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Abstract: The development of a wireless link for biomedical applications requires an accurate
estimation of the delivered power to implanted devices. In particular, a variety of mid-range
applications in the biomedical area have gained significant attention. An appropriate method for the
mid-range wireless link is required to implement a continuous wireless link through human tissue.
Even though formulas used in this work are all based on previous works, this paper presents an
implementation of the diverse formulas for the mid-range wireless link of an implanted antenna used
for a pacemaker system based on the understanding on radiation properties varied with the distances
from the antenna. The formulas based on input far-field data are successfully applied to compute
the power transmission for the implanted devices, whose range includes radiative near-field and
far-field regions. The wireless link for a pacemaker system is evaluated through using a patch antenna
immersed with different depths of human tissue. A comparison of the computed and measured
results shows an excellent agreement where the validity of the evaluation is demonstrated.

Keywords: radiative near-field; wireless link; implanted biomedical devices; pacemakers; asymptotic
Friis formula; Chu formula; integral coupling formula

1. Introduction

The use of implantable medical devices (IMD) has led to the advancement of various
medical treatments and diagnostic methodologies. In particular, pacemakers have received
a considerable amount of interest for the patients suffering from abnormal heart rhythms.
They have been used to successfully recover heart rhythms for the patients. The implantable
medical devices, such as pacemakers, typically require wireless power transfer (WPT) as
well as wireless data transfer [1]. The use of wireless devices is advantageous in contrast to
the wire-based devices where battery life time and replacement are the biggest issues [2–5].
In spite of apparent benefits of the wireless devices, the implanted devices must meet strict
requirements to provide the continuous wireless link with external devices. Considering
low available power for the implanted devices, an accurate estimating method of the
wireless link is required [6–8]. A variety of techniques based on inductive, capacitive,
magnetic, mid-field, far-field, acoustic, and optical link have been investigated for WPT
applications [9–12]. In particular, mid-range applications made in the radiative near-
field or far-field region have gained significant attention. The traditional WPT operating
in the VHF band has focused on a non-radiative near-field region, and the use of high-
frequency applications in recent years permits the use of WPT systems realized in a radiative
near-field region, which are known as “radiative mid-range” [13–21]. The mid-range
applications allow the device to communicate through using the radiation characteristics of
two antennas. Several techniques have been studied for the electromagnetic characteristics
of various implanted antennas, including an interaction between the implanted antenna
and the external antenna [22–26]. The ray tracing methods, such as geometrical optics (GO)
and uniform theory of diffraction (UTD), are suitable for computing the electrically large
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objects. The methods have been used for the investigation on the outdoor point-to-point
link, and have recently demonstrated their applicability to the case of body centric wireless
link [22]. A finite-difference time-domain (FDTD) is useful for the study on electromagnetic
problems with inhomogeneous media [23,24]. The accuracy and efficiency of the method
has been investigated for the diverse biomedical devices. However, the FDTD method has
been limited to the short wireless link in order to meet the specific discretization of unit cell
with allowed computing capability. Meanwhile, the method of moment (MoM) provides
a degree of freedom to diverse locations of biomedical devices [25,26]. The method has
been applied to the calculation of the on-body wireless link; however, for the case with
inhomogeneous and lossy media, the use of the MoM might be less efficient than using
other methods. Even though those methods have been widely used in the study of the
mid-range wireless link in biomedical areas, electromagnetic analysis of antennas in the
human body usually requires intensive computation. Therefore, an efficient method needs
to be employed in order to study diverse cases of wireless links in a limited time. The
Friis formula, based on plane-wave characteristics, is computationally advantageous for
the wireless link in the far-field region [27]. A variant of the Friis formula and integral
coupling formula have been introduced to compute the wireless link in the radiative near-
field region [28–31]. In the radiative near-field region, in contrast to the far-field region,
broadened radiation patterns with reduced gains are observed. The ability to accurately
estimate the changes of the radiation in a proximity distance is becoming more critical. The
Friis formula with correction terms has been successfully utilized to estimate the wireless
link in the Fresnel region [27–29]. In this formula, correction term as a function of far-field
gain has been successfully applied to characterize the radiation properties in the Fresnel
region. An approach to the generalization of the Friis formula based on the fundamental
Gaussian beam has been proposed by Chu [31]. While the formulas are related to the rapid
calculation based on the simple far-field gain, the integral coupling takes advantage of the
fast Fourier transform (FFT) based on two vector far-field patterns [32–37]. This feature
allows diverse scenarios of the wireless link to be easily computed from far-field patterns
obtained from measurements or full-wave simulations. The effectiveness of the formula
has been demonstrated through various cases of the power transmission in a free-space and
more complex circumstances containing dielectrics between two antennas [36]. Recently,
the formula has been applied to the wireless link for implanted biomedical devices [10].
Even though there are several recent advancements for the mid-range biomedical implanted
devices, relatively little attention has been paid for accurately and efficiently analyzing the
mid-range wireless link. Moreover, comprehensive evaluations based on diverse techniques
using the radiative near-field characteristics have been rarely reported.

