

 sensors-22-00904

sensors-22-00904

Sensors 2022, 22(3), 904; doi:10.3390/s22030904

Article

Study of the Few-Shot Learning for ECG Classification Based on the PTB-XL Dataset

Krzysztof Pałczyński 1[image: Orcid], Sandra Śmigiel 2,*[image: Orcid], Damian Ledziński 1[image: Orcid] and Sławomir Bujnowski 1[image: Orcid]

1

Faculty of Telecommunications, Computer Science and Electrical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland

2

Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland

*

Correspondence: sandra.smigiel@pbs.edu.pl; Tel.: +48-52-340-8346

Academic Editor: Christoph Hintermüller

Received: 28 October 2021 / Accepted: 21 January 2022 / Published: 25 January 2022

Abstract

:

The electrocardiogram (ECG) is considered a fundamental of cardiology. The ECG consists of P, QRS, and T waves. Information provided from the signal based on the intervals and amplitudes of these waves is associated with various heart diseases. The first step in isolating the features of an ECG begins with the accurate detection of the R-peaks in the QRS complex. The database was based on the PTB-XL database, and the signals from Lead I–XII were analyzed. This research focuses on determining the Few-Shot Learning (FSL) applicability for ECG signal proximity-based classification. The study was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and 20 different heart disease classes. The results of the FSL network were compared with the evaluation score of the neural network performing softmax-based classification. The neural network proposed for this task interprets a set of QRS complexes extracted from ECG signals. The FSL network proved to have higher accuracy in classifying healthy/sick patients ranging from 93.2% to 89.2% than the softmax-based classification network, which achieved 90.5–89.2% accuracy. The proposed network also achieved better results in classifying five different disease classes than softmax-based counterparts with an accuracy of 80.2–77.9% as opposed to 77.1% to 75.1%. In addition, the method of R-peaks labeling and QRS complexes extraction has been implemented. This procedure converts a 12-lead signal into a set of R waves by using the detection algorithms and the k-mean algorithm.

Keywords:

ECG signal processing; few-shot learning; R wave detection; distance-based classification; PTB-XL dataset; deep learning

1. Introduction

Machine learning, especially Deep Learning (DL) approaches, has been of interest in academia and industry. This has resulted in numerous changes in the approach to automatic detection or classification processes. However, the reliability of such studies has not always been high and differs depending on the methods used.

Since recently, it has been proved that Artificial Intelligence (AI) and machine learning has numerous applications in all engineering fields. Among them are the areas of electrical engineering [1], civil engineering [2], and petroleum engineering [3]. In addition, classification using DL methods [4] have several practical applications in various areas of medicine, such as the diagnosis of diseases based on physiological parameters [5], the classification of cardiac arrhythmias based on ECG signals [6,7], and the recognition of human activity [8]. Various ECG classification schemes based on DL were used to detect heart diseases [9,10,11,12], for example, using Long Short-Term Memory networks [13] and one-dimensional Convolution Neural Networks [14,15,16]. In addition, DL methods have been used to classify pathological conditions of the heart, such as arrhythmia, atrial fibrillation, ventricular fibrillation, and others.

Cardiovascular disease is a general term for a series of cardiovascular abnormalities that are the world’s leading cause of death [17]. Each of them is identified and interpreted using an electrocardiogram (ECG). The ECG is an important non-invasive diagnostic method for the interpretation and identification of various types of heart disease. Figure 1 shows an illustrative waveform of the ECG signal. Every day, approximately 3 million ECGs are produced worldwide [18]. ECG data contain rich information about the rate and rhythm of the heartbeat. Clinically, the ECG is analyzed over a short period using a graph of several consecutive cardiac cycles. The process begins with R-peak detection. It is usually the most visible part of the ECG that can be easily identified. The ECG reflects the depolarization of the main mass of the ventricles and refers to the maximum amplitude in the QRS complex. QRS complexes are the starting point for the analysis of the ECG signal. They serve as rhythm items and provide information about intraventricular rhythm and conduction [19,20].

Several methods and techniques have been used to locate the R-peak in the ECG signal, based on standard techniques such as digital filtering, wavelet transform, Fourier Transform, signal decomposition, and Hilbert Transform. However, only a few proposed works use DL methods in the literature to detect QRS complexes. One of the works in [21] is where a 300-point Convolutional Neural Network (CNN) and clustering on the neural output are used to detect QRS complexes on the pre-processed input signal. Another method using CNN has been proposed [22], demonstrating the reliable detection of the fetal QRS complex. The authors of the work [23] proposed a 1-D CNN and Multi-Layer Perceptron (MLP) classifier that determines the QRS positions. Another approach was the work [19] in which two DL models based on multi-dilated convolutional blocks were used: CNN and CRNN. Finally, this group of works includes [24], where a stacked autoencoder deep neural network is proposed to extract the QRS complex.

Regardless of the DL methods chosen, problems are identified, including classification efficiency, the detection of undesirable results, dependence on computing power, and the high sample count. In response to these problems, a few newly published articles propose using Few-Shot Learning (FSL) to identify new concepts in medicine and fill the gap between the efficiency and the size of the training samples. FSL mimics humans’ ability to acquire knowledge from a few samples. This technique involves training a neural network to encode input data into small-sized vectors, which distances to other vectors encoding objects of the same class are smaller than to vectors representing objects from different classes. The distance between vectors is usually computed by measuring the Euclidean distance between two vectors. In addition, FSL can encode information regarding the object’s belonging to a particular class in the output vector. Because of that, the layer of neurons representing defined classes is not required, which allows the FSL network to distinguish between classes that were not seen during training, thereby enabling learning from limited samples and rapidly generalizing to new tasks, giving a different perspective on DL.

There are many areas of application of FSL methods. In the medical field, the use of FSL methods occurs in conjunction with medical images and medical signals. One of the application directions is to use the network-based FSL method to classify rare human peripheral blood leukocyte images. The proposed Siamese network by the authors of [25] contains two identical Convolutional Neural Networks and a logistic regression network. In justifying their research, the authors point to the relationship between the number of leukocytes and various diseases, including cancer. The obtained results show that the Siamese network can overcome the scarcity and imbalance of datasets used in this research. The results are promising and give hope for addressing the issue of rare leukocyte images recognition in medicine.

Another view is the use of Few-Shot Deep Learning in medical imaging, for example, COVID-19-infected areas in Computed Tomography (CT) images. Recent studies indicate that detecting radiographic patterns on chest CT scans can provide high sensitivity and specificity in identifying COVID-19. One of the works [26] was undertaken to investigate the efficacy of FSL in U-Net architectures, allowing for a dynamic fine-tuning of the network weights as new samples are fed into the U-Net. The obtained results confirmed the improvement of the segmentation accuracy improvement in the identification of COVID-19-infected regions. A similar approach was proposed by the authors of another study [27], pointing to the use of FSL for the computerized diagnosis of emergencies due to coronavirus-infected pneumonia on CT images. A similar application of FSL was demonstrated by the authors of the study [28], who undertook the classification of COVID-19 infected areas on X-rays. As part of the research, the method was tested to classify images showing unknown symptoms of COVID-19 in an environment designed to learn several samples, with prior meta-learning only on images of other diseases.

Diagnostics of disease states based on medical images using DL methods have also been applied in dermatology. The authors of the work [29] demonstrated the possibility of using FSL for Dermatological Disease Diagnosis. Skin diseases are increasingly becoming one of the most common human diseases, contributing to dangerous cancerous changes or affecting motor disability. The proposed method is scalable to new classes and can effectively capture intra-class variability. A similar approach was used by the authors of [30], who proposed a Few-Shot segmentation network for skin lesion segmentation, which requires only a few pixel-level annotations. The authors emphasize that the proposed method is a promising framework for Few-Shot segmentation of skin lesions. The conducted experiments show that removing the background region of the query image both accelerates the speed of network convergence and significantly improves the segmentation efficiency.

The works of other authors in medicine with the use of FSL indicate the possibility of application in creating predictive models of drug reactions based on screens of cell lines. For example, the authors’ work in [31] applied Few-Shot machine learning to train a versatile neural network model in cell lines that can be tuned to new contexts using a few additional samples. The model quickly adapted to switching between different tissue types and shifting from cell line models to clinical contexts.

In biomedical signals, an interesting approach is to use the FSL method of Electroencephalography (EEG)-based Motor Imagery (MI) Classification. The authors of the work [32] drew attention to an essential aspect of research on the brain–computer interface using EEG signals. In their justification, they indicated the potential of EEG in designing key technologies in both healthcare and other industries. The research proposed a two-way Few Shot network that can efficiently learn representative features of unseen subject categories and classify them with limited MI EEG data.

