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Abstract: Inspection of mining assets is a crucial part of the maintenance process and is of interest to
several stakeholders (e.g., OEMs, owners, users, and inspectors). Inspections require an inspector
to verify several characteristics of the assets onsite, typically using legacy and poorly digitized
procedures. Thus, many research opportunities arise from the adoption of digital technologies to make
these procedures more efficient, reliable, and straightforward. In addition to cloud computing, the
ubiquitous presence of modern mobile devices, new measurement tools with embedded connectivity
capabilities, and blockchain technologies could greatly improve trust and transparency between the
stakeholders interested in the inspection. However, there has been little discussion on integrating
these technologies into the mining domain. This paper presents and evaluates an end-to-end system
to conduct inspections using mobile devices that directly interact with constrained IoT sensor devices.
Furthermore, our proposal provides a method to integrate constrained IoT devices as smart measuring
tools that directly interact with a blockchain system, guaranteeing data integrity and increasing the
trustworthiness of the data. Finally, we highlight the benefits of our proposed architecture by
evaluating a real case study in a mining inspection scenario.

Keywords: Mining 4.0; digitization; distributed ledger technologies; smart contract; IoT retrofit

1. Introduction

The mining sector is one of the most challenging domains to develop next-generation
applications using new technologies such as the Internet of Things (IoT). Dust, noise, un-
derground operations, high humidity, temperature, isolated locations, lack of connectivity,
and extreme meteorological conditions are just a few challenges that make the adoption
hard and require additional research [1]. One fundamental aspect in the mining domain
is the maintenance of assets (i.e., facilities, machines, and equipment), as they directly
impact mines’ operational activities and workplace safety. According to a recent analysis of
TheWorldCounts (https://www.theworldcounts.com/challenges/planet-earth/mining/
health-effects-of-mining/story, accessed on 14 December 2021) , more people are injured or
killed in the mining industry than in any other sector, with over 15,000 miners dying every
year. Furthermore, poorly maintained machines may stop working during operations, caus-
ing unhealthy consequences for the surrounding environment. On average, the mining and
quarrying sectors experience a loss of hundreds of million euros per year due to accidents
and injuries, turning into a huge social and economic impact on mining companies, accord-
ing to a recent AVEVA’s report (https://www.aveva.com/en/industries/infrastructure/,
accessed on 14 December 2021) .

Proper maintenance processes are one of the key elements to achieve the conditions
required to guarantee the safety of workers and the protection of the environment. As de-
fined by European Standards (https://www.en-standard.eu/din-31051-fundamentals-of-
maintenance/, accessed on 14 December 2021) , maintenance operations are composed of
four tasks: service, inspection, overhaul, and improvement. Maintenance operations are
planned based on periodic inspections, adopting two main approaches:
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• Following the original equipment manufacturer (OEM) guidelines and recommen-
dations to properly maintain equipment. OEM’s manuals and operators’ experience
typically support this process and aim to keep the assets in working conditions,
reducing maintenance costs.

• Following the outcomes of inspections carried out by a designated inspection offi-
cer appointed by a local, national, or supranational body. Public agencies mainly
support these inspections with a duty to guarantee certain levels of safety of mining
sites [2] and efficiency of machines (e.g., exhaust gases, tire pressures, minimum tire
tread height).

Therefore, the inspection of mining assets is a process that involves several stakehold-
ers, including the OEM, the owner, the user, inspectors, and various services companies [3].
In mining, and regardless of the followed approach, inspections are usually carried out
using legacy and poorly digitized procedures. First, an inspector receives the information
about the asset, printing the checklist of inspection points to collect. Then, she goes to the
mining site to inspect the asset, noting down all the critical inspection points. Next, the in-
spector uses certified measurement tools (e.g., calipers, noise dosimeters, depth gauges)
or writes observations that cannot be measured (e.g., missing instructions book, broken
taillights). Once the inspection is complete, the collected measures and observations are
manually inserted into an IT system, responsible for storing the detailed inspection data,
computing the inspection’s outcome, and continuing the maintenance process.

In this context, many research opportunities arise from the adoption of digital technolo-
gies to make inspection procedures more automated, reliable, and simple. First, the ubiqui-
tous presence of modern mobile devices (e.g., smartphones, tablets) provides a low-cost
tool to carry out inspections, store measures and observations, and then automatically
transfer them to an IT system to obtain the inspection result. This approach can work even
in remote mining sites with no Internet connection because mobile devices have enough
memory to collect several inspections and transfer them once an Internet connection is
available. Using these technologies could greatly simplify the process, reducing the over-
head of writing the information several times. Second, modern mobile devices offer various
short-range communication technologies (e.g., Bluetooth, WiFi, NFC) to interact with the
new measurement tools (e.g., calipers and depth gauges). This approach can also work
with older tools as cost-effective IoT devices could be used for retrofitting these tools [4,5].
Using these technologies could greatly improve the precision of the measurements and
reduce the errors due to human intervention. Third, blockchain technologies provide a
trusted repository of information, where data are secure and traceable, and the data source
can be precisely identified [6]. Using blockchain technology could further improve trust
and transparency between the stakeholders involved in the maintenance process [3].