In this paper, the radiation characteristics around the implanted antenna are studied,
and several techniques based on the far-field radiation characteristics are revisited and
its applications to the wireless link for the implanted antennas are presented. The mid-
range radiation characteristics are studied through the near-field distribution where the
antenna is immersed with different depths of human tissue for pacemaker application. In
the following section, the phenomenon of the reduction in the far-field gain, known as
“gain reduction factor”, is used to describe the radiation characteristics in the radiative
near-field region. This work provides an overview of important features for the several
techniques used in the mid-range wireless link: (i) asymptotic Friis formula, (ii) Chu
formula, and (iii) integral coupling formula. The detailed procedure to obtain the wireless
link is discussed, and the formulas are applied to the various cases of the biomedical
wireless link. In order to include all near-field wireless links, this work revisits the two-port
network for the investigation of inductive coupling where the wireless link is made in a
reactive near-field region.

2. Materials and Methods

The derivation of the related formulas, applications, and measurements have been
profoundly discussed in [27–37]. The formulas based on the available far-field data are
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appropriate to obtain the power transmission between two antennas. It is demonstrated
that the formulas allow for the accurate and efficient computation of the power transmission
in a free-space or in a complex environment with the existence of dispersive dielectrics. In
this section, the detailed procedure, to obtain the power transmission for the implanted
antenna in biomedical applications, is presented. In order to discuss the important features
of the related formulas, the radiation pattern needs to be characterized in terms of various
locations from the antenna. In this section, the key features of the radiation characteristics
and their interactions to obtain the power transmission are discussed.

2.1. Asymptotic Form of Gain Reduction Factor

The radiation characteristics can be varied from the near-field region to the far-field
region of the antenna of interest. There are two categories in the near-field region: reactive
near-field region and radiative near-field region. The reactive near-field region is known as
non-radiative near-field region or inductive near-field region. The boundary to distinguish
reactive near-field from radiative near-field is known as λ/2π for an electrically small
antenna [38]. This paper revisits the formulas that are effective in the mid-range region,
including the radiative near-field and far-field region. The distinctive radiation charac-
teristics in near-field and far-field regions are investigated through an example of a large
aperture antenna, represented by a reflector antenna with a radius of 10 λ.

Figure 1 describes the variation of the H-plane radiation pattern obtained from full-
wave simulation, FEKO. The H-plane radiation pattern shows that there is a rare radiating
part close to the antenna; as the distance increases, the radiation towards a boresight
direction appears, and, finally, a uniform far-field pattern is created. For the on-axis
direction, as the distance from the antenna increases, the magnitude of the power densities
oscillates and then monotonically decreases, as presented in the previous work [29,33,36].
The effective wavelength λe in the biological tissue presented in [7] can be defined as

λe =
λ0

Re
[√

εr − jσ
wε0

] (1)

where λ0 and ε0 are wavelength and permittivity in a free space, respectively, and εr and
σ are relative permittivity and conductivity of the biological tissue. The surrounding
environment for the implanted antenna is selected as the human skin, where its electrical
properties are summarized in Table 1. The effective wavelength λe in the human skin is 93.6
mm, from which the thickness of the human skin of 4 mm and 8 mm can be estimated as
0.043 λe and 0.085 λe, respectively. The electrical distance from the implanted antenna can
be reduced based on the λe, compared to the one in a free space. The effective wavelength
is negligible in the far-field region, while it affects the electrical distance in the close part of
the radiative near-field region and the reactive near-field region. The boundary between
the radiative near-field and far-field region is suggested as 2D2/λ or 2λG/π2 [29]. The
different radiation characteristics in each region can be applied to the derivation of the gain
reduction factor γ, which is defined as

γ(∆) =
GF(∆)

G
= 1− α∆−2 (2)

where the G and GF are the far-field gain and Fresnel gain of the antenna, respectively, and
the coefficient α is related to the rate of the reduction in the far-field gain G, which is found
to be α = 0.066. The normalized distance ∆ can be defined as

∆ =

{
R

2D2/λ
(Traditional definition)

R
2λG/π2 (Proposed definition)

(3)
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Figure 1. Varied radiation patterns of the parabolic reflector antenna with a radius of 10λ at the
different positions of the non-radiative near-field region and the radiative near-field region.