In the area of the ECG signal, the authors in [33] proposed a meta-transfer-based FSL method to handle arrhythmia classification with the ECG signal in wearable devices. The results obtained by the authors indicate that the proposed method exceeds the accuracy of other comparative methods when performing various Few Shot tasks within the same training samples.

The study aimed to determine the usefulness of the FSL for ECG signal proximity-based classification. The research was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and 20 different heart disease classes. For this task, two neural networks were trained. The first one was optimized by performing FSL to classify input samples based on Euclidean distance to the defined classes’ vectors. The second one was trained to perform softmax-based classification. It serves as a basis for comparison due to its well-known effectiveness in recognizing classes established during training. This work also examines classification strategies in FSL by comparing the results obtained from proximity-based classification to training machine learning algorithms on top of optimized FSL neural networks. The tested machine learning algorithms are XGBoost, Random Forest, Decision Tree, K-Nearest Neighbors, and SVMs. The neural network proposed for this task interprets a set of QRS complexes extracted from ECG signals. The method of R-peaks labeling and QRS complexes extraction has been implemented. This procedure converts a 12-lead signal into a set of R waves by using the detection algorithms and the k-mean algorithm. The novelty of this work involves using the FSL learning style for training on known, fixed classes; its comparison with more typical, softmax-based classifications; and the evaluation of classification strategies to be employed on top of the trained FSL network.

This paper is organized as follows: Section 2 closely describes the methods, the architectures of the artificial intelligence system, and the previously carried out data filtering, R Wave detection, and QRS extraction. Then, Section 3 presents the result of the research. Then, the discussion is given in Section 4. Finally, Section 5 concludes the paper and provides a look at further studies on this topic.

2. Materials and Methods

The methodology used in the paper was as follows (Figure 2): The PTB-XL dataset containing the labeled 10-second raw-signal ECG was used for the research. First, the records in the database have been filtered. Then, the R waves were labeled in the records in the next step. On this basis, QRS segments were separated. Finally, the dataset has been split into training, test, and validation data (respectively 70%, 15%, 15%). These data were used to train two neural networks, based on softmax and a Few Shot, as classifiers of 2, 5, and 20 classes of heart diseases. In the last stage, the network performance was evaluated.

2.1. PTB-XL Dataset

In this study, all the ECG data used come from the PTB-XL dataset [34,35]. PTB-XL is the publicly available and most extensive set of clinical ECG data. It provides a rich set of ECG annotations and additional metadata, which together constitute an ideal source for training and evaluating machine learning algorithms. The PTB-XL dataset contains 12-lead 10 s ECGs from 18,885 different patients for a total of 21,837 records. ECG files come in two other options with 500 Hz and 100 Hz sampling rates with 16-bit resolution. The research used ECGs with 500 Hz sampling rates. The database contains 71 types of heart diseases with 5 significant classes: normal ECG (NORM), myocardial infarction (CD), ST/T change (STTC), conduction disturbance (MI), and hypertrophy (HYP).

2.2. Data Filtering

Initially, the PTB-XL had 21,837 records. However, not all records have labels (assigned classes), and not all assigned classes were 100% sure. For this reason, both cases were filtered out of the original dataset. Each record has a given class and a subclass for specific heart disease. Records with the number of subclasses less than 20 were also filtered from the original dataset. In this way, 17,232 records were obtained, each belonging to 1 of the 5 classes and 1 of the 20 subclasses. Figure 3 shows a detailed distribution of classes and subclasses. Descriptions of the classes of diseases are included in the in Appendix A and Appendix B.

2.3. R Wave Detection and QRS Extraction

None of the known R-peak detection methods tested by the authors were 100% effective. In addition, these methods use only a 1-lead signal. For this reason, the authors decided to propose their own method, using several known methods (Hamilton detector [36], Two Average detector [37], Stationary Wavelet Transform detector [38], Christov detector [39], Pan–Tompkins detector [40], and Engzee detector [41] with modification [42]) for all 12-leads and obtaining a consensus from them using k-mean algorithm. The designated R-peaks were used to cut the 10-s records into segments referred to further in the work as QRS complexes. The cuts were determined in the middle of the distance between the designated R-peaks (Figure 4). The first and last segments were removed. The following segments were resampled to 100 samples. In this way, for each record, a set of QRS complexes and metadata as BPM (Beat Per Minute) and resampling ratio for each QRS complex were obtained.

2.4. Designed Network Architectures

This chapter describes the architecture of the Deep Neural Networks used in this research (Figure 5) and the methodology of processing QRS complexes, applied loss functions, and training procedure.

The system receives the collection of QRS complexes stored in the input signal:

 X i = { Q 1 , . . . , Q n } , n ∈ N +

(1)

where:

	
X—set of input signals after QRS extraction performed;

	
i—index of signal being processed by the system;

	
 Q n —n-th extracted QRS complex containing 100 12-dimensional samples:

 | Q j | = 1200 , j ∈ N + ∩ j ≤ n

(2)

Then, a set of QRS complexes is processed by the function designed to transform each wave into a 24-dimensional vector containing abstract features allowing for similarity calculation between vectors representing classes defined in the PTB-XL dataset:

 f : R 12 × 100 → R 24

(3)

The function has been approximated by the deep convolutional neural function described in Table 1. The process of learning this neural network has been presented in the Section 2.5.

Each convolutional layer’s output is subjected to the LeakyReLU activation function with parameter equal to 0.01. The last convolutional layer operates using a kernel of size 1. This computation has been inspired by GoogLeNet architecture [43], and its task is to perform dimensionality reduction. This layer requires only 192 weights to reduce the activation map size 48 times.

The function approximated by Convolutional Neural Network is used to encode each QRS in the input data:

 Z i = { f (X i , j) | j ∈ N + ∩ j < | X i | }

(4)

As a result, Z i is a set of 24-dimensional vectors with varying cardinality. This set is now processed by Adaptive Maximum Pooling and Adaptive Average Pooling functions.

The Adaptive Maximum Pooling function selects maximum value from each dimension of the vectors in the set:

 Z m a x i = [m a x ({ Z i , j , 1 | j ∈ N + ∩ j < | X i | }) , ⋯ , m a x ({ Z i , j , 24 | j ∈ N + ∩ j < | X i | })]

(5)

The Adaptive Average Pooling function averages values of every dimension from vectors in the set:

 Z a v g i = [1 | Z i | ∑ j = 1 | Z i | Z i , j , 1 , ⋯ , 1 | Z i | ∑ j = 1 | Z i | Z i , j , 24]

(6)

The results of both Adaptive Average Pooling and Adaptive Maximum Pooling are combined into 1 48-dimensional vector:

 A = [Z m a x i , Z a v g i]

(7)

In the last step, the result is inputted to a fully connected layer with 20 neurons turning the 48-dimensional vector of concatenated pooling results into a 20-dimensional final vector:

 F i = f (A) ; f : R 48 → R 20

(8)

Vector F i describes the input signal using 20 abstract features. It is used in both classification neural networks to determine the signal’s class by subjecting it to softmax function for class probability distribution computation or in FSL for signal’s class determination by measuring Euclidean distance to the center of the class represented by vector made of averaging feature vectors obtained from signals on the training dataset. In the case of standard classification, there is also one more fully connected layer added to adjust the size of the abstract features vector to the number of classes in the classification task.

2.5. Training

The neural networks’ parameters have been adjusted using Adam [44] optimizer. In addition, the dataset has been split into training, validation, and test sets five times to reduce the impact of fortunate weights randomization on the network’s performance. The split was performed by dividing the dataset by 70%, 15%, and 15%.

The training dataset was used to determine the values of the network’s weights. In addition, the network was evaluated on the validation dataset during the training process to perform early stopping [45] for overfitting reduction purposes. The final network’s evaluation has been performed on a test dataset using the last saved set of weights, which scored the best result on the validation dataset. Each time the network scored the best result on the validation dataset, its weights have been saved. The training lasted until 10,000 epochs elapsed or early stopping was performed.

For the purpose of this research, two neural networks have been trained, one for FSL and one for standard classification serving as a basis for a benchmark. Both networks are structurally almost identical and differ only in adding one fully connected layer in standard classification tasks and the interpretation of output vector and employed loss function.

2.5.1. Few-Shot Learning

Few-Shot Learning network was trained using the triplet margin loss function [46]. The task of this loss function is to decrease the distance between vectors belonging to the same class and increase it for vectors from different classes. This process can be described by the formula:

 L (a , p , n) = m a x (d (a , p) − d (a , n) + m , 0)

(9)

where:

	
a—“anchor” vector. This vector is compared with the other two vectors;

	
p—“positive” vector. This vector belongs to the same class as the “anchor” vector;

	
n—“negative” vector. This vector belongs to the different class as the “anchor” vector;

	
m—margin. Quantity describing desired separation of vectors from the same class with vectors from different classes. In this research, m was equal to 1;

	
d—distance function, d : (R 20 , R 20) → R 1 .

