging implementation, GPS TDE methods can be less demanding on computational
resources and memory than conventional GCC ones. We propose an algorithmic implementation
of a GPS estimator and study the various frequency weighting options in applications to TDE in a
small room acoustic environment. The study shows that the GPS method is a reliable option for small
acoustically dead rooms and could be effectively applied in presence of moderate in-band noises.
However, GPS estimators are far less efficient in less acoustically dead environments, where other
TDE options should be considered. The distinguishing feature of the proposed solution is the ability
to get the time delay using a limited number of the adjusted bins. The solution could be useful for
passively locating moving emitters of narrow-band continual noises using computationally simple
frequency detection algorithms.

Keywords: generalized phase spectrum; time delay estimation; indoor positioning; room acoustics;
sensors array

1. Introduction

The problem of time-delay estimation (TDE) is to measure the difference in the time
of arrival of signals recorded by space-separated sensors. This task is relevant for many
applications, including those which are related to signal source localization [1]. The position
of the object can be determined on the straight line [2,3], on the plane [4,5], and in space [6–8]
depending on the location and the number of sensors.

The use of TDE methods is typical for those areas of technology where there is a
need for the passive location of objects emitting signals. The physical nature of the signal,
however, is not essential. Among practical applications, we can highlight the pipeline leaks
position determination [2,3], local mobile objects positioning [9], passive radio position-
ing [1], etc. In recent years, the problem of TDE has become more relevant in connection
with the spread, on the Internet, of concepts and services providing contactless control of
household appliances [10], automatic tracking of objects [7], as well as in the sensor systems
of robotic devices [11]. A common problem in the implementation of each of the listed
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services is the need for signal sources spatial discrimination, which normally requires TDE.
Also, it should be noted that the development of industrial Internet applications requires
solving the TDE problem for the time synchronization of data coming from asynchronous
and spatially distributed sensors [11].

TDE methods and algorithms form a broad subject area. At present different ap-
proaches for TDE are known. A number of reviews have been devoted to the classification
and systematization of TDE algorithms for numerous and diverse applications, in particu-
lar [8,12–15]. This paper compares well-known but seldom used TDE algorithms based on
estimating the phase shift (GPS TDE) between signals.

Even though the frequency-domain TDE technique was originally proposed by Pier-
sol [16] and developed by Zhen and Zi-Quang [15] back in the 1980s, studies devoted to
its applications are relatively rare. This could be because the practical implementation
of the GPS TDE technique is not as straightforward as the implementation of GCC TDE.
Efficient implementation requires unwrapped phase spectrum estimation and time lag
extraction which can be performed in various ways. This applies some limitations on
using well-described GPS TDE algorithms [14] for different practical tasks. With this paper,
we will propose an implementation applicable for most typical TDE applications, such as
pipeline leak locating [2] or acoustic intrusion detection [4].

Related studies considering TDE for sound source positioning in room acoustic en-
vironment have been carried out before, for instance, in [7,8]. However, GPS TDE or
similar frequency-domain techniques were not considered there. Variations of CPS TDE are
compared in [14] in the different applications of locating the acoustic source, but the single
path propagation model was used to simulate a practical case. The single path propagation
model is considered not accurate [7,8] for a small room reverberation environment, so the
conclusions of [14] could not be extrapolated to this application without further research.
In [17], a hardware implementation of an indoor positioning system based on the phase
correlation TDE algorithm was proposed, however, only substitutional research was carried
out within the framework of the signal processing.

2. Materials and Methods

The most studied and widespread TDE technique is based on cross-correlation func-
tions computation (CCF) [2]. CCFs are calculated for different time series pairs of sampled
microphone signals, based on the position of the maximum in a correlogram. An alternative
to the TDE correlation methods are phase-frequency methods, suggested firstly in [17].
Unlike correlation methods which analyze signals in the time domain, phase methods
operate with signals frequency-domain representations. This section is devoted to the
phase methods of TDE.

