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Abstract: The waste mine water is produced in the process of coal mining, which is the main cause
of mine flood and environmental pollution. Therefore, economic treatment and efficient reuse of
mine water is one of the main research directions in the mining area at present. It is an urgent
problem to use an intelligent algorithm to realize optimal allocation and economic reuse of mine
water. In order to solve this problem, this paper first designs a reuse mathematical model according
to the mine water treatment system, which includes the mine water reuse rate, the reuse cost at
different stages and the operational efficiency of the whole mine water treatment system. Then, a
hybrid optimization algorithm, GAPSO, was proposed by combining genetic algorithm (GA) and
particle swarm optimization (PSO), and adaptive improvement (TSA-GAPSO) was carried out for
the two optimization stages. Finally, simulation analysis and actual data detection of the mine water
reuse model are carried out by using four algorithms, respectively. The results show that the hybrid
improved algorithm has better convergence speed and precision in solving the mine water scheduling
problem. TSA-GAPSO algorithm has the best effect and is superior to the other three algorithms. The
cost of mine water reuse is reduced by 9.09%, and the treatment efficiency of the whole system is
improved by 5.81%, which proves the practicability and superiority of the algorithm.

Keywords: optimal allocation; economic reuse; GAPSO hybrid algorithm; two-stage optimization;
adaptive adjustment

1. Introduction

Since the concept of green mine was put forward, the mineral industry has responded
positively [1-3]. Under the strict requirements of carbon emission control, how to minimize
environmental pollution under the premise of mining has become the current goal of the
mineral industry [4,5]. Mine water, as a derivative in the process of mining, is also a
resource containing pollutants [6,7]. Mine water cannot be reused directly; if discharged
directly, it will cause irreversible damage to the surrounding environment of the mining
area and seriously affect the life of the mining area and endanger the safety of the mine [8,9].
Therefore, how to meet the need for mineral exploitation as well as achieve mine water
efficient treatment is an important research direction at present. The researchers designed
and developed a set of automatic heavy metal filtration devices for environmental pollution
caused by heavy metals in mining wastewater, which achieved excellent treatment effect
and reduced treatment cost [10]. According to the characteristics of coal mine water quality,
the researchers proposed an improvement scheme for the original underground water
silo, and the results proved that the scheme improved the underground reuse efficiency of
mine water and reduced the reuse cost [11]. The author proposed a neutralization scheme

Sensors 2022, 22, 883. https:/ /doi.org/10.3390/s22030883

https:/ /www.mdpi.com/journal/sensors


https://doi.org/10.3390/s22030883
https://doi.org/10.3390/s22030883
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5457-4753
https://orcid.org/0000-0001-9975-1477
https://doi.org/10.3390/s22030883
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22030883?type=check_update&version=1

Sensors 2022, 22, 883

20f22

and treatment technology for the environmental pollution of acid mine water, and the
results proved that the scheme had a good treatment effect [12]. The efficient utilization of
mine water not only stays in the state of water quality treatment but also has an important
influence on reuse. The study of the above literature is mainly aimed at the water quality
treatment and flow of mine water. The efficient utilization of mine water not only stays in
the stage of water quality treatment but also has an important impact on reuse. At present,
there are very few studies on mine water scheduling, and most coal mines use the method
of nearby reuse or unified reuse. Therefore, this paper studies the reuse mechanism of
mine water.