For this research purpose, the Euclidean distance has been used as a distance function:

 d (x , x ′) = ∑ j = 0 | x | (x j − x j ′) 2

(10)

The purpose of the triplet margin loss function is to ensure that the distance between vectors from two different classes is higher than a distance between vectors of the same class in addition to constant margin m. The neural network is not penalized for its performance only if:

 d (a , p) − d (a , n) + m ≤ 0

(11)

 d (a , p) ≤ d (a , n) − m

(12)

Minimizing this function ensures the separation of inter-class distances from distances to vectors of other classes by the margin of m.

During training, triplets of vectors, two from the same class and one from different classes, were randomly selected and fed to the network. At each step, classes were picked from the distribution created from the computing frequency of occurrence in the dataset. This approach was motivated by the a priori assumption that reciprocating class observation frequency from dataset to training process results in better network convergence. However, for more balanced training, a different approach may be undertaken, in which classes are picked from either a weighted frequency-based distribution or a univariate one.

Due to the PyTorch limitation of forming only homogenous-sized tensors, the process of forming batches requires one more restriction on the triplet sampling function. Every sample in the batch must have the exact number of QRS complexes. The batch-sampling function first randomly selects the number of QRS complexes required in this batch to obtain such tensors. Then, it randomly selects triplets from signals in the dataset that contain the same amount of QRS complexes as the value selected. Finally, the amount of QRS complexes in the batch is sampled from the distribution weighted by the frequency of each wave in the dataset. The evaluation process of the neural network consists of these steps:

	1.

	
Split evaluation dataset randomly into two sets while ensuring that QRS complexes for each class have the same cardinality. From now on, the first set is referenced as a “database” set and the second one as a “query” dataset.

	2.

	
Use an Artificial Intelligence system to convert each set of QRS complexes from both “database” and “query” datasets into 20-dimensional vectors.

	3.

	
For each class, take all vectors belonging to it from the “database” set and compute the average 20-dimensional vector. It results in average vectors being later referenced as “class center vectors”.

	4.

	
For each vector in the “query” dataset, compute its distance to every “class center vector”. The class, whose “center vector” has been the closest to the vector from the “query” dataset is the class associated with the entry in the “query” dataset.

	5.

	
Calculate evaluation metrics by comparing true labels of vectors in the “query” dataset with labels computed in the previous step.

This process emulates the behavior of the real-life working environment. The “database” set resembles the structure that stores previously measured and processed ECG signals labeled by professionals. This database is used to label incoming queries. In this research, entries in the database were aggregated by computing the average for each class. This solution involves the least amount of computational cost. It is because “class center vectors” are computed once. Then, the incoming query must be compared with only one vector per class instead of numerous database entries, as required in other strategies.

The other method of classification involved training machine learning models on top of network-encoded small-sized vectors. The machine learning models evaluated in this work are XGBoost, Random Forest, Decision Tree, K-Nearest Neighbors, and SVMs with linear, polynomial, radial basis function, and sigmoid kernels. In this approach, the FSL neural network generates small-size vectors encoding crucial features of the input signals. Then, the aforementioned machine learning algorithms are trained to classify these vectors.

2.5.2. Softmax-Based Classification

Softmax-based classification is a well-known process of training a neural network using the operation mentioned above as an activation function for converting the neural network’s output into a class probability distribution. The equation of the softmax function is given below:

 σ (Z) i = e Z i ∑ j = 1 | Z | e Z j

(13)

where:

	
Z—output vector computed by neural network;

	
 σ (Z) i —value of class probability distribution function for i-th class.

The output of the softmax activation function is then compared with the desired results using cross-entropy loss function computed with the formula below:

 L (p , y) = − ∑ c = 1 M y o , c , l n (p o , c)

(14)

where:

	
p—probability that observation o belongs to the class c computed by application of softmax function on the output of neural network; y—binary value that is equal to 1 if observation o belongs to the class c and 0 if not.

The loss function forces the neural network to output the vector as close as possible to a one-hot encoded vector with the maximum value contained under the index of the class the signal belongs to. This is a well-established solution tested both by scientists and engineers and in this research, it serves as a basis for comparison between FSL network results and softmax-based one.

2.6. Metrics

Neural networks were evaluated using the metrics described below [16]. For simplicity of equations, specific acronyms have been created, as follows: T P —True Positive, T N —True Negative, F P —False Positive, F N —False Negative. The metrics used for network evaluation are:

	
Accuracy: A c c = (T P + T N) / (T P + F P + T N + F N) ;

	
 P r e c i s i o n = T P / (T P + F P) ;

	
 R e c a l l = T P / (T P + F N) ;

	
 F 1 = 2 · P r e c i s i o n · R e c a l l / (P r e c i s i o n + R e c a l l) ;

	
AUC—Area Under ROC. ROC (Receiver operating characteristic) is a curve determined by calculating the True Positive Rate = T F P = T P / (T P + F N) and the False Positive Rate = F P R = F P / (T N + F P) . The False Positive Rate describes the x-axis and the True Positive Rate the y-axis of a coordinate system. By changing the threshold value responsible for the classification of an example as belonging to either the positive or negative class, pairs of T F P – F P R are generated, resulting in the creation of the ROC curve. AUC is a measurement of the area below the ROC curve.

3. Results

The networks have been evaluated using the k-fold cross-validation technique for k = 5 . Each network has been trained five times from scratch on the randomly selected train, validation, and test datasets. The evaluation results on the test dataset are presented in Table 2, Table 3, Table 4, Table 5, Table 6 and Table 7 for tasks involving the classification of 2, 5, and 20 classes, respectively. Tables show the averaged, minimal, and maximal accuracy values and the F1, AUC, and specificity and sensitivity scores with standard deviation. Additionally, the average accuracy and the F1 score achieved by the evaluated models have been presented in Figure 6 and Figure 7.

The influence of the dataset size on the FSL classification has been examined. During this evaluation, the Random Forest algorithm was used to classify few-shot encoded signals. The results are depicted in Figure 8, which shows the relationship between the size of the dataset used and the accuracy obtained during test evaluation. The sizes of the datasets evaluated are 1%, 5%, 10%, 50%, and 100% of the size of original test dataset.

Figure 9, Figure 10, Figure 11, Figure 12, Figure 13 and Figure 14 present the confusion matrices from the evaluation on one of the test datasets composed for k-fold cross validation conduction purposes. The Figure 15, Figure 16, Figure 17, Figure 18, Figure 19 and Figure 20 depict the accuracy on the training and validation datasets during the training process.

4. Discussion

The Deep Neural Network trained in a Few-Shot learning (FSL) fashion for proximity-based classification provides the benefit of improved accuracy through an embedded version of online learning, allowing for continuous classification augmentation without network weight adjustments. The network’s accuracy can be improved without the additional optimization of its weights through the expansion of the classified signals dataset. Such a set is used for referential class vector computation and is essential for the correct signal classification. Cardiological professionals can improve the network by labeling the signal and increasing the number of vectors used for class vector calculation, resulting in better classification. Such a procedure does not require training of the network, which is cumbersome on production machines due to the higher computation complexity of the training network than using an already trained one. This augmentation procedure can be conducted on a CPU with low computation capabilities due to the simplicity of mean vector calculation.

The Few-Shot Learning neural network proved to be more accurate than the softmax-based network while classifying two classes. The FSL model had higher results in both averages, maximal and minimal accuracy. However, the network proved to be less accurate on tasks involving 5- and 20-class labeling. This phenomenon is most likely a result of insufficient representation of classes with low cardinality. For example: In Figure 11, the class “NORM” having the highest number of ECG records had the best precision and recall of all classes. The authors plan a further examination of the dataset size’s influence on the quality of prediction.

This work classified the signals processed by an FSL neural network by computing the average vector representing each class and comparing the Euclidean distance between the classified sample and all class-representing vectors. The other methods evaluated in this work for classification use network-encoded signals in small-sized vectors to train models running algorithms such as XGBoost, Random Forest, Decision Tree, K-Nearest Neighbors, and SVMs with linear, polynomial, radial basis function, and sigmoid kernels. It turned out that the most promising classification algorithm for FSL in this particular task is SVM with a radial basis function kernel. This method proved to be the most effective among all the examined FSL classification strategies and achieved better results than softmax-based classification for both two and five classes. It achieved one of the highest scores in accuracy, specificity, sensitivity, F1, and AUC among all compared models. The outcomes are promising and suggest that the hybrid neural network systems based on proximity-differentiation classification with integrated machine learning models may provide better results than the typical softmax-based state-of-the-art classification. The authors plan on conducting further research to determine whether a combination of FSL with SVM with radial basis function kernel is beneficial in other tasks or merely the case in this particular example.