Despite this interest, there has been little discussion on integrating these technologies
into the mining domain. This paper presents and evaluates an end-to-end system to conduct
inspections using mobile devices that directly interact with connected measurement tools.
Furthermore, our proposal provides a method to use low-cost constrained IoT devices to
enable measuring tools to directly interact with a blockchain system, guaranteeing data
integrity and increasing the trustworthiness of the measurement. Finally, we highlight the
benefits of our proposed architecture by evaluating a real case study in a mining inspection
scenario. This pilot represents one of the outcomes of an ongoing research and innovation
project funded by the EU Commission and involving research institutions, universities,
and relevant companies in the mining sector. Consequently, the main contribution of this
paper is two-fold:

1. We propose a system architecture for mining machines inspections using off-the-shelf
mobile devices and integrating IoT and blockchain technologies.

2. We propose a method to create cost-effective IoT measurement devices using low-cost em-
bedded CPUs that interact with a blockchain network to increase trust and trustworthiness.

The remainder of this paper is structured as follows: Section 2 provides a brief state of
the art, highlighting the gap in the literature. Next, Section 3 presents the proposed system
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architecture and the method to include IoT devices. Then, Section 4 describes a case study
validating our proposal, while in Section 5, we present and discuss the results of evaluating
our proposed architecture with constrained devices. Finally, our conclusions are drawn in
Section 6, highlighting possible future works.

2. Related Works

Mining activities that embrace the digital transformation will increase production, run
more efficiently and effectively, and be more environmentally sustainable. In addition, they
have the potential of setting new standards for workers’ health and safety and contribute to
reskilling through educational and training programs. As an example, the Syama mine is a
site in Mali that is benefitting from digitalization [7]. Resolute Mining took over operations
at Syama in 2015, transforming it into the world’s first purpose-built automated mine.
Employees use a fiber-optic network connected to aboveground control centers to manage
and monitor all activities, from clearing the drill point to extraction, loading, and hauling.
Another advance at Syama is Sandvik Automine for Trucks, officially released in December
2019, allowing the haul trucks to run autonomously underground using LiDAR and then
switch to GPS when they reach the surface. Although the initial investment was steep,
machines can now operate 22 h a day without time lost due to shift changes. Overall,
the effects of digitization will cut mining costs by 30%, representing a true game-changer
within the mining sector, especially for remote regions [8].

Currently, an increasing number of studies aim to cover the monitoring of machine or
equipment parameters [9,10] with online and offline processing to detect or predict future
failures, the definition of risk-assessment algorithms [11] to estimate the risk associated
with different aspects to the mines (e.g., cyberattacks to mining equipment [12], workers’
safety [13], machine faults [14], etc.), operation monitoring [15], and so on. Along this
line, Lööw et al. introduced the term Mining 4.0 [16] as the declination of the Industry 4.0
concept in the mining domain. Similarly, Chaowasakoo et al. [17] proposed and discussed
a novel technique to plan the movement of shovels and trucks by adopting a digitized
approach. Regarding the maintenance of assets, Carvalho et al. [10] used unmanned aerial
vehicles (UAVs, i.e., drones) to inspect rollers in conveyor belts and detect possible failures
using computer vision techniques.

In recent years, there has been a growing interest in integrating blockchain tech-
nologies into IT systems for enabling trustless architectures [18] in several application
domains. Blockchain provides a trusted repository of information, where data are secure
and traceable, and the data source can be precisely identified [6]. Thus, blockchain has
the potential to enhance data security, traceability, accountability, integrity, transparency,
and trustworthiness [19]. One of the first domains adopting blockchain-based systems with
enthusiasm was insurance. According to authors of [20], blockchain could positively affect
different processes, such as improving the customer experience and reducing operating
costs. In this case, the cryptography primitives of blockchain could reduce the overhead
related to manual data entry and verification. Despite the focus, these benefits also apply
to several other application domains. For instance, authors of [19] explored the potential
of blockchain in the automotive industry [19] for identity management and tamper-proof
data management. Likewise, authors of [21] discussed the benefits of blockchain in the
oil and gas industry for tracking, compliance, and data storage. Recently, authors of [22]
discussed the use of blockchain technology to improve built asset sustainability through
a comprehensive and detailed material traceability method. More related to our work,
authors of [23] presented a blockchain-based system to store aircraft maintenance records,
with a focus on security. Similarly, authors of [24] presented a blockchain-based framework
for the maintenance of military equipment. Together, these studies provide important
insights into the potential of blockchain networks to enable trust among unknown stake-
holders by providing a transparent record of information in a decentralized way, removing
the need for a trusted intermediary. Furthermore, the use of blockchain-based smart con-
tracts makes asset monitoring and validation less human-dependent and prone to errors,
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while the inherent properties of blockchain increase the security and transparency of the
transacted data.