With the development of information technology and intelligent technology, more and
more excellent algorithms have been invented. As one of the intelligent algorithms, the op-
timal scheduling algorithm has been in the state of development in recent years. There have
been the particle swarm optimization algorithm [13], slime mold algorithm [14], whale feed-
ing algorithm [15], Harris Eagle algorithm [16], Runge Kutta optimization algorithm [17]
and so on. These algorithms have been well used in life, for example, the movement track
of underground scraper [18], the parameter selection of solar photovoltaic panel [19], the
complementary charging system of photovoltaic power grid [20], the job shop schedul-
ing [21] and the nonlinear thermodynamic buckling of intelligent sandwich panel [22].
Particle swarm optimization algorithm and genetic algorithm, as the most commonly used
optimization algorithms, have also been applied to all walks of life. In order to eliminate
the problem of EEG single self-interference, the author optimized and tested five PSO
algorithms and finally proved that the improved versions of NLI and LDI were most
suitable for filtering ANC [23]. The researchers developed a method to predict a crystal
structure through PSO algorithm and verified that it has a high success rate [24], indicating
the technical prospect of PSO algorithm in crystal prediction. Some researchers proposed
a PSO-based support vector machine parameter determination and parameter selection
method [25] and verified that this method has high value for support vector machine
parameter determination and selection. The researchers proposed a clustering analysis
method based on genetic algorithm (GA) and verified its feasibility and superiority [26].
A single algorithm improvement and optimization sometimes cannot meet the needs of
real, so many researchers improve the algorithm. Ratnaweera introduced time-varying
acceleration coefficient and time-varying inertia factor in the process of particle swarm
optimization to control the convergence accuracy of the algorithm under different itera-
tions [27]. The author uses the different components of the population co-optimization
vector solution to control the direction of particle optimization [28]. Some authors classified
the evolution states of PSO and adopted different convergence optimization strategies in
different states [29] to improve the convergence speed, accuracy and reliability of the algo-
rithm. Some researchers hybridized the particle swarm with adaptive inertial weight and
the chaotic particle population to form an adaptive search algorithm with chaotic search
capability [30]. In order to introduce fixed point theory into the algorithm and transform the
optimal problem into fixed point problem, some researchers proposed an improved genetic
algorithm based on ]1 triangulation [31]. Some researchers have also made optimization im-
provements in crossover and mutation probability [32,33]. A single optimization algorithm
sometimes cannot meet the actual needs, so some researchers propose a hybrid algorithm
of particle swarm optimization and genetic algorithm and apply the optimization results to
recursive neural network analysis [34], but the speed and precision of convergence need
to be improved. The author took advantage of the optimal sharing characteristics of PSO
to guide the inheritance of GA and proposed a hybrid evolutionary clustering algorithm
based on PSO algorithm and GA algorithm to reduce the setup time of surface mounting
technology [35]. Simulation comparison shows that this method has certain advantages
in reducing machine production time and idle time. In addition, some researchers pro-
posed a hybrid GAPSO algorithm based on GA and PSO to improve the accuracy of the
scheduling strategy of FMS and improve the global optimization capability of PSO by
using the crossover and variation characteristics of GA [36] and verified the superiority
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of the hybrid algorithm in improving operation efficiency. For the hybrid improvement
of particle swarm optimization and genetic algorithm, researchers applied the particle
swarm optimization algorithm to the crossover operator [37] and mutation operator [38] of
genetic algorithm to improve the optimization ability of genetic algorithm. For the hybrid
algorithm, some researchers analyzed its optimization mechanism and enhanced the ability
of adaptive sampling and local in search, which provided certain guidance for the study of
this paper [39].

Based on the above research results, it can be found that the optimal scheduling
algorithm is widely used. A single particle swarm optimization algorithm and a single
genetic algorithm can solve some optimization problems, but with the development of the
algorithm, it is found that the optimization effect of the hybrid algorithm is sometimes
better than that of the single algorithm. A new hybrid mechanism is proposed to solve the
problem of convergence speed and precision of single algorithm. The hybrid scheme of the
two algorithms proposed in this paper has not been applied in mine water scheduling, so it
is worth testing and studying. Therefore, this paper applies the sharing mechanism and
strong local search ability of PSO to the genetic iteration of a genetic algorithm to find the
optimal scheduling scheme of mine water. The main research contents of this paper are
as follows:

1. According to the scheduling status of mine water, analyze the demand for water in a
mining area and construct the objective function of economic reuse.

2. The characteristics of particle swarm optimization and genetic algorithm are ana-
lyzed. In addition, carry on the fusion improvement according to their characteristics.
The results show that the hybrid algorithm has better convergence effect than the
original algorithm.