The accuracy of the FSL network during the training process varies significantly more than its softmax-based counterpart. This phenomenon is depicted in Figure 15, Figure 16, Figure 17, Figure 18, Figure 19 and Figure 20. The softmax-based classification network reaches convergence faster and is less susceptible to the noise generated by the random selection of training data. This variance of the learning process is essential because of the commonness of early-stopping usage during network training. Typical early-stopping implemented in DL frameworks such as Keras stops the training if the evaluation score of the trained network on the validation dataset was not improved in a specific amount of time. This mechanism is important as it reduces the amount of wasted computation time and energy. However, due to the high variance of the FSL process, it is possible that controlling early-stopping based on local extremum may not be the best strategy. The results indicate that filtration of evaluation score’s signal, such as averaging, may prove beneficial. The authors plan on further examination in future works.

In previous work [16], the best-obtained result in that research classifying sick/healthy patients (2 classes) is 89.2% accuracy. This value was increased in this research by the FSL neural network, the accuracy of which spans from 89.5% to 91.1%. As a result, even the worst performance of the studied network was better than the best in previous work. However, the results were not as promising during the classification of 5 and 20 classes. It is speculated that FSL can obtain better results for bigger datasets than Softmax-based classification, but the latter requires less training data than the former. The authors plan on conducting further research of this phenomenon.

The dataset size had almost no influence on the classification performance of the two classes. However, its impact was significant for the classification of 5 classes and even more important for the classification of 20 classes. It turns out that the more that classes are differentiated from each other, the more data are required.

5. Conclusions

The neural network trained for conducting Few-Shot Learning classification tasks proved to be more accurate than the softmax-based classification network when classifying signals using 2 and 5 labels but obtained worse results on 20 classes with fewer samples per class. In this experiment, the most efficient method for performing classification using the FSL network for signal encoding is the SVM model with an RBF kernel. Such networks can be successfully applied in systems that provide feedback from experts and data accumulation such as hospitals. The network can be improved without optimizing the network parameters in this environment, which requires high-end processing units such as GPUs. A proposed online learning strategy can be conducted on typical industrial CPUs. The FSL networks may prove beneficial as they allow for their performance to be improved after their rollout.

Author Contributions

Conceptualization, K.P. and S.Ś.; methodology, K.P., S.Ś. and D.L.; software, K.P., S.Ś. and D.L.; validation, K.P., S.Ś. and D.L.; formal analysis, K.P.; investigation, K.P. and S.Ś.; resources, K.P., S.Ś., D.L. and S.B.; data curation, S.B.; writing—original draft preparation, K.P. and S.Ś.; writing—review and editing, K.P. and S.Ś.; visualization, K.P., S.Ś. and D.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

Nomenclature

	ECG
	Electrocardiogram

	EEG
	Electroencephalography

	CT
	Computed Tomography

	QRS complex
	Combination of three of the graphical deflections (Q wave, R wave, and S wave) seen on a typical ECG record. It represents an electrical impulse spreading through the ventricles of the heart and indicating their depolarization

	Conv1d
	Layer in Deep Neural Networks that performs a convolution on one-dimensional signal

	MaxPool1d
	Layer in Deep Neural Networks that performs pooling operation by selecting a maximum value from the moving window

	Fully Connected
	Layer in Deep Neural Networks that consists of neurons that process whole input data

	Leaky ReLU
	Activation function used in Deep Neural Networks

	Padding
	Parameter used in convolutional layers specifying the amount of zeroed samples added to the start and end of the processed signal. For example: Padding of 1 means that there is one sample of value zero artificially added at the beginning and the end of the signal. This operation is conducted to mitigate activation map shrinkage due to the application of convolution

	Stride
	Parameter used in convolutional layers specifying shift distance between subsequent windows of convolutions. For example: A stride of 1 means that the next convolution starts right after the beginning of the previous one, so the windows will overlap (provided that kernel size is bigger than 1)

	RBF
	Radial Basis Function

Appendix A. Descriptions of the Classes of Diseases

	NORM
	Normal ECG

	CD
	Myocardial Infarction

	STTC
	ST/T Change

	MI
	Conduction Disturbance

	HYP
	Hypertrophy

Appendix B. Descriptions of the Subclasses of Diseases

	NORM
	normal ECG

	STTC
	non-diagnostic T abnormalities, suggests digitalis-effect, long QT-interval, ST-T changes compatible with ventricular aneurysm, compatible with electrolyte abnormalities

	AMI
	anterior myocardial infarction, anterolateral myocardial infarction, in anteroseptal leads, in anterolateral leads, in lateral leads

	IMI
	inferior myocardial infarction, inferolateral myocardial infarction, inferoposterolateral myocardial infarction, inferoposterior myocardial infarction, in inferior leads, in inferolateral leads

	LAFB/LPFB
	left anterior fascicular block, left posterior fascicular block

	IRBBB
	incomplete right bundle branch block

	LVH
	left ventricular hypertrophy

	CLBBB
	(complete) left bundle branch block

	NST_
	non-specific ST changes

	ISCA
	in anterolateral leads, in anteroseptal leads, in lateral leads, in anterior leads

	CRBBB
	(complete) right bundle branch block

	IVCD
	non-specific intraventricular conduction disturbance

	ISC_
	ischemic ST-T changes

	_AVB
	first degree AV block, second degree AV block, third degree AV block

	ISCI
	in inferior leads, in inferolateral leads

References

	

Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and Modeling of a Compact Power Divider with Squared Resonators Using Artificial Intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [Google Scholar] [CrossRef]

	

Nazemi, B.; Rafiean, M. Forecasting house prices in Iran using GMDH. Int. J. Hous. Mark. Anal. 2020, 14, 555–568. [Google Scholar] [CrossRef]

	

Roshani, M.; Sattari, M.A.; Ali, P.J.M.; Roshani, G.H.; Nazemi, B.; Corniani, E.; Nazemi, E. Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Flow Meas. Instrum. 2020, 75, 101804. [Google Scholar] [CrossRef]

	

Narwariya, J.; Malhotra, P.; Vig, L.; Shroff, G.; Vishnu, T.V. Meta-learning for few-shot time series classification. In Proceedings of the 7th ACM IKDD CoDS and 25th COMAD, Hyderabad, India, 5–7 January 2020. [Google Scholar]

	

Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 2018, 8, 1, 1–12. [Google Scholar] [CrossRef]

	

Rajpurkar, P.; Hannun, A.Y.; Haghpanahi, M.; Bourn, C.; Ng, A.Y. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv 2017, arXiv:1707.01836. [Google Scholar]

	

Mahajan, R.; Kamaleswaran, R.; Howe, J.A.; Akbilgicm, O. Cardiac rhythm classification from a short single lead ECG recording via random forest. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017. [Google Scholar]

	

Yang, J.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep convolutional neural networks on multichannel time series for human activity recognition. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015. [Google Scholar]

	

Rizwan, A.; Zoha, A.; Mabrouk, I.B.; Sabbour, H.M.; Al-Sumaiti, A.S.; Alomainy, A.; Abbasi, Q.H. A review on the state of the art in atrial fibrillation detection enabled by machine learning. IEEE Rev. Biomed. Eng. 2020, 14, 219–239. [Google Scholar] [CrossRef]

	

Bizopoulos, P.; Koutsouris, D. Deep learning in cardiology. IEEE Rev. Biomed. Eng. 2018, 12, 168–193. [Google Scholar] [CrossRef] [PubMed]

	

Chandra, B.S.; Sastry, C.S.; Jana, S.; Patidar, S. Atrial fibrillation detection using convolutional neural networks. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017. [Google Scholar]

	

Rundo, F.; Conoci, S.; Ortis, A.; Battiato, S. An advanced bio-inspired photoplethysmography (PPG) and ECG pattern recognition system for medical assessment. Sensors 2018, 18, 405. [Google Scholar] [CrossRef]

	

Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM fully convolutional networks for time series classification. IEEE Access 2017, 6, 1662–1669. [Google Scholar] [CrossRef]

	

Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef]

	

Kashiparekh, K.; Narwariya, J.; Malhotra, P.; Vig, L.; Shroff, G. ConvTimeNet: A pre-trained deep convolutional neural network for time series classification. In Proceedings of the 2019 International Joint Conference on Neural Networks, Budapest, Hungary, 14–19 July 2019. [Google Scholar]

	

Śmigiel, S.; Pałczyński, K.; Ledziński, D. ECG Signal Classification Using Deep Learning Techniques Based on the PTB-XL Dataset. Entropy 2021, 23, 1121. [Google Scholar] [CrossRef] [PubMed]

	

Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; Muntner, P. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef] [PubMed]

	