Table 1. Electrical properties of human tissue (skin) at 400 MHz.

Tissue Permittivity (εr) Conductivity (σ[S/m]) Mass Density (ρ[kg/m3])

Skin 46.74 0.69 1100

In this paper, the gain reduction factor with the proposed separation distance inte-
grated with the Friis formula is used to enhance the accuracy in the radiative near-field
region.

2.2. Mid-Range Wireless Link Formulas

This subsection presents appropriate methods for calculating the mid-range wireless
link and important features of the different techniques. Three different methods used
in the evaluation include (i) asymptotic Friis formula, (ii) Chu formula, and (iii) integral
coupling formula. The first two formulas based on the far-field gain are advantageous in
providing an almost instant calculation. However, the drawbacks include the limitation of
the possible scenarios and the slight loss of the effective range, compared to other methods.
The integral coupling formula utilizes the FFT of the far-field data with magnitude and
phase. Even though relatively complex far-field data are required, the applications of the
formula, including various case studies, are very wide. The three different methods are all
accurate and time-efficient, even when not taking the recent advancement of computing
capabilities into consideration.

2.2.1. Asymptotic Friis Formula

The Friis formula, derived from plane-wave characteristics, has been widely used for
the long-range wave propagations [27]. A configuration of the power transmission between
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two antennas is depicted in Figure 2. A ratio between transmitted power Pt and received
power Pr between two antennas can be obtained using the Friis formula, as follows:

Pr

Pt
=

(
λ

4πR

)2
Gt(θt, ϕt)Gr(θt, ϕt)|ρ̂t·ρ̂r|2 (4)

where G(θ, ϕ) is the far-field gain in terms of angular variables of (θ, ϕ), and R is the
separation distance between two antennas. ρ̂ is the polarization vector. The subscripts t
and r represent the transmitting and receiving antenna, respectively. Although it predicts
well in the far-field region, a comparison between the Friis formula and measurements
imply that the Friis formula is inaccurate in a short distance [28,29]. The discrepancy in the
radiative near-field region is owing to the plane-wave approximation that is suitable for
the far-field region. The Friis formula can be incorporated with an asymptotic correction
term for accurately calculating the mid-range wave propagation. The asymptotic term, as
a function of distance R and far-field distance 2D2/λ, has been used to include the gain
reduction effect in the radiative near-field region. The problem of the formula is the intense
computation of the gain reduction factor required for each antenna. It has been found
in [29] that the gain reduction factors tend to converge through taking the slightly modified
form of the asymptotic term presented in Equation (3). The modification is beneficial in
terms of its applicability to a variety of antennas with rapid computations. The use of the
asymptotic expression, however, requires slightly larger minimum ranges where all of the
radiative near-field region is not covered. The Friis formula with the gain reduction factors
γ can be defined as

Pr

Pt
=

λ2

16π2R2 Gtγt(R)Grγr(R) (5)

In order to include both cases of low and high gain antennas, the switching function
F(G) is incorporated with the gain reduction factor γ. The gain reduction factors of the
transmitted antenna γt and received antennas γr can be defined as

γt = 1− αEF(Gt)

(
R

2λGt/π2

)−2
, γr = 1− αEF(Gr)

(
R

2λGr/π2

)−2
(6)

where F(G) = 2.5− a
π ·arctan[c·(G− b)] and αE = 0.066.

In this work, the parameters, a = 3, b = 5, and c = 1, are selected for smooth switching.
The other technique based on the Gaussian beam has been applied to both the radiative
near-field region and far-field region. It is worth noting that Gt and Gr included in the cor-
rection term are substituted with the directivity of the transmitting and receiving antenna,
respectively.