This paper considers the simplest case with two sensors, shown in Figure 1. Obviously,
two sensors are not enough for unambiguous signal source localization on a plane or in
space [11]. Depending on the relative sensor’s position and the position of the signal
source, a pair of microphones may be sufficient to determine the direction towards the
object. In general cases, at least three sensors are required to determine the position of
the source in a room [16]. In this case, the signals of the sensors array can be processed
both simultaneously and in pairs [8]. The latter means that the algorithm considered in the
paper can be used to localize the signal source in a room using three or more microphones.
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2.1. Ideal Propagation Model

The TDE task for sound source detecting in a room can be formalized in several
ways [8]. Each method is a compromise between the signal propagation model accuracy
and the complexity of the mathematical description of the problem. The main acoustic
signal propagation models are [8]: ideal propagation model, multipath propagation model,
and reverberation model. In this work, we consider that the simulated microphones are
equally capable of efficiently registering signals coming from any direction.

The ideal propagation model assumes that there is only one path from the signal
source to each of the microphones. Let s0(t) be the signal emitted by the source. Then the
signals of the receivers will be

sa(t) = αa · s0(t− τa) + na(t),
sb(t) = αb · s0(t− τb) + nb(t).

(1)

where τa, τb are lag values; αa, αb are signal attenuation coefficients; nA(t), nB(t) are random
uncorrelated additive microphone noises. The values of τa, τb are determined by the
geometric distances ra, rb from the signal source to the corresponding receiver

τa =
ra

c
, τb =

rb
c

, (2)

where c is the sound speed. Attenuation of signals αa, αb can be caused by various factors,
however, in the simplest ideal case, exclusively source beam pattern and the scattering of
the sound wave are considered and, so

αa =
k

ra2 , αb =
k

rb
2 , (3)

where k is a constant coefficient.
In this case, the TDE is performed to get the value τab = τb − τa which is used further

to determine the position of the sound source. Using the notations above and having
redefined t = t − τb, we can rewrite (1)

sa(t) = k
ra2 · s0(t +

rb−ra
c ) + na(t),

sb(t) = k
rb

2 · s0(t) + nb(t).
(4)

Expression (4) does not consider the influence of several physical factors, such as
reflection and absorption of sound in a room.

Later, in the course of computational experiments with the ideal scenario, we will
take that k = 1, since the target signal-to-noise ratio (SNR) can be achieved exclusively by
changing the noise intensity.

2.2. Reverberation Model

The problem of the ideal propagation model is that the assumptions made do not
correspond to the acoustic conditions of the real-world enclosed room. Firstly, there are
always several paths for sound propagation between the source and the receiver due to the
presence of reflected waves. Secondly, the absorption of sound energy by room surfaces
has a significant effect on the recorded signal.

In accordance with the reverberation model, the received signals are described as follows

sa(t) =
∫ T

0 ha(τ) · s0(t− τ) · dτ + na(t),
sb(t) =

∫ T
0 hb(τ) · s0(t− τ) · dτ + nb(t).

(5)

where ha (t), hb (t) are room impulse response (RIR) functions. The complexity of application
of (5) is in the practical difficulty of RIR determination. Acoustic measurements [18] or
mathematical methods can be used to solve this problem. The image model method,
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first proposed in [19], is the most widespread among the latter. Alternatively, statistical
methods [20] or methods based on geometric acoustics and ray tracing [21] can be used.
To create realistic sound signals in this work, the image model method was used in the
implementation of Lehman, Johansson and Nordholm [22,23].

2.3. Basic Phase Shift TDE

The phase TDE algorithm is based on obtaining information about the delay value
from the cross-phase spectrum Φab of two signals. The algorithm for constructing the
cross-phase spectrum is known from spectral analysis [14]. At the initial stage, the Fourier
transforms Sa(fk) and Sb(fk) of the signals of each of the channels are determined

Sa( fk) = FD(sa(ti)), Sb( fk) = FD(sb(ti)), (6)

where sa(ti) and sb(ti) are series of N real samples of sa(t) and sb(t) signals sampled with
an interval ∆; FD is the operator of short-time discrete Fourier transform (DFT); Sa(fk) and
Sb(fk) are spectrums of the signals.