3.  Make adaptive improvement on the two stages of the hybrid algorithm, so that the
hybrid algorithm can be further optimized. The comparison results show that the
improved hybrid algorithm is better than the hybrid algorithm in convergence speed
and accuracy.

4. Use four algorithms to simulate the reuse model of mine water, and then compare
it with the actual production scheduling situation of mine water under the nearby
principle. Simulation results show that mine water scheduling based on this algorithm
has better economy and efficiency compared with the nearby principle.

The structure of this paper is as follows. The Section 2 describes the state of mine
water treatment and reuse and establishes the corresponding mathematical model. The
Section 3 is the theoretical description of the algorithm, hybrid improvement and adaptive
adjustment. The Section 4 is for the actual water used in the sea coal mine simulation test.
The Section 5 in the work of this paper.

2. Optimal Scheduling Model

In order to understand the present situation of mine water reuse in detail, this paper
investigates the current situation of water inrush and water use in Dahaize Coal mine.
Through the analysis of its treatment system and reuse process, the water demand model
of the mining area is constructed, and the objective function is set up.

2.1. Mining Demand Models

Firstly, the mine water reuse system is investigated and analyzed. Mine water pretreat-
ment station carried out conventional treatment and hard treatment for all underground
drainage. Some underground drainage was deeply treated and then used for coal mine
production and living water, and the rest was sent to the mine water treatment plant for
in-depth treatment. The conventional treatment unit consists of four parts: dehardening,
coagulation and sedimentation, filtering and disinfection. The advanced treatment process
includes self-cleaning filtration, ultrafiltration, reverse osmosis and disinfection process.
After the above treatment, the mine water that meets the requirements can be supplied to
the water point of the mining area, and the rest can be transported to the water treatment
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plant or power plant around the coal mine. In Figure 1, the regulated pre-settling pool, clear
pool, middle pool, high pool and reuse pool are responsible for water quality monitoring
and allocation. Among them, the regulated pre-settling pool is at the beginning of mine
water gushing into the system, so the water quality among them is only tested, not allocated.
The specific mine water treatment process is shown in Figure 1:
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Figure 1. Flow chart of mine water treatment process.

Mining area water is mainly divided into two parts, namely underground coal mine
water and ground water. This paper classifies water points according to water conditions in
mining areas and defines the following five equations. The specific content mainly includes
the following aspects:

Safe water for underground production in coal mines. Production water includes
hydraulic support water, grouting water and cooling water, underground safe water
includes underground fire control water and underground dust removal water, and its
demand is as Equation (1):

Q1=SX7’1+GX[X—|-YI‘XWI+(L]‘+C;<)Xt (1)

In the formula, S represents the average water consumption of underground fire; # is
the number of underground fires; G represents the volume of grouting; a stands for
water proportion, usually 0.6; Y represents the water consumption of hydraulic support;
m represents the number of hydraulic supports; L; represents the average cooling water
consumption; Cy represents the average water consumption of underground dust removal
equipment; ¢ represents time, in hours.

Mining ground safety protection water Q. Safe water mainly includes ground fire
fighting and dust removal. Compared with underground fire fighting and dust removal,
ground fire fighting water consumption is less, and the storage water supply pool is
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relatively small. For dust removal water, the frequency of road sprinkling is lower than
that of the underground roadway. Therefore, the safe water demand on the ground is
as Equation (2):

Q=¢gx(Dxd)/365+S xn )

In the formula, g represents sprinkling water quota; D is the area of the road; d
represents the average number of sprinkler days per year; S represents the average water
consumption of ground fire; n is the average number of ground fires per year.

Coal mine processing water Q3. Ground production water refers to the secondary
processing of mined coal and the treatment of coal slime, mainly including coal preparation
water, heat exchange station water, cooling water and boiler water. Its forecast demand is
as Equation (3):

Q3:XZXT1+XTXT2+HXT3+GiXT4—|—LjXT5 3)

In the formula, X7 and X7 represent the average water consumption of the heavy
medium process and jigging process in the coal preparation plant, respectively; T represents
the average evaporation and water loss of the heat exchange station; G represents water con-
sumed in the coal water slurry boiler system; L represents the average water consumption
of cooling equipment; T; indicates the running time of the corresponding device.