1 
 

 

 

 
  

Figure 2. Configuration of the power transmission between a Tx antenna and a Rx antenna.
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2.2.2. Chu Formula

An approximation of the Friis formula has been derived based on the fundamental
mode of Gaussian beams, which is called “Chu formula”. The formula is a function of
the distance R and effective aperture area Ae, which is also relevant to the far-field gain G.
The Gaussian beam is used to include both approximation in the far-field region and gain
reduction effect in the radiative near-field region.

Pr
Pt

= λ2

16π2R2 GtGr

× 1

1+(λ2/(16π2R2))
((√

F(Gt)Gt+
√

F(Gr)Gr

)
/2
)2

(7)

In contrast to the separable asymptotic gain reduction factors for transmitting and
receiving antennas, the formula includes a combined form of the gain reduction factors of
the two antennas. It is worth noting that the switching function F(G) is incorporated with
the antenna gain in the correction term, except for the Friis formula.

2.2.3. Integral Coupling Formula

In the formula, a fast Fourier transform (FFT) has been used to obtain the near-field
coupling from both the magnitude and phase of the far-field pattern [32–37]. The require-
ments of the formula are the complex far-field pattern and the antenna placements of both
the on-axis and rotational scenarios. The formula requires the discretized sampling and
implementation of the integral based on the FFT method. The use of the FFT method makes
it possible to increase the computational efficiency, compared to a Fourier transform. The
far-field patterns obtained at the phase center of an antenna are an important requirement
for the FFT calculation. The first procedure is to transform the origin of the far-field pattern
obtained from simulation or measurement into the global coordinate system. Eulerian
angle transformation is used to allow origins of the far-field patterns to be located in the
global coordinate system. The two-dimensional interpolation technique is used to obtain
the complex far-field patterns of two antennas at sample points of the discretization. A
distribution of far-field patterns confined in the rectangular plane provides the spatial band-
width of the FFT. The sampling frequency is determined by the bandlimited characteristics
using Nyquist theorem, and bandlimits the transverse displacement between two antennas.

fs = 2κ × (Dt + Dr) (8)

where κ is the oversampling ratio. The summation form of the coupling quotient presented
in [33] can be defined as

b′0
a0
(
→
R) = −C

k (∆k)2

×∑
m

∑
n

→
f TX(kmn

x , kmn
y )·

→
g RX(kmn

x , kmn
y )

kmn
z

× ei
→
k

mn
·
→
R

(9)

where
→
f TX

(
kmn

x , kmn
y

)
and

→
g RX

(
kmn

x , kmn
y

)
are 3D vector far-field patterns of the trans-

mitting and receiving antennas, respectively, and k = x̂kmn
x + ŷkmn

y + ẑkmn
z and ∆k = 2π

fs
=

π
κ(Dt+Dr)

. a0, b0 represent amplitudes of input wave to transmitting and output wave from

receiving antenna, respectively, where there is a relationship such as S21 = |b′0/a0|2. The
impedance mismatch term C can be defined as

C =
ZFL, RX

Z0

1
(1− Γ0, TxΓ0, Tissue)

1
(1− Γ0, Rx)

(10)

where ZFL, RX and Z0 are the feedline impedance of the receiving antenna and intrinsic
impedance in the air, respectively, and Γ0, Tx, Γ0, Tissue, and Γ0, Rx are reflection coefficients
of the transmitting antenna, the human tissue and the receiving antenna, respectively. It is
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worth noting that the Equation (9) has e−iwt time dependence in free space, and multiple
interactions are ignored.

With an effort to extend the effective range, it is demonstrated that the far-field
approximation to the integral coupling is well converged into the Friis formula. A valid
range of the integral coupling, therefore, includes radiating both the near-field region and
far-field region.

3. Results

The radiation characteristics of an antenna inside the human tissue are studied through
the near-field distribution, where the antenna is immersed with different depths of human
tissue for the pacemaker application. In the following subsection, the phenomenon of the
reduction in the far-field gain, known as “gain reduction factor”, is used to describe the
radiation characteristics in the radiative near-field region. Based on the understanding
of the gain reduction factors, the related formulas are presented to predict the power
transmission made in the radiative near-field region.