Despite the growing interest in technology, integrating IoT and blockchain still faces
several open challenges. As thoroughly described in [18], these challenges can be grouped
into three major areas: privacy preservation, scalability, and utilizing blockchains in scenar-
ios involving devices with constrained capabilities. For privacy preservation and scalability,
the current research focuses on the trade-off between public and private blockchain net-
works or architectures using a combination of both [6]. In these scenarios, a certain level of
trust among the system users exists, reducing some security concerns while increasing the
overall performance.

Nonetheless, there has been little discussion about using blockchains with devices with
constrained capabilities such as IoT sensors, which typically have stringent computational
and networking limitations and a very restricted energy budget. On the one hand, IoT
devices can be users of the blockchain, where blockchain provides support to IoT devices
for access control, firmware updates, and other services in a decentralized way. In this
case, the IoT does not impose demanding requirements, and the challenges are related
to interfaces and implementation [18]. On the other hand, IoT devices can be a part
of the blockchain data on-chaining system, as the reliable provisioning of blockchain-
external data to smart contracts [25]. In this case, IoT devices are considered “hardware
oracles” [26], meaning that they are the direct data sources of the physical phenomena they
are sensing. Oracles have a tremendous responsibility to the blockchain-based systems
as the insertion of incorrect information creates an immutable record that could trigger
an irreversible action [20]. Therefore, these IoT devices face several challenges to become
trustworthy oracles [25], such as reporting readings without sacrificing data security [19]
while maintaining low-cost constrained computing capabilities [27].

In summary, these studies outline a clear need to understand the inherent challenges,
issues, and limitations of integrating new technologies in an end-to-end mining inspection
system. On the one hand, blockchain can provide a transparent and auditable repository of
information, enabling trust between the unknown stakeholders involved in the inspection
process. Nonetheless, current literature lacks a description of architectures to achieve this
goal. On the other hand, IoT-based measuring instruments could work as trusted oracles
that vouch for the truthfulness of the collected data during the inspection. However, there
has been little quantitative analysis using low-cost IoT devices with blockchain-based
systems, particularly for mining inspections.

3. Proposed System Architecture

We propose an architecture that integrates mobile devices, IoT sensors, and blockchain
technology. The proposed architecture considers low-cost IoT sensing devices as direct
actors on a blockchain network to guarantee a root of trust for the sensed data [25]. Fur-
thermore, the integrity, auditability, and traceability of the sensed data are maintained
and enforced by the blockchain network [28]. Here, we use blockchain technology as
a decentralized trusted repository of information for several unknown and untrusted
stakeholders, a proven use-case for blockchain [29]. Furthermore, we rely on existing
blockchain implementations and protocols, as the type of consensus and the size of ex-
isting blockchains networks offer a more secure platform for developing new types of
decentralized applications [30].

Due to practical restrictions, the proposed architecture has two main limitations. First,
we only focus on measurements in the inspection process, as natural language processing
for the observations is beyond the scope of this work. Second, even if the system considers
several unknown stakeholders, we consider the OEM of tools and inspectors as trusted
entities, and we focus on extending this trust to the other stakeholders in the system in a
decentralized way.

As shown in Figure 1, we consider an asset (e.g., truck, excavator) as the entry point of
the information flow that ends with the production of an inspection report. The inspected



Sensors 2022, 22, 899 5 of 15

asset is of interest to several actors (e.g., OEM of assets and tools, asset owners, users, on-
field inspectors, authorities) that interact with the four main components of the architecture:
the cloud module, mobile app, connected tool, and the blockchain module.

Figure 1. Proposed high-level architecture for a mining inspection system.

The cloud module supports the inspection business process (e.g., assets, inspections
points, measurements, observations). It also holds the algorithms for evaluating safety-
related risks and providing the inspection result. The mobile app benefits from portable
devices (i.e., smartphones, tablets) and provides an interface to the onsite inspector to
collect onsite measurements and observations. The mobile app automatically uploads
the collected information to the cloud module when an Internet connection is available,
minimizing the time overhead and possible errors due to manually writing the information.
If no connection is available, the app can easily store the information of several inspections.