Mining area residents living water Q4. In order to ensure the quality of life in the
mining area, the residential water has higher quality requirements. The predicted demand
for greening and drinking in the main mining areas is as Equation (4):

Qi=Nxg+SxlI 4)

In the formula, N represents the total number of residents in the mining area, g
represents the water consumption standard per capita in the mining area, S represents the
green area in the mining area and ! represents the average water consumption for greening.

The problem of mine water dispatching and reuse can be described as follows. In the
process of mine water treatment and reuse, mine water is constantly pouring into the
treatment system, and the system is in an uninterrupted running state. The utilization of
underground and ground water resources in coal mine is in a random state, and the reuse
scheduling system arranges the scheduling scheme reasonably according to the demand
of underground and ground water and transfers the water in the treatment process to the
water point in the mining area. In mine water reuse, the reuse rate 7 is determined by
measuring the reuse amount of each reuse point in the mine. The calculation formula is
as Equation (5):

M .
=15 ®

In the formula, M represents the reuse point of the mining area, Q; represents the
recycling amount of the i reuse point of the mining area and S represents the water inflow
of the mining area.

2.2. Objective Functions of Economic Reuse in Mining Area

Complex processing technology and high cost of treatment are the reasons for the
shortage of mine water treatment. Therefore, the reasonable dispatch and distribution of
mine water is one of the problems that needs to be solved at present. The research goal
of this paper is to calculate a reasonable solution based on the demand analysis of mine
water, combined with the constraints of water quality and quantity of each water point in
the mining area, so as to achieve the highest recycling rate of mine water and the lowest
treatment cost on the basis of meeting the production and life of the mining area. In this
paper, the reciprocal of mine water consumption cost and the sum of reuse efficiency are
taken as the objective function, and the water quality and quantity of each water point are
taken as the constraint conditions. The operation cost of mine water dispatching is mainly
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electricity cost generated by pump work, and the treatment and purification cost includes
pharmaceutical treatment cost and labor and mechanical cost generated by purification
process. Establish a mathematical model of system optimal scheduling for a certain period
of time T as Equation (6).

M N (Yij + Eij+6) x Qjj Qi xT
. o ] ij ij ij
mmfzt—g]§<g1 7% S + o ExZ (6)

In the formula, S; represents the maximum reconsumption of mine water; i represents
the stage of mine water treatment; j represents the classification of water points; Y; repre-
sents the cost of chemical drugs; E; represents the electricity cost of mine water treatment;
q; represents the water consumption of j water points in stage i; J represents the equipment
repair cost after the water treatment is converted into 0.16 RMB/ton; Z represents the
treatment cost in the final stage; g1 and g, represent the weight coefficients, 0.6 and 0.4,
respectively; ¢; represents unit reuse time of mine water in each stage; and T represents the
maximum treatment time.

2.3. The Constraint

Water quality condition in a mining area. As mine water mostly belongs to acidic
liquid containing a variety of minerals, it needs to go through a variety of reactions before
it can be used. Therefore, each level of mine water treatment has a lower limit and upper
limit of water quality as Equation (7), and the water quality standard of each mine water
point can only be invoked within this range. According to the characteristics of water
quality and the demand of reuse, the following three inequalities are formulated for the
reuse system.

Gimin < Gi < Gimax (7)

Here, G; represents the water quality requirement standard of water point, Gj,;;,, rep-
resents the minimum water quality standard of mine water in stage i and Gjy,,, represents
the highest water quality standard that can be achieved in stage i.

Mine water inflow water balance. In any time period of system operation, the water
inflow of the mine should be equal to the sum of water consumption and the displacement
of the mine as Equation (8). In the process of treatment and purification, water in sludge and
water consumed by evaporation will inevitably appear, so these are ignored in this paper.

M
W=) Q+D (8)
i=1

Here, W represents the water inflow of the mine, Q; represents water consumption of
each mining area and D represents the water discharged from the system after completion
of treatment.