Shenasa, M. Learning and teaching electrocardiography in the 21st century: A neglected art. J. Electrocardiol. 2018, 51, 357–562. [Google Scholar] [CrossRef] [PubMed]

	

Cai, W.; Hu, D. QRS complex detection using novel deep learning neural networks. IEEE Access 2020, 8, 97082–97089. [Google Scholar] [CrossRef]

	

Rashkovska, A.; Depolli, M.; Tomašić, I.; Avbelj, V.; Trobec, R. Medical-grade ECG sensor for long-term monitoring. Sensors 2020, 20, 1695. [Google Scholar] [CrossRef]

	

Šarlija, M.; Jurišić, F.; Popović, S. A convolutional neural network based approach to QRS detection. In Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis, Ljubljana, Slovenia, 18–20 September 2017. [Google Scholar]

	

Zhong, W.; Liao, L.; Guo, X.; Wang, G. A deep learning approach for fetal QRS complex detection. Physiol. Meas. 2018, 39, 045004. [Google Scholar] [CrossRef]

	

Xiang, Y.; Lin, Z.; Meng, J. Automatic QRS complex detection using two-level convolutional neural network. Biomed. Eng. Online 2018, 17, 1–17. [Google Scholar] [CrossRef]

	

Belkadi, M.A.; Daamouche, A.; Melgani, F. A deep neural network approach to QRS detection using autoencoders. Expert Syst. Appl. 2021, 184, 115528. [Google Scholar] [CrossRef]

	

Guo, Z.; Wang, Y.; Liu, L.; Sun, S.; Feng, B.; Zhao, X. Siamese Network-Based Few-Shot Learning for Classification of Human Peripheral Blood Leukocyte. In Proceedings of the 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, 18–20 August 2021; pp. 818–822. [Google Scholar]

	

Voulodimos, A.; Protopapadakis, E.; Katsamenis, I.; Doulamis, A.; Doulamis, N. A Few-Shot U-Net Deep Learning Model for COVID-19 Infected Area Segmentation in CT Images. Sensors 2021, 21, 2215. [Google Scholar] [CrossRef]

	

Lai, Y.; Li, G.; Wu, D.; Lian, W.; Li, C.; Tian, J.; Jiang, G. 2019 Novel coronavirus-infected pneumonia on CT: A feasibility study of few-shot learning for computerized diagnosis of emergency diseases. IEEE Access 2020, 8, 194158–194165. [Google Scholar] [CrossRef]

	

Szűcs, G.; Németh, M. Double-View Matching Network for Few-Shot Learning to Classify Covid-19 in X-ray images. Infocommun. J. 2021, 13, 26–34. [Google Scholar] [CrossRef]

	

Prabhu, V.; Kannan, A.; Ravuri, M.; Chaplain, M.; Sontag, D.; Amatriain, X. Few-shot learning for dermatological disease diagnosis. In Proceedings of the Machine Learning for Healthcare Conference, Ann Arbor, MI, USA, 8–10 August 2019. [Google Scholar]

	

Xiao, J.; Xu, H.; Zhao, W.; Cheng, C.; Gao, H. A Prior-mask-guided Few-shot Learning for Skin Lesion Segmentation. Computing 2021, 1–23. [Google Scholar] [CrossRef]

	

Ma, J.; Fong, S.H.; Luo, Y.; Bakkenist, C.J.; Shen, J.P.; Mourragui, S.; Ideker, T. Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients. Nat. Cancer 2021, 2, 233–244. [Google Scholar] [CrossRef] [PubMed]

	

An, S.; Kim, S.; Chikontwe, P.; Park, S.H. Few-shot relation learning with attention for EEG-based motor imagery classification. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020. [Google Scholar]

	

Liu, T.; Yang, Y.; Fan, W.; Wu, C. Few-shot learning for cardiac arrhythmia detection based on electrocardiogram data from wearable devices. Digit. Signal Process. 2021, 116, 103094. [Google Scholar] [CrossRef]

	

Wagner, P.; Strodthoff, N.; Bousseljot, R.; Samek, W.; Schaeffter, T. PTB-XL, a large publicly available electrocardiography dataset (version 1.0.1). Sci. Data 2020, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]

	

Goldberger, A.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E.; et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef]

	

Hamilton, P.S. Open Source ECG Analysis Software Documentation; E.P. Limited: Somerville, MA, USA, 2002. [Google Scholar]

	

Elgendi, M.; Jonkman, M.; De Boer, F. Frequency Bands Effects on QRS Detection. In Proceedings of the 3rd International Conference on Bio-Inspired Systems and Signal Processing (BIOSIGNALS2010), Valencia, Spain, 20–23 January 2010; pp. 428–431. [Google Scholar]

	

Kalidas, V.; Tami, L. Real-time QRS detector using Stationary Wavelet Transform for Automated ECG Analysis. In Proceedings of the 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), Washington, DC, USA, 23–25 October 2017. [Google Scholar]

	

Christov, I. Real time electrocardiogram QRS detection using combined adaptive threshold. Biomed. Eng. Online 2004, 3, 28. [Google Scholar] [CrossRef]

	

Pan, J.; Tompkins W., J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32, 230–236. [Google Scholar] [CrossRef]

	

Zeelenberg, C. A single scan algorithm for QRS detection and feature extraction. IEEE Comp. Cardiol. 1979, 6, 37–42. [Google Scholar]

	

Lourenco, A.; Silva, H.; Leite, P.; Lourenco, R.; Fred, A. Real Time Electrocardiogram Segmentation for Finger Based ECG Biometrics. Biosignals 2012, 49–54. [Google Scholar]

	

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. arXiv 2014, arXiv:1409.4842. [Google Scholar]

	

Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]

	

Caruana, R.; Lawrence, S.; Giles, L. Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. In Proceedings of the 14th Annual Neural Information Processing Systems Conference, Denver, CO, USA, 27 November–2 December 2020; pp. 402–408. [Google Scholar]

	

Ha, M.L.; Blanz, V. Deep Ranking with Adaptive Margin Triplet Loss. arXiv 2021, arXiv:2107.06187. [Google Scholar]

[image: Sensors 22 00904 g001 550]

Figure 1. The illustrative waveform of the ECG signal.

Figure 1. The illustrative waveform of the ECG signal.

[image: Sensors 22 00904 g001]

[image: Sensors 22 00904 g002 550]

Figure 2. General overview diagram of the method.

Figure 2. General overview diagram of the method.

[image: Sensors 22 00904 g002]

[image: Sensors 22 00904 g003 550]

Figure 3. Classes and subclasses of used records.

Figure 3. Classes and subclasses of used records.

[image: Sensors 22 00904 g003]

[image: Sensors 22 00904 g004 550]

Figure 4. Sample record of NORM class for I lead, with places for section cuts (Red).

Figure 4. Sample record of NORM class for I lead, with places for section cuts (Red).

[image: Sensors 22 00904 g004]

[image: Sensors 22 00904 g005 550]

Figure 5. Designed Neural Network architecture.

Figure 5. Designed Neural Network architecture.

[image: Sensors 22 00904 g005]

[image: Sensors 22 00904 g006 550]

Figure 6. Comparison of average accuracy of evaluated models on 2, 5, and 20 classes detection.

Figure 6. Comparison of average accuracy of evaluated models on 2, 5, and 20 classes detection.

[image: Sensors 22 00904 g006]

[image: Sensors 22 00904 g007 550]

Figure 7. Comparison of average F1 score of evaluated models on 2, 5, and 20 classes detection.

Figure 7. Comparison of average F1 score of evaluated models on 2, 5, and 20 classes detection.

[image: Sensors 22 00904 g007]

[image: Sensors 22 00904 g008 550]

Figure 8. ACC as a function of the size of the original test dataset.

Figure 8. ACC as a function of the size of the original test dataset.

[image: Sensors 22 00904 g008]

[image: Sensors 22 00904 g009 550]

Figure 9. Confusion Matrix for Few-Shot (2 classes) with proximity-based classification.

Figure 9. Confusion Matrix for Few-Shot (2 classes) with proximity-based classification.

[image: Sensors 22 00904 g009]

[image: Sensors 22 00904 g010 550]

Figure 10. Confusion Matrix for Few-Shot (5 classes) with proximity-based classification.

Figure 10. Confusion Matrix for Few-Shot (5 classes) with proximity-based classification.

[image: Sensors 22 00904 g010]

[image: Sensors 22 00904 g011 550]

Figure 11. Confusion Matrix for Few-Shot (20 classes) with proximity-based classification.

Figure 11. Confusion Matrix for Few-Shot (20 classes) with proximity-based classification.

[image: Sensors 22 00904 g011]

[image: Sensors 22 00904 g012 550]

Figure 12. Confusion Matrix for softmax-based classification (2 classes).