Our architecture considers measuring tools that precisely measure several physical
parameters (e.g., dimensions, noise, heat, light) needed during on-field inspections. These
devices are called connected tool and include new generation measuring instruments
or legacy devices retrofitted with low-cost IoT platforms. The onsite inspector uses the
connected tool that directly interacts with the mobile app using near-field communication
capabilities, simplifying the process and reducing human intervention.

The last component is the blockchain module that gathers all the smart contracts
representing assets, tools, inspections results, and certifications, providing a transparent
record, auditable by all stakeholders. For blockchain operations, and aligned with current
literature [26], the actors and devices in our systems are identified by their unique combina-
tion of public/private keys. More complex identity schemes are possible with blockchain,
even realizing completely decentralized public key infrastructures [18]. However, this
research topic is beyond the scope of this paper.

This blockchain identity makes several inspection actions accountable to a particular
actor (e.g., inspector, operator). Likewise, the IoT device also has a blockchain identity
in our architecture and generates digitally signed transactions. The use of cryptography
at the root of the architecture addresses some of the current security challenges in IoT
applications [31] and guarantees that information generated by the device reaches the
blockchain unaltered. Furthermore, the blockchain identity of the device can be linked
to the integrity of its hardware and firmware by using a physical unclonable function
(PUF) [32], and the tool OEM can control firmware updates. Given that we consider the
OEM of the tool as a trusted entity and the inspector as a trusted source, our architecture
provides the missing component to convert a connected tool into a trustworthy oracle [27],
ensuring data integrity by creating immutable, traceable, and non-repudiable records easily
verifiable by other stakeholders. Moreover, the smart contracts on the blockchain module
provide a decentralized, verifiable, and transparent way to manage several other elements
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of the inspection process, increasing their trustworthiness. For instance, certifications can be
implemented as tokens, generated and managed by the certification authority, and directly
linked to a particular operator or device. Another example is implementing a reputation
score for the operators and inspectors, based on voting by previous users. Furthermore,
the smart contract can automatize several steps of the inspection process. For example,
the contract can implement simple logic, such as accepting a measurement for an inspection
only if it is coming from a certificated tool or inspector, or more complex business rules,
such as requiring more than one measurement from different tools or inspectors.

Our proposed system architecture makes noteworthy contributions to the current
state of the art. First, it uses modern mobile devices (i.e., mobile app ) to carry out on-
site inspections and later automatically transfer them to the cloud module for further
processing. Our proposed architecture can work even in remote mining sites with no
Internet connection, as the current computing capabilities of modern mobile devices
allow to store several hundreds of inspections. Second, it considers IoT-based mea-
suring instruments (i.e., connected tool ) as trusted oracles of a blockchain-based system
(i.e., blockchain module ). As a result, the connected tool becomes a practical choice to
vouch for the truthfulness of the collected data during the inspection. Combining these
technologies creates a cryptographically protected repository of inspection information,
where data are immutable and traceable, and the data source can be precisely identified.
This approach further improves trust and transparency between the stakeholders involved
in the inspection process [3].

4. Use Case Validation

In the context of an ongoing research and innovation project, we developed the pro-
posed architecture as a multi-tier system, as shown in Figure 2. To this end, the architecture
was tailored to fit the requirements of a real mining inspection scenario, allowing us to
validate our proposal with the feedback of relevant companies in the mining sector. In the
following paragraphs, we provide more implementation details of each component of
the architecture.

Figure 2. High-level architecture of the implemented use case.

4.1. Cloud Module

The cloud inspection platform is the core of the entire system. It hosts the machine
registry (i.e., components of machines, vendors, machine models, etc.), inspector registry,
inspection registry (i.e., inspection metadata, signed measurements, and observations)
algorithms for the assessment of safety-related risks (e.g., a damaged machine may harm the
worker that uses it), and an archive for the generated inspection reports (i.e., secure storage
where PDF files of inspections are saved). This platform has been designed by following
the micro-service methodology [33]; thus, the internal components interact among them
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and with the external entities, using a set of application programming interfaces (APIs).
Moreover, a web-based user interface (UI) offers the possibility for users to insert, edit,
and retrieve information about the machines and the inspection results.

4.2. Mobile App

The mobile app guides inspectors during the on-field operations, using a wizard-
like navigation UI that allows selecting the machine to check, provide specific metadata
(e.g., inspection date, machine-hours, next-inspection date, considered checkpoints), and
record the measurements collected with the inspection toolkit and the observations about
the asset status. Upon finishing the inspection, the mobile app allows reviewing the
collected data before submitting it to the cloud module for storing and processing the
inspection data. The mobile app requires network access (e.g., 3G/4G/5G, WiFi) to perform
this operation; however, if no connection is available, the mobile app can locally store the
data of several inspections.