3.1. Evaluation of Gain Reduction Factor

A useful representation of the reduced antenna gain in the radiative near-field region
is the gain reduction factor. The effects of the significant decrease in the near-field power
transmission indicate that the reduction in antenna gain exists in a proximity distance.
The near-field distribution of a patch antenna inside the human tissue is presented to
examine the gain reduction effect of the biomedical devices. The radiation characteristics
are investigated for the patch antenna immersed with different depths of the human tissue,
whose specification was presented in [10]. The size of the implanted patch antenna is
20 cm × 20 cm, which is located between two 3.4 mm thick substrates with εr = 10.2. The
size of the reader patch is 40 cm × 40 cm, which is printed on 3.4 mm thick substrates
with εr = 2.2. As shown in Figure 3, the radiation pattern obtained from the full-wave
simulation is varied depending on different distances R between the implanted antenna
and the measured points. The radiation patterns, changed from the flat radiative pattern to
the directive far-field radiation pattern, are described. The radiation patterns are obtained
with different thicknesses of the human tissue, which are set as 4 mm and 8 mm. Since
the thickness of the human tissue is comparable to the distance R for the case of small
R, the distance R is measured as the wavelength in the air, λ0 and the one in skin tissue,
λe. The broadside gains at the different positions are used to derive the curve of the
gain reduction factor. The gain reduction factor is obtained using the asymptotic formula
presented in [29]. The modified antenna gain is applied to increase the accuracy of the
formula in [29]. The modified gains for the reader patch antenna and other patch antennas
immersed with different depths of skin are obtained through using the switching function
F(G). It is observed that the gain reduction for the case of the reader patch antenna is
greater than the other case of the implanted antenna. It is attributed to the fact that the gain
reduction factor with the higher far-field gain typically produces the larger reduction in the
antenna gain at the same distance R.

A comparison between calculated and simulated gain reduction factors is provided
in Figure 4, which shows a good agreement between those two results except for a very
close distance. For a very close distance which is less than 0.5λ, the gain reduction factor
rapidly decreases due to the failure of the quadratic form of gain reduction factor in the
close proximity. The power transmission based on the gain reduction factor is investigated
in the following subsection.

3.2. Wireless Link Analysis Based on Related Formulas

The main purpose of this section is to examine the power transmission to the implanted
antennas for the pacemaker application. A variety of formulas discussed in the previous
section are applied to the case of the near-field and the far-field wireless link. Based on the
discussion of the radiation characteristics for different positions, biomedical applications of
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the formulas are provided in this section. The formulas have been applied to the on-axis
and rotational scenarios which are commonly used in biomedical applications.
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(a) (b) 

  
(c) (d) 

 
 
 
 
 

Figure 3. (a) Description of the evaluated cases, (b) simulated radiation patterns for the reader patch
antenna outside the human body, (c) simulated radiation patterns for the implanted patch antenna
immersed with 4 mm thickness of the human skin, and (d) simulated radiation patterns for the
implanted patch antenna immersed with 8 mm thickness of the human skin.

3.2.1. On-Axis Scenarios

The integral coupling formula has been used to successfully evaluate the biomedical
wireless link presented in [10]. The use of the diverse techniques is desirable to meet the
requirement of establishing the biomedical wireless link where an efficient and accurate
estimation is preferred. Other techniques used in this paper, compared to the previous
work [10], are the asymptotic Friis formula and the Chu formula. The power transmission
between two antennas is evaluated for the on-axis scenario where the implanted antenna is
fixed while the reader antenna moves along the z-axis. The far-field gains and directivities
applied to the formulas are provided in Table 2. The far-field gains are used to estimate
the coupling level, including losses due to the implantation inside the human body, while
directivities are used to calculate the gain reduction factors. The modified gain based on
the switching function is used to determine both the gain reduction factors included in
the asymptotic Friis formula and the Chu formula. Figure 5 shows a comparison for the
related formulas and full-wave simulation FEKO. It is observed that the related formulas
provide an excellent agreement with the results of full-wave simulation FEKO, except for
the Friis formula. The Friis formulas provide maximum deviations (enhancements) of
1.7~2.5 dB from other methods. The case of the free-space power transmission provides
more deviation (enhancement) compared to the case of the implanted antennas, since a
relatively high gain of the antenna outside the human body produces more gain reduction
in the near-field region. It is observed that the level for the case with 4 mm thickness is
roughly 1.3–1.7 dB higher than the level of the case with 8 mm thickness. It is observed
that the deviation from the Friis formula agrees well with the reduction in the antenna gain
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presented in Section 2. It is worth noting that the asymptotic Friis formula tend to diverge
from a group of curves at 0.8λ, since the gain reduction factor is starting to decrease rapidly,
as discussed in Section 2.
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Table 2. Far-field gains of the patch antennas at 400 MHz.