Further instantaneous cross-spectrum of signals S(q)
ab (fk) are calculated

S(q)
ab ( fk) = S(q)

a
∗( fk)× S(q)

b ( fk), (7)

where superscript (q) indicates the time instant tq = ∆·N·q of the beginning of the q-th
time window; * is the element-wise complex conjugation; × is the element-wise prod-
uct. The final measurement of the cross-spectrum Sab(fk) is obtained by averaging the Q
instantaneous spectrums

Sab( fk) =
1
Q

Q−1

∑
q=0

S(q)
ab ( fk). (8)

It should be noted that the application of (8) requires that the signal source remains
stationary relatively to the receivers during the entire time of signal recording. If it is not,
the spectral estimation Sab(fk) would not be correct. However, this assumption is normally
relevant for the cross-spectrum. If we consider that neither source nor sensors are moving,
the phase shift for each particular harmonic component will remain the same for all Q
instantaneous spectrums. Therefore, coherent accumulation is applied this way to reduce
the impact of the additive random noise.

To retrieve the set of phases, the phase cross-spectrum Φab(fk) is finally calculated

Φab( fk) = U[arg[Sab( fk)]], (9)

where U is an operator of phase unwrapping [24]; arg is the operator for defining the
argument of a complex number.

All harmonic components presented in s0(t) will also be present in sa(t) and sb(t).
In this case, the phase difference between the k-th harmonic components of sa(t) and sb(t)
is determined by τab·fk. Therefore, the estimation τab can be obtained as the coefficient of
proportionality in the line equation of the approximating Φab(fk).

The value τ̂ab can be determined, for example, based on the criterion for minimizing
the squared error function [14]. Let the error e be determined as

e = ∑
k

(
Φab( fk)−

(
_
τ ab · 2π · fk + bab

))2
, (10)

where bab is a constant term. Then
de

d
_
τ ab

= −2 ·∑
k

fk ·
(

Φab( fk)−
_
τ ab · 2π · fk − bab

)
,

de
dbab

= −2∑
k

(
Φab( fk)−

_
τ ab · 2π · fk − bab

)
.

(11)
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Equating the derivatives to zero in (11) results in

_
τ ab =

∆ · N
2π
· D · K− A · C

B · K− A2 , (12)

where values A, C, B, D can be computed with the proposed scheme

A = ∑
k

k; B = ∑
k

k2; C = ∑
k

Φab( fk); D = ∑
k

k ·Φab( fk). (13)

An advantage of the algorithm based on the use of (12) and (13) is that non-adjacent
spectral bins can be used for TDE. It is optimal to choose k ∈ S, where S is a set of the most
essential harmonic components of the signal s0(t).

2.4. Generalized Phase Spectrum TDE

A modification of the method described in the previous subsection can be used to
localize stationary signal sources. The modified method was initially proposed in [15] and
was named GPS TDE.

A distinctive feature of the generalized method is the use of real-valued frequency
weight function W(fk) which is used to determine τ̂ab. Similarly to (10), the weighted error
in this case are introduced

e = ∑
k

[
W( fk) ·

(
Φab( fk)−

(
_
τ ab · 2π · fk + bab

))]2
. (14)

Obtaining a calculation formula for τ̂ab could be carried out in the same way as in the
previous subsection

_
τ ab =

∆ · N
2π
· Λ ·K−A ·Θ

K · B−A2 , (15)

K = ∑
k

W( fk),A = ∑
k

k ·W( fk),B = ∑
k

k2 ·W( fk),Θ = ∑
k

Φab( fk) ·W( fk),Λ = ∑
k

k ·Φab( fk) ·W( fk). (16)

It is clear from (14) that the functions W(fk) should be chosen in the way that its value
is high if the useful signal prevails over noises at the fk frequency and differs little from
zero in other cases. A set of five frequency weighting functions was investigated in [14].
Table 1 below shows the calculation formulas for these functions.

Table 1. Weight functions.

Method Nomenclature Formula

BCC WBCC (fk) |Sab (fk)|/max(|Sab (fk)|)
PHAT WPHAT (fk) 1
SCOT WSCOT (fk) γab (fk)

ML WML (fk) γ2
ab (fk)/[1 − γ2

ab (fk)]
COH WCOH (fk) γ2

ab (fk)

The coherence function γ2
ab (fk) widely used for this purpose is calculated as

γ2
ab ( fk) =

∣∣∣∣∣Q−1
∑

q=0

(
Sa

(q)∗( fk) · Sb
(q)( fk)

)∣∣∣∣∣
2

Q−1
∑

q=0

∣∣Sa(q)
∣∣2·Q−1

∑
q=0

∣∣Sb
(q)
∣∣2 . (17)

It should be noted that the computational scheme proposed in this section differs from
the one in [14]. Equation (15) allows the unwrapped phase spectrum to not pass through
the origin, as far as we used coefficient bab in linear regression. This feature is practically
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important and will be addressed later. As far as W(fk) is based on spectral estimations, the
generalized method should be applied carefully for signals that are non-stationary.