The UI/UX of the mobile app has been designed by following the hierarchical data
model of machines. First, each machine has multiple systems (e.g., engine); then, each system
may have multiple subsystems (e.g., fuel subsystem); finally, each subsystem may have
multiple checkpoints (e.g., fuel tank). On average, each machine has around 30–35 subsystems,
and each subsystem has four checkpoints (deviation from 2 to 4) equally divided into measures
and observations. Thus, an inspection contains, on average, between 140 to 160 checkpoints.
Table 1 presents the checkpoint distribution per type of machine.

Table 1. Number of measures/observations that need to be collected per subsystems (assumption:
one measure/observation per checkpoint).

Machine Category
Subsystems

Per
Machine

Min/Max
Checkpoints

Per Subsystem

Average
Checkpoints

Per Subsystem

Deviation of
Checkpoints

Per Subsystem

Articulated mining truck 38 1 / 9 4.13 2.21

Backhoe loader 34 1 / 13 4.71 3.03

Bolting rigs 37 1 / 9 4.11 2.46

Dozer 30 1 / 18 4.47 3.77

Hydraulic power shovel excavator—back hoe 31 1 / 12 4.16 3.00

Hydraulic power shovel excavator—front hoe 34 1 / 15 4.47 2.98

LHD 34 1 / 15 4.12 2.89

Rigid mining truck 38 1 / 8 4.11 2.12

Tracked drilling rig 35 1 / 12 4.11 2.67

Tracked loader 30 1 / 20 4.47 3.88

Wheel loader 34 1 / 12 4.50 2.69

Wheeled drilling rig 37 1 / 9 4.11 2.46

4.3. Blockchain Module

The blockchain module groups the smart contract needed to support our proposed
system. Based on the “smart-twin” architecture proposed in [26], we developed two
types of smart contracts: Twin and Apps. First, we used the Twin contract to represent the
sensing device and the assets, keeping identification data (i.e., model, manufacturer, owner,
and certifications). Then, we used the App contract to implement elements of the business
logic, such as the result of the inspection and certifications. It is important to recall that
these processes directly and automatically interact with the assets and the sensing tool
(Twin contracts).
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Each asset stores its measurements, which are unequivocally linked to a particular tool.
The assets also store the inspection results linked to tools and inspectors. Certifications
are represented with tokens, managed by the certifiers, and assigned to tools and assets.
The algorithms to determine the outcome of inspections can be defined by the OEM or
by local authorities. To implement this logic, we chose the Ethereum blockchain [34]
because it is considered as the reference public blockchain implementation for smart
contracts and can also function as a permissioned network. Nonetheless, migrating our
implementation to a different blockchain platform with scripting capabilities should not
be an issue. Finally, in our implementation, we adopted industry-approved libraries
(i.e., OpenZepellin (https://github.com/OpenZeppelin/openzeppelin-contracts, accessed
on 15 December 2021)) to reduce the security concerns deriving from the vulnerabilities
that a smart contract may introduce in our system [35].

4.4. Connected Tool

The connected tool includes two types of devices capable of measuring different
physic quantities: modern instruments (including wireless communication interfaces such
as NFC or BLE) and legacy instruments (without wireless interfaces). One example of a
modern instrument is the GARANT HCT IP67 caliper (https://www.hoffmann-group.
com/p/412780, accessed on 15 December 2021), capable of storing digital readings and
transferring them as comma-separated values using a Bluetooth interface. For the legacy
instruments, we propose using a retro-fit kit based on low-cost IoT development platforms
(e.g., Arduino, STM32, ESP32). As an example, we chose a low-cost RS digital caliper
(https://it.rs-online.com/web/p/calibri/8412518, accessed on 15 December 2021), and we
developed a “shield” that interacts with the tool, enabling a BLE communication interface.
Compared to WiFi, BLE requires less energy, and even if NFC could provide even an
easier user experience, NFC is not currently available on all mobile devices. To enable
direct interaction of the connected tool with the blockchain system, we used our custom
multi-platform library introduced in [26,27]. Furthermore, the retro-fit kit includes a small
OLED screen to show the measurements to the user of the tool. Thus, the connected tool
has three main layers: sensing (to interact with the legacy tool and display the value on the
OLED), communications (to send the data to the mobile app using BLE), and blockchain
(to perform the cryptographic functions required on blockchain networks). Finally, we
opted for the Arduino IDE for our implementation as a developing platform, favoring
cross-platform compatibility over code optimization.

5. Evaluation

To effectively evaluate our case study, we implemented it as a fully-working pro-
totype. The cloud inspection platform was implemented using Docker (version 20.10.7-
0ubuntu5 20.04.2) and Docker Compose (version 1.29.2) as containerization engine and
multi-container manager, respectively. The platform was deployed on a cloud virtual
machine (Digital Ocean General Purpose droplet) based on Ubuntu 20.04.3 LTS with 8 GB
of RAM, 160 GB of SSD, and 4vCPU.