Patch Antenna in
the Air

Implanted Patch
Antenna (4 mm)

Implanted Patch
Antenna (8 mm)

Far-field gains 6.8 dBi −7.7 dBi −9.1 dBi
Directivities 6.6 dBi 5.5 dBi 5.2 dBi
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Figure 5. A comparison of the power transmissions obtained from the related formulas and the
full-wave simulation FEKO at 400 MHz between: (a) the two identical reader patch antennas outside
the human body, (b) the reader patch antenna outside the human body and the implanted patch
antenna immersed with 4 mm thickness of the human skin, and (c) the reader patch antenna outside
the human body and the implanted patch antenna immersed with 8 mm thickness of the human skin.

3.2.2. Rotational Scenarios

The applicability of the formulas is examined for the case of the rotational scenario.
The power transmission is evaluated for the case in which the implanted antenna is fixed
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while the other one rotates with an angle θ. The integral coupling formula is more flexible
for the estimation of the power transmission due to the movement of the antenna. The
integral coupling formula can be used to compute the power transmission in rotational
scenarios, while the formulas originated from the Friis formula are restricted to accurately
estimate the rotational scenarios. The integral coupling formula was primarily used for
the evaluation of the rotational scenarios. The separation distance was set as 1λ and the
rotation angles of the reader antenna varies from 0◦ to 45◦, which are slightly wider than
the valid angle presented in [34]. A comparison of the integral coupling formula and the
full-wave simulation tool FEKO is shown in Figure 6. The similarity of the two graphs is
observed in terms of the shapes with the different rotation angles. A maximum deviation
between the integral coupling formula and the full-wave simulation FEKO is approximately
0.8 dB. The integral coupling formula demonstrates its applicability to the diverse scenarios
which are widely used in the biomedical applications.
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Figure 6. A comparison of the power transmission obtained from the FEKO simulation and the
integral coupling formula at 400 MHz within a valid angular range at R = 1λ between: (a) the reader
patch antenna and the implanted patch antenna immersed with 4 mm thickness of the human skin
and (b) the reader patch antenna and the implanted patch antenna immersed with 8 mm thickness of
the human skin.

3.3. Measurement

The anechoic chamber measurements were performed to verify the validity of both
the computed and simulated results. The setup for the indoor measurement is shown in
Figure 7. A phantom fluid that provides the characteristics of the human skin was applied
to the measurements. The product (SKIN350-500V2) manufactured by Schmid & Partner
Engineering AG company, Zurich, Swiss is used. An acrylic tank is used to contain the
fluid for the implanted patch antenna. The size of the acrylic tank is set as (height × length
× width) = (31.6 cm × 31.6 cm × 10 cm), which can be filled with one liter of the fluid.
The implanted patch antenna is situated inside the fluid, while the reader patch antenna
moves along the boresight direction of the two antennas. An important aspect of this
work is the investigation of wireless power transmission to implanted antennas which are
immersed with different depths of 4 mm and 8 mm. The depths of the human skin were
determined by measuring the distance between the implanted antenna and the wall of the
tank. The power transmission was measured using a vector network analyzer by varying
the separation distance from R = 1 λ to R = 5 λ. A comparison of the simulated results and
measured results is shown in Figure 8.
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Figure 8. A comparison of the simulated results and the measured results for: (a) the power transmis-
sion between the reader patch antenna outside the human body and the implanted patch antennas
with different thicknesses of the human skin at 400 MHz, and (b) the impedance matching of the
implanted antennas with different thicknesses of the human skin.

An excellent agreement between the simulated and measured results is observed for
the different depths of the human skin. It is noted that the simulated coupling level at the
shortest distance is slightly smaller than the one of Figure 8, since the shortest distance
of R = 1λ for the measurement is greater than the one of R = 0.8λ for the simulation.
For the impedance matching, the simulated and measured results are similar in terms of
the magnitude of the reflection coefficients, while a 3~5% shift of the center frequency
between the simulated and measured results is generated. The discrepancy between the
simulated and the measured one might be attributed to the use of a relatively smaller
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size of the tank than the human tissue model used in the simulation. The effect from
the dispersive phantom fluid can be reduced due to the limited size of the tank, which
results in higher resonant frequency than the full-wave simulation. The measured results
provide a good agreement with the simulated results for both the power transmission and
impedance matching.