Figure 12. Confusion Matrix for softmax-based classification (2 classes).

[image: Sensors 22 00904 g012]

[image: Sensors 22 00904 g013 550]

Figure 13. Confusion Matrix for softmax-based classification (5 classes).

Figure 13. Confusion Matrix for softmax-based classification (5 classes).

[image: Sensors 22 00904 g013]

[image: Sensors 22 00904 g014 550]

Figure 14. Confusion Matrix for softmax-based classification (20 classes).

Figure 14. Confusion Matrix for softmax-based classification (20 classes).

[image: Sensors 22 00904 g014]

[image: Sensors 22 00904 g015 550]

Figure 15. Learning process of the Neural Network for Few-Shot (2 classes) with proximity-based classification.

Figure 15. Learning process of the Neural Network for Few-Shot (2 classes) with proximity-based classification.

[image: Sensors 22 00904 g015]

[image: Sensors 22 00904 g016 550]

Figure 16. Learning process of the Neural Network for Few-Shot (5 classes) with proximity-based classification.

Figure 16. Learning process of the Neural Network for Few-Shot (5 classes) with proximity-based classification.

[image: Sensors 22 00904 g016]

[image: Sensors 22 00904 g017 550]

Figure 17. Learning process of the Neural Network for Few-Shot (20 classes) with proximity-based classification.

Figure 17. Learning process of the Neural Network for Few-Shot (20 classes) with proximity-based classification.

[image: Sensors 22 00904 g017]

[image: Sensors 22 00904 g018 550]

Figure 18. Learning process of the Neural Network for softmax-based classification (2 classes).

Figure 18. Learning process of the Neural Network for softmax-based classification (2 classes).

[image: Sensors 22 00904 g018]

[image: Sensors 22 00904 g019 550]

Figure 19. Learning process of the Neural Network for softmax-based classification (5 classes).

Figure 19. Learning process of the Neural Network for softmax-based classification (5 classes).

[image: Sensors 22 00904 g019]

[image: Sensors 22 00904 g020 550]

Figure 20. Learning process of the Neural Network for softmax-based classification (20 classes).

Figure 20. Learning process of the Neural Network for softmax-based classification (20 classes).

[image: Sensors 22 00904 g020]

[image: Table]

Table 1. The architecture of Deep Convolutional Neural Network encoding one QRS complex.

Table 1. The architecture of Deep Convolutional Neural Network encoding one QRS complex.

	Layer
	Channels In
	Channels Out
	Kernel Size
	Padding
	Stride

	Conv1d
	12
	24
	3
	1
	1

	MaxPool1d
	24
	24
	2
	0
	2

	Conv1d
	24
	48
	3
	0
	1

	MaxPool1d
	48
	48
	2
	0
	2

	Conv1d
	48
	96
	3
	0
	1

	MaxPool1d
	96
	96
	2
	0
	2

	Conv1d
	96
	2
	1
	0
	1

[image: Table]

Table 2. Results for two-class classification, part I.

Table 2. Results for two-class classification, part I.

	Technique
	Acc
	Acc Avg | Std
	F1
	F1 Avg | Std
	AUC
	AUC Avg | Std

	FSL proximity-based
	89.5–91.1%
	90.4% | 0.5%
	89.1–90.8
	90.6 | 0.6
	92.5–94.4
	93.7 | 0.8

	Softmax-based classification
	89.2–90.5%
	89.7% | 0.4%
	89.0–90.2
	89.4 | 0.4
	94.8–95.9
	95.5 | 0.4

	FSL + XGBoost
	87.9–89.7%
	88.9% | 0.7%
	86.5–88.5
	87.7 | 0.8
	95.1–97.2
	96.1 | 0.7

	FSL + Random Forest
	87.8–91.2%
	89.4% | 1.1%
	86.2–90.1
	88.1 | 1.3
	95.5–97.1
	96.3 | 0.5

	FSL + Decision Tree
	84.9–88.9%
	86.4% | 1.4%
	82.8–87.5
	85.0 | 1.8
	82.8–87.5
	85.0 | 1.8

	FSL + KNN − 5 neighbors
	88.7–92.0%
	89.9% | 1.2%
	87.1–91.2
	88.8 | 1.4
	93.9–96.4
	94.6 | 0.9

	FSL + KNN − 20 neighbors
	88.1–93.3%
	90.9% | 1.9%
	86.6–92.6
	89.8 | 2.2
	96.0–97.8
	96.6 | 0.7

	FSL + SVM with linear kernel
	88.6–93.3%
	91.2% | 1.6%
	87.4–92.9
	90.3 | 1.8
	96.1–97.6
	96.9 | 0.5

	FSL + SVM with polynomial kernel
	87.2–93.0%
	89.6% | 1.9%
	85.5–92.3
	88.2 | 2.3
	94.9–97.6
	96.0 | 1.0

	FSL + SVM with RBF kernel
	89.2–93.3%
	91.3% | 1.4%
	88.1–92.8
	90.5 | 1.6
	92.2–95.6
	93.8 | 1.3

	FSL + SVM with Sigmoid kernel
	68.6–92.9%
	86.6% | 9.1%
	66.2–92.2
	85.3 | 9.6
	83.6–95.3
	88.2 | 4.0

[image: Table]

Table 3. Results for two-class classification, part II.

Table 3. Results for two-class classification, part II.

	Technique
	Specificity
	Specificity Avg | Std
	Sensitivity
	Sensitivity Avg | Std

	FSL proximity-based
	89.6–91.0%
	90.4% | 0.5%
	88.9–90.7%
	89.9% | 0.6%

	Softmax-based classification
	89.0–90.2%
	89.4% | 0.5%
	88.9–90.7%
	89.9% | 0.6%

	FSL + XGBoost
	89.1–90.7%
	89.8% | 0.6%
	86.5–88.5%
	87.7% | 0.8%

	FSL + Random Forest
	89.4–91.9%
	90.3% | 1.0%
	86.3–90.1%
	88.2% | 1.3%

	FSL + Decision Tree
	86.4–89.7%
	87.6% | 1.2%
	82.8–87.5%
	85.0% | 1.8%

	FSL + KNN − 5 neighbors
	89.6–92.7%
	90.8% | 1.1%
	87.1–91.2%
	88.8% | 1.4%

	FSL + KNN − 20 neighbors
	89.4–93.9%
	91.6% | 1.7%
	86.6–92.6%
	89.8% | 2.2%

	FSL + SVM with linear kernel
	89.5–93.5%
	91.6% | 1.5%
	87.4–92.9%
	90.3% | 1.8%

	FSL + SVM with polynomial kernel
	89.2–93.7%
	91.0% | 1.6%
	85.5–92.3%
	88.2% | 2.3%

	FSL + SVM with RBF kernel
	90.0–93.5%
	91.7% | 1.3%
	88.1–92.8%
	90.5% | 1.6%

	FSL + SVM with Sigmoid kernel
	68.2–93.4%
	87.2% | 9.6%
	66.2–92.2%
	85.3% | 9.6%

[image: Table]

Table 4. Results for five-class classification, part I.

Table 4. Results for five-class classification, part I.

	Technique
	Acc
	Acc Avg | Std
	F1
	F1 Avg | Std
	AUC
	AUC Avg | Std

	FSL proximity-based
	69.8–74.2%
	71.8% | 1.7%
	60.6–66.9
	63.7 | 2.4
	85.6–88.9
	87.6 | 1.2

	Softmax-based classification
	75.1–77.1%
	75.8% | 0.8%
	66.8–69.6
	67.9 | 1.0
	87.5–90.9
	89.6 | 1.3

	FSL + XGBoost
	74.8–76.1%
	75.2% | 0.5%
	66.9–70.8
	68.4 | 1.6
	90.9–92.3
	91.8 | 0.5

	FSL + Random Forest
	75.2–77.7%
	76.3% | 0.8%
	66.8–69.9
	68.4 | 1.1
	92.0–93.0
	92.5 | 0.4

	FSL + Decision Tree
	67.0–68.5%
	68.0% | 0.5%
	58.7–63.3
	61.3 | 1.4
	75.2–77.8
	76.7 | 0.8

	FSL + KNN − 5 neighbors
	74.4–76.7%
	75.8% | 0.8%
	65.9–71.1
	68.4 | 2.1
	87.5–89.8
	88.8 | 0.8

	FSL + KNN − 20 neighbors
	77.3–79.5%
	78.4% | 0.9%
	68.2–71.6
	69.6 | 1.2
	92.0–93.2
	92.5 | 0.5

	FSL + SVM with linear kernel
	77.0–79.8%
	78.8% | 1.0%
	69.9–73.1
	71.7 | 1.1
	93.4–94.3
	93.8 | 0.3

	FSL + SVM with polynomial kernel
	74.5–76.9%
	76.0% | 0.9%
	64.7–69.2
	66.6 | 1.6
	92.4–93.2
	92.9 | 0.3

	FSL + SVM with RBF kernel
	77.9–80.2%
	79.0% | 0.9%
	69.0–71.8
	70.6 | 1.0
	93.3–93.8
	93.6 | 0.3

	FSL + SVM with Sigmoid kernel
	64.4–76.6%
	72.9% | 4.4%
	53.1–65.0
	62.1 | 4.5
	89.5–92.8
	90.8 | 1.1

[image: Table]

Table 5. Results for five-class classification, part II.