3. Results and Discussion

A series of computational experiments were carried out for a comparative evaluation
of the algorithms. The human voice is commonly used for evaluation purposes in related
studies [7,8]. Prior to the proposed study, we have tested algorithm performance for several
speakers but did not find a significant difference in the results. Therefore, we have used
the recording of one speaker and focused the study mainly on evaluating the impact of
additive noise and multipath propagation in a reverberant environment.

A recording of a male speaker’s voice with additive random noise was used to produce
a set of test signals. The noise-free sound was synthesized based on the recorded voice by
each of two means: in accordance with (4) and in accordance with (5).

Additive noises were generated by software, then scaled and summed with the pre-
processed recording. The spectral noise density was equal in the range from 0 to 1000 Hz.
Signals and noises outside of this frequency range were not considered in the experiments.
A similar approach to preparing the set of test signals was used in [25].

Noises of the same intensity were applied to both channels. At the same time, the
intensity of the noise was set in such a way as to provide the target SNR relative to the
root-mean-square value of the signals recorded by the sensors for the entire time of each
instance of the experiment. When applying (1), the delay was introduced by shifting
one copy of the record relative to another by an integer number of sampling intervals
(fd = 44,100 Hz).

3.1. Experimental Setting

A set of stereo test records with a duration of about 20 s each were prepared for the
study. The recording was analyzed in fragments of about 1 s during each instance of the
experiment. At the same time, the analysis of each of the fragments was considered an
independent experiment. The final estimations used to calculate the absolute error were
obtained by averaging obtained values of the lag time.

The number of samples in each of the analyzed fragments was L = 40,960 (about
928.8 msec). The number of samples in the segment was taken to be N = 4096 (about 92.9 msec).
Consequently, each piece of recording sound was fragmented into Q = 10 segments. When
processing the results, the outputs corresponding to the segments of the recording, where
pauses in speech predominated, were discarded.

Two different sets of frequency bins were used when applying (16). The first set
contained frequency bins corresponding to the condition fk ε [100 Hz, 850 Hz]. The second
set contained four non-overlapping frequency bands shown below. The choice of such
frequency intervals was carried out in accordance with the form of power density spec-
trum of the raw signal shown in Figure 2. The presented characteristic was obtained by
averaging all instantaneous power density spectrums with a window of N = 4096 samples.
The position of the cut-off level was chosen empirically to optimize the TDE operation
in the absence of reverberations. It should be noted that the power density spectrum for
different speakers or even for different speech fragments by this speaker would not remain
the same. However, the proposed procedure will remain applicable regardless.

3.2. Simulation of the Small Room Environment

As noted above, creating a realistic sound signal in accordance with (5) requires
obtaining RIR functions ha (t), hb (t). The MATLAB program prepared by Eric Lehman [22]
was used to obtain these characteristics. When calculating the RIR, the room parameters
and the configuration of the sensors were specified as shown in Figure 3. The dimensions
of the room were 5 × 3.5 × 2.25 m. The source has coordinates (1.5, 2.75, 1.8), and the
microphones (4.5, 1.25, 1.8) and (4.5, 2.25, 1.8).
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The reverberation time (T60) was assumed to be 50 msec and 120 msec. The first value
is compliant with the standards of a room intentionally designed for voice broadcasting.
The second value is compliant with the requirements for verbal communication in an office
space [26]. The synthesized RIRs are shown in Figure 4.
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3.3. Comparison of GPS TDE Methods in Anechoic Environment

Table 2 shows the absolute TDE errors for various weight functions and the ideal
signal propagation model. Figure 5 shows the dependence of TDE error on SNR.

Table 2. Absolute error of GPS TDE with ideal propagation model.