Then, the blockchain module runs on nodes using the official Geth client (ver-
sion 1.10.1-stable) on independent virtual machines with 4 GB of RAM, 20 GB of SSD,
and 4 vCPU on an OpenStack server using a clean Linux Ubuntu installation (version 18.04).

For the IoT platform, and based on the results and evaluation presented in our previous
works [26,36], we opted for an ESP32 microcontroller. In particular, we selected the WRover-
E 32-Bit ESP32 as the most suitable microcontroller in the 10 USD cost range. The board
has an 80 MHz clock chipset with 1024 KB of program space and 320 KB of memory. It also
includes Serial, USB, Wifi, and BLE interfaces for communication.

Finally, the mobile app was installed and tested on mobile devices running the
Android OS version 9.

https://github.com/OpenZeppelin/openzeppelin-contracts
https://www.hoffmann-group.com/p/412780
https://www.hoffmann-group.com/p/412780
https://it.rs-online.com/web/p/calibri/8412518
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5.1. Inspection Report Footprint

Mining operations typically occur in remote locations, where network access might be
limited and expensive. Therefore, estimating the traffic needed at the edge of the mining
application is important. To this end, we evaluated the average data needed to upload
an inspection to the cloud platform. The number of measurements and observations
collected during an inspection depends on the actual status of the inspected machine and
its checkpoints, as shown in Table 1. To preserve the confidentiality of information collected
during the pilot, we statistically estimated the size of reports using a Monte Carlo approach.

First, we modeled the number of checkpoints per subsystem of each machine type
as a random variable with truncated Gaussian distribution by starting from a Gaussian
distribution with mean and standard deviation defined in Table 1. Then, we modeled the
aging, and, consequently, the lifetime of a generic machine, as an integer number Nage
between 1 and 100: 1 means that the machine is new, while 100 means that the machine is at
the end of its useful life. Next, we carried out 100 different campaigns of report generation
by choosing 100 different random seeds (i.e., seeds computed from timestamp) to not stick
to one particular "lucky" seed. For each campaign, we generated 250 reports as follows:
first, we randomly chose one of the 12 machine types (Table 1), then we sampled from a
uniform distribution between 1 and 100 the normalized age Nage of the machine. Following
that, we sampled, for each of the subsystems of the target machine, an integer number
from the distribution of checkpoints as the number of checkpoints to be inspected. Then,
for each checkpoint, we extracted a random integer N between 1 and 100. Assuming that,
for each checkpoint, we can collect only one measurement or one observation, if N < Nage,
we assumed that we collected an observation associated with the checkpoint; otherwise
if N >= Nage, we collected a measurement. In this way, it is more likely to have more
observations than measurements for an old machine.

At this point, we have a population of 25,000 inspections reports and we can statis-
tically characterize the amount of KB required to transmit them to the cloud. Inside the
mobile app , the inspection data has the following structure:

• Each measurement is represented as a double variable (8 bytes) for the actual value
and an integer variable (4 bytes) for the ID of the unit of measure.

• Each observation is represented as a string with length 255 chars (1 char is equal to
1 byte).

• Each checkpoint is represented as a integer variable (4 bytes) that contains the ID.
• The report contains also the ID of the inspector (integer, 4 bytes), the machine ID (integer,

4 bytes), the machine working hours (integer, 4 bytes), the inspection timestamp since
the Unix Epoch (integer, 4 bytes), and the timestamp of the next inspection (integer,
4 bytes).

Figure 3 shows the box plots of reports size in KB against the normalized age of the
target machines. There, for the sake of visualization, we split the sample distribution into
four groups, according to the normalized age of the machines. Therefore, normalized
ages between 1–25 could represent new machines; fairly new and fairly old machines
are represented by normalized ages between 26–50 and 51–75, respectively; normalized
ages between 76–100 could represent old machines. Then, for each sample distribution,
the upper and lower quartiles are represented with a box, and the whiskers represent
the lowest and highest values of the report footprint distribution. From the data, we can
highlight that when the machine is getting older, the size of the report increases. This is due
to how the information about the machine status is reported. If the machine is “young”,
we collect more numerical readings (i.e., double numbers or integers with 8- or 4-bytes
length, respectively) than observations (i.e., text with a prefixed length of 255 bytes). When
the machine is getting old, we collect more observations than numerical readings. This
turns into an increasing size of the report proportional with the aging. More details about
statistics of the report sizes are available in Table 2.
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Figure 3. Box-plot of the report footprint (from mobile app to cloud module ) with respect to the
aggregated normalized age. Median values are red lines, mean values are blue stars, and outliers are
black dots.