4. Discussion

This paper presents biomedical applications of the formulas to compute the mid-range
wireless link in the radiative near-field region. The radiation characteristics of the implanted
antennas in the radiative near-field region are studied, and the related gain reduction
factor is derived. The step by step procedures from the radiation characteristics to the
analysis of the wireless link are presented. The formulas require the far-field information
to compute the coupling between two antennas in the radiative near-field region. An
overview of the different formulations is summarized in Table 3. The important aspects of
the formulas are presented in terms of scenarios, computing time, input data, and effective
regions. The case of the full-wave simulation FEKO is classified into the MoM method.
The formulas were used to successfully compute the power transmission for the implanted
patch antennas immersed with different depths of the human skin. A good agreement with
the results obtained from the full-wave simulation FEKO is observed, and an enhancement
of 1.7~2.5 dB, with respect to the Friis formula, was obtained. For the rotational scenario,
a reasonable agreement with the results obtained from full-wave simulation FEKO was
obtained. The validity of the evaluation was verified using the indoor measurement, and
a good agreement between the simulated and the measured results was obtained. This
work presents effective methods in the radiating near-field region; however, an uncovered
proximity distance still exists, especially at lower frequency bands. In order to include
the inductive coupling in the reactive near-field region, an example of the coupling at 400
MHz between a coil outside the human body and a loop antenna inside the human body is
presented in Appendix A. The effective region of the proposed formulas implies that the
(physical) minimum range can be reduced at a higher frequency band, such as 2.4 GHz, for
body area communication.

Table 3. Overview of the different techniques for the radiative near-field regions.

Scenarios Computing Time
(One Position) Input Data Effective Region

Asymptotic Friis formula On-axis scenario Instant Far-field gain Fresnel region
Chu formula On-axis scenario Instant Far-field gain Fresnel region

Integral coupling formula On-axis, off-axis, and
rotational scenarios few seconds 3D vector far-field

pattern Radiative near-field

The method of moments
(MoM)

On-axis, off-axis, and
rotational scenarios 20~25 min EM antenna designs

and geometries
Radiative and

non-radiative near-field
Finite-difference

time-domain (FDTD)
On-axis, off-axis, and
rotational scenarios 40~45 min EM antenna designs

and geometries
Radiative and

non-radiative near-field
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Appendix A

In this Appendix, two-port network analysis ([39], Ch. 4.3) is revisited to estimate
the power transfer efficiency for an inductive WPT system. The two-port network can
be expressed as impedance parameters (Z-parameters). This technique, based on the
circuit analysis, is useful to acquire the voltages, currents, and powers for a load of the
receiving antenna. The purpose of this Appendix is to examine a power transfer efficiency
between the coils outside the body and an electrically small loop antenna inside the human
body. Figure A1 depicts the simulation setup of the inductive coupling between the small
implanted antenna and the external antenna. The coupling in the reactive near-field region
was evaluated at 400 MHz. The diameter of the external antenna is 24 mm, while the size of
the implanted antenna is 1 × 1 × 1 mm3. The coupling between two antennas is expressed
as the impedance parameters (Z-parameters) of the two-port network. The Z-parameters
are obtained using a full-wave simulation tool, HFSS. Both load and source impedances
are set as 50 Ω. The power transfer efficiency is obtained based on the simulated results
of the Z-parameters and voltage, current, load power are derived based on the power
efficiency. Figure A2 describes the power efficiency obtained from the full-wave simulation
and corresponding voltage, current, and power delivered to the load. The distance between
the coil outside the body and loop antenna inside the body is set as 9 mm, and the loop
antenna is immersed with a depth of 4mm. The maximum power transfer efficiency is
obtained as −15 dB, which is slightly higher than the one in the previous work ([39], Ch.
4.3). The magnitude of the power obtained in the load of the receiver is 0.57~1.74 mW
when the power applied to the source is 15~45 mW. It is demonstrated that the impedance
parameters based on the inductive coupling are effective for predicting the coupling in the
reactive near-field region, as discussed in [40].
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Figure A1. Description of the inductive coupling between the coil outside human body and the
implanted loop antenna inside human skin.
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