Set
SNR Mean Absolute Error (msec)

(dB) WBCC (fk) WPHAT (fk) WSCOT (fk) WML (fk) WCOH (fk)

First

32 0.008 0.013 0.012 0.007 0.011
24 0.007 0.014 0.016 0.007 0.013
16 0.005 0.017 0.020 0.005 0.016
12 0.008 0.049 0.031 0.008 0.023
8 0.020 0.080 0.053 0.020 0.038
4 0.425 0.782 0.626 0.399 0.600
0 0.623 1.139 0.893 0.735 0.687
−8 1.961 2.171 2.100 1.931 2.006

Second

32 0.005 0.008 0.009 0.005 0.009
24 0.005 0.008 0.009 0.005 0.009
16 0.004 0.012 0.011 0.003 0.012
12 0.008 0.019 0.017 0.005 0.015
8 0.011 0.016 0.018 0.010 0.015
4 0.020 0.053 0.030 0.022 0.024
0 0.634 0.497 0.514 0.631 0.637
−8 0.973 0.631 0.672 0.934 0.921
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Figure 5 shows that the use of a reduced number of frequency bins in (15) and (16)
provides greater accuracy while increasing the intensity of in-band noises. At the same
time, the use of the second reduced frequency set allows you to reduce the threshold SNR
to 4 dB over which sharp drop in the accuracy manifests.
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Figure 6 shows the absolute TDE error for SNR ≥ 8 dB for WPHAT and WML. When the
noise intensity is not sufficient to go over the threshold, the estimators demonstrate the best
possible performance in terms of accuracy regardless the noise level. When the SNR drops
below the threshold level, the accuracy degrades gradually with the intensification of the
noise. However, using a reduced set of frequency bins makes the contaminating effect of
in-band noise less harsh. Notably, this is more obvious for WPHAT than for WML. That can
be explained by the fact that frequency weighting applied with ML estimator compensates
for frequency bins where noise prevails over the signal. Despite the fact, that threshold SNR
level appears in Figure 6 to be better for PHAT than for ML, the latter estimator surpasses
the former in terms of accuracy in the single path scenario regardless of noise intensity. The
frequency weighting function for the ML estimator is in Figure 7.
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Figure 7. Sample phase cross spectrum Φab (fk) and weighting functions W(fk) for various SNR:
(a,b) Φab (fk), (c,d) WBCC(fk), (e,f) WSCOT(fk), (g,h) WML(fk), (i,j) WCOH(fk). Figures (a,c,e,g,i) are obtained
for SNR = 32 dB. Figures (b,d,f,h,j) are obtained for SNR = 4 dB. For WML (fk) all values are normalized
with the maximum value on the frequency band of interest.

Figure 7 shows the form of Φab (fk) and all W(fk) in the absence of noise (SNR = 32 dB)
and their presence (SNR = 4 dB). A part of the curve that is close to linear shape is clearly
distinguished at Φab, in both cases, however, in the presence of noise, the corresponding
frequency range is significantly narrower. It should be noted that Φab in the absence of
noise passes through the origin and behaves as described in [14]. However, when the
signal is contaminated with the noise, Φab is offset relative to the abscissa axis. This can
be explained by the fact that there is no voice signal on frequencies up to 100 Hz, so the
prevalence of the noise in this band results in an unpredictable offset of the unwrapped
phase spectrum. That makes the estimation technique proposed in [14] not relevant for
this task.

The shape of WSCOT and WCOH is close to a line parallel to the time axis in the absence
of noise. In the presence of noise, a high level of WSCOT and WCOH is observed in the
intervals where the cross-power spectrum |Sab| has high values. WBCC form follows the
shape of |Sab| and does not differ significantly in the presence of noise and their absence.
Four areas of high values are visible at the WML corresponding to the Φab regions that are
best approximated by the line.

3.4. Comparison of GPS TDE Methods in Reverberant Environment

Tables 3 and 4 summarize the average TDE absolute errors for different weighting
functions, reverberation model and different reverberation times.
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Table 3. Absolute error of GPS TDE with reverberation model (T60 = 50 msec).