Mine water treatment speed. Although the mine water treatment is in continuous
operation, the water in the recycling pool in actual production is not infinite but needs to be
stored for a certain period of time, especially for the process of dosing precipitation, which
needs a long period of time. The speed limit is shown in Equation (9).

Vimin < Vz < Vimax (9)

In the formula, V; represents the mine water purification speed in the i treatment
stage, Vi indicates the highest processing speed in phase i and V},;;,, indicates the lowest
processing speed in phase i.

Based on the above conclusions, four constraint conditions of mine water optimal
scheduling model are obtained in this paper, including one equality constraint condition
and three nonlinear constraint conditions. So the optimal scheduling model proposed in
this paper is an optimization problem with nonlinear constraints. For this kind of problem,
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the penalty function is introduced to transform the optimal scheduling problem into an
unconstrained optimization problem and then solve it.

2.4. Penalty Functions

Penalty function has a great advantage in solving optimization problems under various
constraints, because it can replace a constrained problem with an identical unconstrained
problem [40]. Therefore, the constraint conditions in the process of mine water treatment
are converted to the calculation of penalty functions, and the calculation of penalty values
can refer to Equation (10) [41]:

N 2 H 2
o= Zl(max{O,—un(7)}) +hz(|zh(7)y ) (10)
n= =1

For Formula (10), ¢ represents the penalty value, N represents the number of inequal-
ity constraints in the optimal scheduling problem, H represents the number of equality
constraints, u, (7) represents the result of the transformation of the Nth inequality con-
straint and zj, ( 7) represents the result of the transformation of h equality constraints.

If the variable is beyond the inequality constraint condition of the given limits,
the penalty value is | — un(7) 2; otherwise, it is 0. If a variable is beyond the equal-

ity constraint conditions of the given limits, the penalty value is |z, (%) |2 ; otherwise, it
is 0. A fairly large positive integer J can then be multiplied by the penalty value [42]
and appended to the end of the objective function proposed in this paper. Since the op-
timal objective function in this paper is to find its minimum value, it can be added with
penalty value to form an augmented function relative to the original objective function
as Equation (11):

fin(fi) = f + 3¢ a1

3. Hybrid Improved Algorithm Based on Genetic Algorithms and Particle
Swarm Optimization

This paper is devoted to solving the optimization scheduling problem of mine water,
mainly including one to many and many to many mine water reuse methods. In this paper,
the mine water reuse system in the Dahaize mining area is investigated, as described in
Section 2.1. The mine water reuse problem in this paper is summed up as a multi-objective
optimization problem. Both particle swarm optimization (PSO) and genetic algorithm
(GA) have great advantages and convenience for solving multi-objective optimization
problems [43-46]. Therefore, this paper will make use of the respective advantages of
particle swarm optimization and genetic algorithm to optimize the mine water distribution.

The stability of the optimization algorithm is affected by the emphasis among the
core algorithms. The algorithm compares and selects all individuals in the population
with the optimal individuals in the previous generation, so as to obtain the evolutionary
direction of the next generation of individuals [47,48]. It can be seen that the PSO algorithm
focuses more on the overall optimization ability. In the genetic algorithm, the algorithm
cross-operates several excellent individuals of the first generation through selection op-
eration [49]. This process reflects the characteristics of the gene transmission of excellent
individuals from generation to generation and also reflects the information exchange be-
tween individuals. It can be seen that the genetic algorithm lays more emphasis on the local
search ability of the algorithm. Therefore, the fusion and balance of the two algorithms can
better solve the problem of optimal scheduling.