Table 5. Results for five-class classification, part II.

	Technique
	Specificity
	Specificity Avg | Std
	Sensitivity
	Sensitivity Avg | Std

	FSL proximity-based
	60.2–66.4%
	63.2% | 2.1%
	62.7–68.1%
	65.9% | 2.0%

	Softmax-based classification
	68.3–70.6%
	69.5% | 0.8%
	65.9–69.1%
	67.1% | 1.1%

	FSL + XGBoost
	65.7–68.0%
	66.9% | 0.9%
	66.9–70.8%
	68.4% | 1.7%

	FSL + Random Forest
	66.8–68.3%
	67.8% | 0.6%
	66.8–69.9%
	68.4% | 1.2%

	FSL + Decision Tree
	57.1–59.9%
	59.0% | 1.0%
	58.8–63.4%
	61.3% | 1.5%

	FSL + KNN − 5 neighbors
	64.9–70.0%
	67.6% | 1.8%
	65.9–71.1%
	68.4% | 2.1%

	FSL + KNN − 20 neighbors
	70.2–72.9%
	71.9% | 1.0%
	68.2–71.6%
	69.6% | 1.2%

	FSL + SVM with linear kernel
	69.8–74.5%
	72.4% | 1.6%
	69.9–73.1%
	71.7% | 1.1%

	FSL + SVM with polynomial kernel
	68.3–75.5%
	72.4% | 2.5%
	64.7–69.2%
	66.6% | 1.6%

	FSL + SVM with RBF kernel
	70.8–75.5%
	73.5% | 1.8%
	69.0–71.8%
	70.6% | 1.0%

	FSL + SVM with Sigmoid kernel
	56.1–70.8%
	65.4% | 5.1%
	53.1–65.0%
	62.1% | 4.5%

[image: Table]

Table 6. Results for 20-class classification, part I.

Table 6. Results for 20-class classification, part I.

	Technique
	Acc
	Acc Avg | Std
	F1
	F1 Avg | Std
	AUC
	AUC Avg | Std

	FSL proximity-based
	44.3–50.1%
	47.8% | 2.1%
	23.8–26.0
	24.7 | 0.8
	78.8–84.4
	80.8 | 2.5

	Softmax-based classification
	66.2–68.2%
	67.1% | 0.8%
	31.9–33.0
	32.4 | 0.4
	82.4–86.3
	84.4 | 1.5

	FSL + XGBoost
	58.7–66.2%
	61.6% | 0.5%
	25.3–34.5
	29.7 | 3.4
	74.2–86.3
	79.3 | 3.5

	FSL + Random Forest
	61.5–66.6%
	63.6% | 2.5%
	27.1–36.7
	30.9 | 3.5
	73.6–80.3
	77.1 | 2.3

	FSL + Decision Tree
	45.8–58.8%
	51.0% | 4.5%
	19.8–30.0
	25.0 | 4.1
	58.4–60.3
	59.5 | 0.6

	FSL +KNN − 5 neighbors
	58.4–67.2%
	61.3% | 3.2%
	25.3–36.1
	29.6 | 4.1
	66.1–70.2
	68.2 | 1.6

	FSL + KNN − 20 neighbors
	61.4–69.9%
	64.6% | 2.9%
	26.7–36.5
	30.9 | 4.0
	70.1–76.6
	74.1 | 2.3

	FSL + SVM with linear kernel
	62.9–70.0%
	65.3% | 2.5%
	28.2–36.7
	32.0 | 3.2
	77.7–85.8
	82.7 | 3.0

	FSL + SVM with polynomial kernel
	59.7–67.2%
	62.9% | 2.8%
	23.4–34.0
	28.7 | 4.3
	74.7–84.9
	80.1 | 3.7

	FSL + SVM with RBF kernel
	63.3–70.6%
	65.8% | 2.5%
	27.8–37.2
	31.4 | 3.9
	77.1–82.5
	80.5 | 2.2

	FSL + SVM with Sigmoid kernel
	56.7–65.4%
	59.8% | 3.2%
	16.6–28.2
	23.7 | 4.6
	77.0–82.5
	80.9 | 2.0

[image: Table]

Table 7. Results for 20-class classification, part II.

Table 7. Results for 20-class classification, part II.

	Technique
	Specificity
	Specificity Avg | Std
	Sensitivity
	Sensitivity Avg | Std

	FSL proximity-based
	24.9–26.8%
	25.6% | 0.6%
	27.7–29.7%
	28.5% | 0.7%

	Softmax-based classification
	36.3–39.7%
	37.6% | 1.2%
	32.2–33.1%
	32.6% | 0.3%

	FSL + XGBoost
	23.8–31.6%
	27.7% | 2.6%
	25.3–34.5%
	29.7% | 3.4%

	FSL + Random Forest
	26.6–32.3%
	28.4% | 2.2%
	27.1–36.7%
	31.0% | 3.6%

	FSL + Decision Tree
	19.4–28.5%
	24.8% | 3.7%
	19.9–30.0%
	25.1% | 4.2%

	FSL +KNN − 5 neighbors
	24.0–33.7%
	28.3% | 3.3%
	25.3–36.1%
	29.6% | 4.1%

	FSL + KNN − 20 neighbors
	24.9–31.1%
	28.2% | 2.0%
	26.7–36.5%
	30.9% | 4.0%

	FSL + SVM with linear kernel
	25.6–34.1%
	28.8% | 3.1%
	28.2–36.7%
	32.0% | 3.2%

	FSL + SVM with polynomial kernel
	26.0–33.0%
	29.1% | 2.4%
	23.4–34.0%
	28.7% | 4.3%

	FSL + SVM with RBF kernel
	25.5–31.1%
	28.9% | 2.7%
	27.8–37.2%
	31.4% | 3.9%

	FSL + SVM with Sigmoid kernel
	15.5–25.4%
	20.8% | 3.4%
	16.6–28.2%
	23.7% | 4.6%

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file13.jpg

media/file4.png
PTB-XL >

Data
filtering

-

R wave
detection

Classification
based neural = Evaluation
network

QRS Data
extracting splitting

Few shot
neural = Evaluation
network

media/file30.png
0.975 -

0.950 -

0.925 A

0.900 A

Accuracy

0.875 A

0.850 -

0.825 -

0.800 -

— train
—— validation

A %uw*‘f"*‘w

0 100 200

300
Epochs

400

500

media/file39.jpg
07

06

o1

00

— tain
— validation

o 100

200

300

400
Epochs

500

600

700

media/file18.png
Predicted

Network

media/file35.jpg
— wain
0,95 — validation

090

065

0.60

[100 200 300 400 500 600
Epochs

media/file21.jpg
RPN E TP TR

media/file26.png
Predicted

v
& - 0319
W2y
O - 28w
& - 1 00%
eu"“’cp\

0.23%

14
0.54%

11
0.43%

27
1.04%

Network

48 39
1.86% 1.51%
10 7
0.39% 0.27%

17
0.66%
15
0.58%
39 52
1.51% 2.01%

1117

& &

Actual

L
L

1.28%

16
0.62%

30
1.16%

52
2.01%

kS

%
\f}/;