Set
SNR Mean Absolute Error (msec)

(dB) WBCC (fk) WPHAT (fk) WSCOT (fk) WML (fk) WCOH (fk)

First

32 0.081 0.012 0.009 0.054 0.009
24 0.080 0.014 0.010 0.065 0.012
16 0.063 0.019 0.017 0.059 0.019
12 0.066 0.021 0.015 0.061 0.021
8 0.072 0.027 0.017 0.073 0.022
4 0.062 0.177 0.097 0.067 0.069
0 0.272 0.505 0.407 0.247 0.324
−8 1.735 1.775 1.746 1.736 1.747

Second

32 0.166 0.195 0.195 0.182 0.194
24 0.165 0.190 0.192 0.178 0.192
16 0.163 0.181 0.183 0.169 0.181
12 0.161 0.171 0.171 0.163 0.168
8 0.155 0.122 0.148 0.153 0.150
4 0.165 0.151 0.156 0.157 0.150
0 0.190 0.199 0.168 0.162 0.137
−8 1.392 1.727 1.598 1.460 1.478

Table 4. Absolute error of GPS TDE with reverberation model (T60 = 120 msec).

Set
SNR Mean Absolute Error (msec)

(dB) WBCC (fk) WPHAT (fk) WSCOT (fk) WML (fk) WCOH (fk)

First

32 0.346 0.129 0.146 0.243 0.164
24 0.364 0.198 0.208 0.347 0.251
16 0.315 0.327 0.320 0.299 0.282
12 0.365 0.194 0.212 0.366 0.251
8 0.348 0.658 0.578 0.361 0.433
4 0.531 0.825 0.768 0.606 0.592
0 0.572 0.897 0.842 0.723 0.611
−8 1.169 1.297 1.291 1.181 1.263

Second

32 0.519 0.558 0.567 0.584 0.571
24 0.520 0.559 0.574 0.592 0.580
16 0.522 0.577 0.586 0.583 0.586
12 0.525 0.560 0.586 0.574 0.587
8 0.570 0.594 0.604 0.629 0.619
4 0.631 0.550 0.651 0.682 0.683
0 0.884 0.829 0.942 0.921 0.935
−8 1.057 0.832 0.914 0.985 0.971

Figure 8 shows that in the presence of reflected signals, the ML estimator is inferior
in accuracy to the SCOT and COH estimators, especially in the absence of additive noises.
At the same time, the accuracy turns out to be significantly lower than in the previous
case. This can be explained by the correlation of the signals with their reflected copies.
In the presence of reverberations and intense noises, none of the functions show any
accuracy advantage. The latter makes it useful to apply the BPS TDE method (PHAT) as
the simplest one.

The use of the second set of frequency bins provides an advantage in accuracy only in
conditions of noise dominance (SNR ≤ 0 dB). The use of the complete set of frequency bins
provides significantly better accuracy in other cases.

Figure 8 shows the dependence of TDE error on SNR graphically.
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Figure 9 shows the results of using GPS TDE for various acoustic conditions of the
environment. It is clear from the figure that the reverberation time increase leads to a
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drastic increase in the error both in the presence and absence of noise. However, with the
dominance of noise over the signal, the presence of reflected copies has a positive effect on
accuracy. However, even if this is the case, the TDE error remains unacceptably high for a
significant part of practical applications.
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Figure 9. Absolute error vs SNR for various reverberation times and the complete set of frequency
bins: (a) WML; and (b) WCOH frequency weighting functions were applied.

Figure 10 shows the form of Φab (fk) and all W(fk) for different values of reverberation
time (T60). All graphics in Figures 7 and 10 are obtained for one and the same fragment of
the original signal. It can be seen from the form of Φab that an increase in the reverberation
time leads to a distortion of the frequency response form and a decrease in the estimate
accuracy. At the same time, the distortions observed for WSCOT and WCOH are not as
significant as they were in the absence of reverberations and the presence of noises. This can
be explained by the fact that the reflected signals are mutually correlated, and their presence
does not contribute to a significant decrease in the level of signal coherence. The correlation
of the reflected signals also affects at the shape |Sab| and, therefore, at the WBCC form. The
WML form also changes significantly with an increase in the reverberation time, while the
regions of high values also correspond to the linear sections Φab. At T60 = 120 msec, the
number of such sections becomes smaller which negatively affects the accuracy.