Table 2. Report footprint (expressed in KB) statistics with respect to normalized age (pure number).

Normalized Age Mean Std Deviation Median Max Min

1–25 7.83 3.04 7.72 18.34 2.02
26–50 17.97 3.59 17.85 30.05 8.32
51–75 28.10 4.12 28.00 46.73 16.15
76–100 38.33 4.66 38.14 59.62 24.15

An Internet connection is needed to send the report from the mobile app to the
cloud module for processing and persistence. Thus, sending a report is not a concern
when traditional Internet access such as cellular networks (over edge, 3G, 4G, or 5G) or
broadband access (over WiFi) is available. However, as mines are usually located in remote
locations, a cellular/fixed Internet connection may not be available. For this reason, we
evaluate using satellite communication equipment to send data to the cloud. Usually, this
type of communication requires a data plan billed per MB of data. Assuming that one MB
of data sent via satellite communication costs USD 6.80 (https://www.bluecosmo.com/
inmarsat-bgan-monthly-service-plan.html, accessed on 15 December 2021) Table 3 shows
the estimated costs of sending one inspection report using this communication technology
to the cloud, net of overheads such as IP, TCP, TLS, and HTTP headers.

Table 3. Estimated cost (expressed in USD) of sending reports to the cloud using a satellite communication.

Normalized Age Mean Std Deviation Median Max Min

1–25 0.05 0.02 0.05 0.12 0.01
26–50 0.12 0.02 0.12 0.20 0.06
51–75 0.19 0.03 0.19 0.32 0.11
76–100 0.26 0.03 0.26 0.41 0.16

5.2. Connected Tool Footprint

Based on the statistics provided by the compiler and incrementally adding the func-
tions required by the connected tool (i.e., sensor, BLE, blockchain), the results in terms
of disk and memory usage are shown in Table 4 and Figure 4. There, absolute values are
expressed in bytes, while normalization is performed against the total available disk and

https://www.bluecosmo.com/inmarsat-bgan-monthly-service-plan.html
https://www.bluecosmo.com/inmarsat-bgan-monthly-service-plan.html
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memory. From Figure 4, we observe that the heaviest footprint is for disk usage of the
BLE, with almost 75%, while Blockchain operations account for less than 23%. Nonetheless,
there is almost 5% of free space in the device, while the total memory usage is less than
12%. Moreover, it is important to recall that using the Arduino IDE adds approximately
15% of resources overhead. We can conclude that the selected IoT board provides a suitable,
cost-effective platform for developing integration kits for measuring tools with legacy data
interfaces without BLE, NFC, or WiFi.

Table 4. Footprint for the device module (expressed in bytes).

Available Sensor BLE Blockchain

Disk 1,310,720 1612 971,369 289,318
Memory 3,27,680 176 22,108 14,996

0%

25%

50%

75%

100%

Storage (bytes) Memory (bytes)

Free Blockchain BLE Sensor

Figure 4. Disk and memory usage normalized to the total available.

5.3. Transaction Costs

Using the information provided by Geth, we obtained the amount of gas needed
for creating the two types of contract (i.e., Twin and App) and the different transactions
needed. On public Ethereum networks, this gas cost translates into monetary cost by
setting a gas price in Ethereum cryptocurrency (ETH) and using the current exchange
value of ETH. Similar to [26], we considered the gas price of 10 gwei. The exchange of
cryptocurrency is quite volatile, and its accurate estimation goes beyond the scope of this
paper. However, historic values can provide a good reference for evaluating different
scenarios. As an example, we consider the average yearly exchange price reported by
Etherscan (https://etherscan.io/chart/etherprice, accessed on 15 December 2021) for 2019,
2020, and 2021. Thus, Table 5 shows the amount of gas for the transactions and the monetary
costs in USD, using three different exchange rates for USD/ETH: USD 182 for 2019, USD
307 for 2020, and USD 2778 for 2021.

The results show that the price volatility drastically changes the costs of the system.
However, the most common operation (measurement) is less than one dollar, even with the
highest exchange rate. Moreover, an immutable inspection report will cost less than USD 5
in the worst case.

https://etherscan.io/chart/etherprice
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Table 5. Estimated transaction costs (expressed in USD) using different ETH/USD based on histori-
cal prices.

Transaction Gas ETH/USD 2019 ETH/USD 2020 ETH/USD 2021

Twin (Tool) 200,412 0.36 0.62 5.57
Measurement 27,300 0.05 0.08 0.76
App (Inspection) 3,500,531 6.37 10.75 97.24
Inspection Report 157,800 0.29 0.48 4.38

5.4. Transaction Processing Time

Using the gas price of 10 gwei, we deployed a tool contract in an Ethereum live test
network (Ropsten) and evaluated the real transaction processing time for registering a
measurement. This transaction, created by the connected tool , has an average size of
136 bytes and a gas cost of 27,300. We focused on testing this operation because it is the
most frequent transaction in the architecture. We sent 200 transactions, approximately once
per hour for one week.