media/file27.jpg
#

media/file3.jpg
Classitcation
based neural-# Evaluaion
etwork

Data Rvave ors Daa
PTBX | teing | detecton | exvacing | spiting

Fewshot
heual - Evaluaton
nemwork

media/file22.png
Predicted

Network

A 2 1 27 1 2 1 1 1 1 1 1 2 2
pat 0.15% 0.08% 207% 0.08% 015% 008% 0.08% 0.08% 008% 008% 0.08% 0.15% 0.15%
© 1 5 1 2
e 0.08% 0.38% 0.08% 0.15%
e . 5 5 21 1 1 1 1
o 0.38% 038% 161% 0.08% 0.08% 0.08% 0.08%
o 4 2 1 4 1 22 1 1
Wo° - 031% 0.15% 0.08% 031% 0.08% 169% 008% 0.08%
74
W 20 2 2 4 1 1 2 2 5 1
A 153% 0.15% 0.15% 031% 008% 008% 0.15% 0.15% 0.38% 0.08%
o® _ 3 3 17 3 2
e 0.23% 0.23% 1.30% 023% 0.15%
33
ch_ 2 B 3 2 1 1 1 2 1 7
O 0.15% 061% 0.23% 0.15% 0.08% 0.08% 008% 015% 008% 0.54%
13
\ 1 3 1 1
e - nos% 0.23% 0.08% 0.08%
51
C 15 3 1 4 4 4
Y- - 115% 0.23% 0.08% 0.31% 0.31% 0.31%
o _ 1 1 2 63 4 1 4 3
! 0.08% 0.08% 0.15% 483% 031% 008% 031% 0.23%
I,L?G% 8 6 3 2 1 2 1 6 1 4 1 1
opE® 0.61% 046% 023% 015% 008% 0.15% 0.08% 046% 0.08% 031% 0.08% 0.08%
N 1 4 3 20 1 2 2
e 0.08% 0.31% 0.23% 153% 0.08% 0.15% 0.15%
RO 1 2 5 1 2 2 2 11 25 3
0.31% 0.08% 015% 038% 008% 015% 015% 015% 0.84% 1.92% 0.23%
ge 3 2 1 1 2 2 6 1 5 5 1
oY - 023% 015% 0.08% 0.08% 015% 015% 046% 0.08% 0.38% 0.46% 0.08%
@h] 2 3 6 1 1
WO 0.15% 0.23% 0.46% 0.08% 0.08%
< 1 3 1 2 1
I\)i 0.08% 0.23% 0.08% 0.15% 0.08%
= 2 3 1 2
@D\w ~ 015% 023% 0.08% 0.15%
C 1 1 3 3
&% - 008% 0.08% 207% 023% 0.23%
i 4 1 1 1 2 3 5 1 2 1
WY - 031% 0.08% 0.08% 0.08% 0.15% 023% 0.38% 0.08% 0.15% 0.08%
12
ge 1 1 1 1 7 1
R 0.08% 0.08% 0.08% 0.08% 0.54% 0.08%
12 67 16 1303
@&
@ -
N S N\ > .
& &L &L LS & & &L & Qf_jp L& F S & & & R 4«0 §$ N &
o & N\ & S S ¥ o ® o ’ S
L g &

Actual

media/file19.jpg
Predicted

-

9

0.69%

4.62%
7

131%

14
1.08%

0.15%

0.46%

054%

1
1.08%

Network

2
1.93%

16
123%

031%

27
2.08%

Actual

E"S
262%

10
0.77%

0.39%

%
354%

10
0.77%

32
247%

2
2.23%

18
139%

media/file7.jpg
3 8

06

{aw] abexon

00

-02

time [s]

media/file28.png
Predicted

as®®
%
\8%°
\H\\
e
P

&

\5';,

NP

of®
ol
Cp&'

\ﬁol\ﬁr

W
ot

e

8
0.31%

2
0.08%

15
0.58%
1
0.04%

3
0.12%

3
0.12%

10
0.39%

B
0.35%

16
0.62%

12
0.46%

&

1
0.04%

o

7
0.27%

0.04%

o

1 25
0.04% 0.97%

1 2
0.04% 0.08%

1 4
0.04% 0.15%

1 6
0.04% 0.23%

8
0.31%

24
0.93%

P

4
0.15%

3
0.12%

4
0.15%
39
1.51%

1
0.04%

12
0.46%

Q;b

5
0.19%

0.04%

5
0.19%

5
0.19%

1
0.04%

17
0.66%

ia
{v(’

1
0.04%

9
0.35%

5
0.19%

1
0.04%

1
0.04%

15
0.58%

2
0.08%

12
0.46%

3
0.12%

1
0.04%

4
0.15%

H
0.19%

1
0.04%

26
101%

7
0.27%

&

Network

14
0.54%
1
0.04%

1
0.04%

16
0.62%
6
0.23%

2
0.08%

11
0.43%

8
0.31%

1
0.04%

3
0.12%

1
0.04%

3
0.12%

2
0.08%

7
0.27%

3
0.12%

2
0.08%

2
0.08%

B
0.23%

12
0.46%

1
0.04%

9
0.35%

11
0.43%

2
0.08%

11
0.43%

46
178%

4
0.15%

2
0.08%

2
0.08%

5
0.19%

1
0.04%

3
0.12%

3
0.12%

8
0.31%

36
139%

1
0.04%

1
0.04%

1
0.04%

ov

<

7
0.27%

7
0.27%
2
0.08%

2
0.08%

2
0.08%

9
0.35%

4
0.15%

56
217%

1
0.04%

3
0.12%

1
0.04%

2
0.08%

0.04%

0.04%

1
0.04%

17
0.66%

=
o

[

LY |

[
[
5]

media/file10.png

media/file40.png
0.7 -

0.6 -

0.5 -

_C)
o
1

Accuracy

o
W
]

0.2 -

0.1 -

0.0 -

—— train

—— validation

100

200

300

400
Epochs

500

600

700

media/file33.jpg
06

os

Accuracy

03

02

— train
— validation

200

400
Epochs.

600

media/file32.png
Accuracy

0.8 A

0.7 -

O
(o)}
I

0.5 A

0.4 A

— train
—— validation

WW«

"

0 100

200

300
Epochs

400

500

600

media/file14.png
Average F1 score

2-class F1 score
mm 5-class F1 score
mm !0-class Fl score

F5L proximity

F5L 5WM RBF

F5L SWM linear

FSL KNN 20n

F5L XGBoost

Softmax
Algorithms

FSL KMNM 5n

F5L SVM paly FSL Random ForestFSL SWM sigmoid FSL Decision Tree

media/file11.jpg

media/file6.png
IRBBB

__-_-__-_____{ RAO/RAE |

-__-____-______| LAO/LAE |

™

CLB-BB ___—-__-__-

IH o

= SN o

[NST_|- - | | —
|

media/file36.png
0.95 A

0.90 -

Accuracy

o

~

Ul
1

0.70 -

0.65 -

0.60 A

— train
—— validation

A

0 100

200

300
Epochs

400

500

600

media/file15.jpg
090

o08s

080

o075

g on

e

065

060

055

050

10° 100 100
Size of original test dataset in %

media/file37.jpg
09

08

07

02

o1

— train
— validation

200

400
Epochs.

600

800

nav.xhtml

 sensors-22-00904

 		
 sensors-22-00904

media/file16.png
ACC

0.90 -

0.85
0.80
0.75 4
0.70
065 4
0.60 4
0.55
— A C|ASSES
— G C|lESSES
050 4 — M Classes
1090 10! 104

Size of original test dataset in %

media/file2.png

media/file20.png
Predicted

o)

«®

W

ot

6{(6

0.69%

60
4.62%

17
1.31%

14
1.08%

0.15%

0.46%

7
0.54%

14
1.08%

Network

25 34
1.93% 2.62%
16 10
1.23% 0.77%

5
0.39%
4
0.31%
27 46
2.08% 3.54%

> S
N &

Actual

10
0.77%

32
2.47%

29
2.23%

18
1.39%

M
w
=

kS

%
\fép

media/file23.jpg
Predicted

Network

media/file5.jpg
TAGIAE

media/file24.png
Predicted

Network

media/file29.jpg
— wain
09751 — validation

0950

0925

0900

Accuracy

0875

0850

0825

0.800

o 100 200 300 00 500
Epochs

media/file1.jpg

media/file31.jpg
Accuracy

08

07

06

05

04

[100 200 300 400 500 600
Epochs.

media/file25.jpg
Predicted

«®

w

031%

224%

59
2.28%

49
1.90%

6
023%

1
0.54%

1
0.43%

27
1.04%

Network

48
186%

10
039%

15
0.58%

39
151%

Actual

E
151%

027%

17
0.66%

52
201%

117

3
1.28%

16
0.62%

116%

52
201%

media/file12.png
verage Acouracy

A

08 4

(=]
(=21

o2
=

02 4

0.0 -

2-class accuracy
m S-class accuracy
2 0-class accuracy

F5L SWM RBF F5SL 5VM linear FSL EMM 20n F5L proximity FSL EMM 5n Softmax FSL SWM poly F5L Random Forest FSL XGBoost
Algorithms

F5L SWM sigmoid F5L Decision Tree

media/file9.jpg

media/file0.png

media/file38.png
0.9

0.8 -

0.7 A

Accuracy

0.2 -

0.1 -

—— train

——— validation

r .v,m‘m“"w

-

200

400
Epochs

600

800

media/file8.png
0.6

T
<
o

T
™
o

0.0
—-0.2 +

[Aw] abeyjon

time [s]

media/file34.png
0.6 -

0.5 -

o
B
1

Accuracy

o
w
1

0.2 -

— train
- Validation

| Wﬂ

M"%

N

-

200

400
Epochs

600

800

media/file17.jpg
Predicted

Network