Sensors 2022, 22, 965 14 of 17Sensors 2022, 22, x FOR PEER REVIEW 15 of 18 
 

 

(a) 

200 400 600 800 1000

f, Hz

0

2π

π

Φab ( f )

0

 

(b) 

200 400 600 800 1000

f, Hz

0

2π

π

Φab ( f )

0

 

(c) 

200 400 600 800 1000

f, Hz

0

1

0.5

WBCC ( f )

0

 

(d) 

200 400 600 800 1000

f, Hz

0

1

0.5

WBCC ( f )

0

 

(e) 

f, Hz

200 400 600 800 10000

1

0.5

WSCOT ( f )

0

 

(f) 

f, Hz

200 400 600 800 10000

1

0.5

WSCOT ( f )

0

 

(g) 

200 400 600 800 1000

f, Hz

0

1

0.5

WML ( f )

0

 

(h) 

200 400 600 800 1000

f, Hz

0

1

0.5

WML ( f )

0

 

(i) 

200 400 600 800 1000

f, Hz

0

1

0.5

WCOH ( f )

0

 

(j) 

200 400 600 800 1000

f, Hz

0

1

0.5

WCOH ( f )

0

 

Figure 10. Sample phase cross spectrum Фab (fk) and weighting functions W(fk) for various reverber-
ation times: (a,b) Фab (fk), (c,d) WBCC(fk), (e,f) WSCOT(fk), (g,h) WML(fk), (i,j) WCOH(fk). Figures (a,c,e,g,i) are 
obtained for T60 = 50 msec. Figures (b,d,f,h,j) are obtained for T60 = 120 msec. For WML (fk) all values 
are normalized with the maximum value on the frequency band of interest. 

  

Figure 10. Sample phase cross spectrum Φab (fk) and weighting functions W(fk) for various reverbera-
tion times: (a,b) Φab (fk), (c,d) WBCC(fk), (e,f) WSCOT(fk), (g,h) WML(fk), (i,j) WCOH(fk). Figures (a,c,e,g,i)
are obtained for T60 = 50 msec. Figures (b,d,f,h,j) are obtained for T60 = 120 msec. For WML (fk) all
values are normalized with the maximum value on the frequency band of interest.
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4. Conclusions

This study investigated GPS TDE in relation to the problem of localizing a sound
source in a small room. The suggested TDE algorithm is based on the analysis of the phase
response form which makes it possible to estimate the time by analyzing an arbitrary set of
spectral bins.

To assess the algorithm’s applicability and efficiency, a series of computational experi-
ments were performed to simulate the speaker positioning within a small room. To simulate
room acoustics, the image model implemented by Lehman and Johanson [23] was used.
During the course of the experiment, the SNR at the signal receivers was varied, as well as
the room reverberation time.

The fundamental applicability of the suggested algorithm was shown due to the
performed experiment. In the absence of noises and echo, GPS TDE demonstrates an
accuracy comparable to the sampling error at fd = 44,100 Hz (about 0.01 s). A decrease in
accuracy is expected in the absence of echo but at an increase in the intensity of additive
noise. However, narrowing of the frequency range over which TDE is performed helps to
maintain accuracy under moderate noises (SNR > 4 dB). The best accuracy characteristics
are provided by the ML GPS estimator.

When an echo occurs, TDE accuracy downgrades significantly. The reflected signals
are correlated, and, therefore, introduce extra noise to the correlogram. In this case, the use
of a reduced set of spectral bins affects the accuracy negatively. Even with insignificant
reverberations, corresponding to an acoustical very dead room and the absence of noises,
the ML GPS estimator demonstrates a relatively low accuracy. The SCOT and COH GPS
estimators show the best results. In conditions of higher reverberations, the TDE error
increases significantly in comparison to the ideal case and makes the use of the GPS
method ineffective. In practice, however, the influence of echo can be lower, as real-world
microphones are not omnidirectional.

Even though the suggested method is inferior to analogs in a few aspects, its advan-
tage remains high computational efficiency. The suggested computational scheme, when
using a relatively small number of adjacent frequency samples for TDE, allows the use
of Goertzel’s algorithm instead of FFT [27]. This is essential for embedded computers
with memory constraints. Additionally, the use of well-known implementations of the
Goertzel algorithm designed for phase detection [28] will make it possible to re-evaluate the
spectral characteristics of the signal with new data arrival. The latter is useful for solving
the problem of positioning a mobile acoustic source. Further studies will be devoted to the
testing of this hypothesis.
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