Figure 5 shows the distribution of the processing times of the 200 transactions. The av-
erage blockchain processing time was 24 s, with a median of 21 s. These delays are within
the fastest processing times currently possible on public blockchain networks. Moreover,
in this experiment, only three transactions took more than 90 s to be processed (i.e., less
than 2% of the total). It is important to notice that, typically, there is no monetary cost
associated with a transaction on a private blockchain network. However, even if a private
blockchain provides auditability and offers better performance (e.g., lower latency, higher
transaction throughput), it is not entirely decentralized or as censorship-resistant as a
public blockchain [37].

Processing time (seconds)
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Figure 5. Distribution of the processing times on a public blockchain (expressed in seconds).

5.5. Power Consumption and Energy Requirements

Using an Otii device (https://www.qoitech.com/, accessed on 14 December 2021) we
could measure the power consumption with an accuracy of ± (1%+ 0.5 µA ) at 3.3 V, at a
rate of 1000 samples per second. Then, we consider 30 s as the time needed for an inspector
to read the measurement on the device. We measured three cases: (i) baseline, where the
measurement is only shown on the OLED display (i.e., sensing ), (ii) BLE, where the mea-
surement is sent to the app using BLE (i.e., communications), and (iii) Blockchain, where
the device digitally signs the measurement before sending it to the app (i.e., Blockchain).
Table 6 shows the minimum, maximum, average power consumption (in mA), and total

https://www.qoitech.com/
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energy consumption (in mWh) as the average of 100 experiments for each case. It is impor-
tant to note that no low-power consumption optimization was implemented on the device.
This data shows that enabling BLE increases the average power requirement by almost 38%
(from 40.5 to 55.7 mA) and the overall energy consumption by 34%. Compared to BLE,
enabling blockchain technology has almost no influence on power and energy requirements.

Table 6. Power requirements and energy consumption (at 3.3 V) in 30 s windows for three cases.

Min. (mA) Max. (mA) Avg. (mA) Energy (mWh)

(1) Baseline 40.2 41.6 40.5 134.4
(2) BLE 42.2 154.1 55.7 181.2
(3) Blockchain 42.3 154.2 55.8 182.4

In summary, these results show that the device could work continuously for 3.72 h in
the baseline case, 2.76 h when using BLE, and 2.75 h when adding blockchain functionality,
with a 500 mAh rechargeable LiPo battery. In the context of a real mining inspection,
and based on the information described in Section 4.2, an inspection should perform
between 60 and 70 measurements. Thus, if each measurement is 30 s, the total operation
time of the connected tool , using BLE and blockchain, will be only between 30 to 35 min.

6. Conclusions and Future Works

This paper presented and evaluated an end-to-end system to conduct mining inspec-
tions. The proposed system architecture uses off-the-shelf mobile devices and integrates IoT
and blockchain technologies. Furthermore, our proposal provides a method to create smart
measuring tools using low-cost embedded CPUs that directly interact with a blockchain
system, guarantee data integrity, and increase trustworthiness. We highlighted the benefits
of the proposed architecture by describing and evaluating the implementation of a pilot
in a real mining inspection scenario. Such a pilot represents one of the outcomes of an
ongoing research and innovation project funded by the EU Commission and involving
research institutions, universities, and relevant companies in the mining sector. Our results
showed that a very cost-effective IoT board (USD 10) could provide a suitable platform
(in terms of disk usage and memory) to create new types of connected tools that directly
benefit from blockchain technology. Furthermore, in terms of additional processing time,
the operations performed on the blockchain averaged 24 s on a public blockchain network.
Finally, concerning energy requirements, the connectivity of the tool (i.e., BLE) increased
the average power requirement by almost 38%, while enabling blockchain had very lit-
tle influence. Nonetheless, in the context of a full mining inspection and using a small
500 mAh battery, the connected device consumed only 20% of the total available energy.
These findings suggest an important role for portable mobile devices, connected measuring
tools, and a blockchain infrastructure in promoting the adoption of digital technologies to
make inspection procedures more automated, reliable, and simple.

Future works include evaluating other communications methods between the con-
nected tool and the mobile app (i.e., NFC, WiFi). Another interesting research direction
is evaluating low-power modes and other IoT hardware platforms to reduce the power
consumption of the connected tool . Finally, another interesting aspect to further develop
the system is the integration of more complex evaluation algorithms (i.e., AI-based) that can
run outside the blockchain. These algorithms could benefit from the information collected
both on the cloud module and the blockchain module and should maintain the same level
of trustworthiness.
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