3.1. Overview of PSO

Particles in the particle swarm optimization algorithm are considered as massless
and volumeless particles when searching for spatial motion [50-52]. Suppose there are n
mass less and fewer particles in the D-dimensional search space. In swarm space, every
particle has two properties; they are the current position of the particle and the speed at
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which it travels [53]. The position of the No.i particle is represented by Xj;, expressed as
Xig = [xi1, X, Xi3 ... xip), (d = 1,2,3... D). The flight speed and direction of the ith particle
are represented by Vy, expressed as Viy = [vj1,0i2,0i3...0ip), (d = 1,2,3...D). X; was
substituted into the fitness function to judge the quality of the current population by the size
of fitness value. In order to guide the direction and speed of the next population movement,
particle swarm optimization has two special mechanisms, namely the individual extreme
value and the population extreme value [54]. The former represents the best position
searched by the particle, namely Pbest;s = (P14, P2d, P3ds - - - » Pud), Gbestgg = (Gra, Gog, Gag,
oo Gog).

Tghe iteration formula of each update in the algorithm iteration process as
Equations (12) and (13) [50]:

Vi’;rl = wViIfiJrl + C18<Pl]7(est - x?d) + CZ# (Gll;est - x:'cd) (12)

k+1 k k+1
X =X5+VEtt...d=1,2,3...D (13)

In the above formula, Vid represents the speed and direction of the ith particle in the
D-dimensional space. X; is the position of the ith particle in D-dimensional space. C1 and
C2 represent the weight of the optimal value of particle and population in the historical
search process, respectively. It is always going to be 2. The parameters ¢ and y are random
numbers distributed over the interval [55]. Pbest and Gbest represent the individual
extreme value and global extreme value of particle population, respectively. P{fest - x;‘d
is called self-awareness, GX xi-‘d is called the social cognitive [55]. Its expression is as

Equations (14) and (15): et
Pbest;(k) = argmin{ fit(X;(1)), fit(X;(2)), fit(X;(3)),..., fit(X;(k))} (14)

Gbest (k) = argmin{Pbest; (k), Pbest;(k), Pbests(k), ..., Pbests(k)} (15)

Omega represents the particle weight coefficient [56], which is usually a decreasing
linear change parameter, specifically defined as Equation (16).
Wmax — Wmin k) (16)

Wi = Wmax — ( K
max

Wmax = 0.9, Wmin = 0.4, Kmnax is the maximum number of iterations, k is the current
number of iterations. It can be seen that with the continuous iteration, the state of the
population is constantly changing.

3.2. An Overview of Genetic Algorithms

The basic principle of the genetic algorithm is derived from the long and long evolu-
tionary process of species from simple and low to complex and high [57]. In the search
process, the genetic algorithm should not only consider the basic information of the current
population but also consider the population characteristics formed by the accumulation
of previous iterative experience and adopt the unique process of inheritance, crossover
and mutation to control the search results to move to the global optimal solution [58].
The solution process is shown as follows:

(1) Code design

In the process of solving the genetic algorithm, the practical problem is transformed
into the genetic algorithm chromosome structure, that is, the genetic algorithm coding.
The encoding mode determines the optimization performance and efficiency of the algo-
rithm to a certain extent, and the encoding mode mainly includes binary, ordered string
encoding and real number encoding. The fitness function selected in this paper is continu-
ous function with small variation range, so the binary coding method with a simple coding
method and easy crossover and mutation is selected [59].
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(2) Generating initial population

Before the basic genetic operation, an initial population consisting of several initial
feasible solutions needs to be constructed. The most important measure of the initial
population is population size n. Under the condition that constraint conditions are met,
the total amount of n individuals is Q, that is, the water demand of the mining area.
The larger the population size n is, the more individual species are selected, crossed and
mutated, which is helpful to avoid falling into the local optimal solution and improve the
probability of finding the global optimal solution.

(3) Fitness function

The design of fitness function is to evaluate the adaptability of individuals, which
plays a decisive role in the optimization of genetic algorithm and is the driving force of
algorithm evolution [60]. The selection of fitness function is very important in the operation
of the genetic algorithm. It will affect the convergence efficiency and the ability of the
optimal solution. This paper designs the fitness function on the basis of the objective
function, and the formula is as Equation (17):

GAfs=f—minf +e (17)

In the formula, GAf; represents the fitness function, minf represents the minimum value
of the objective function, e represents a smaller number and a smaller number is added to
make the fitness function greater than 0. In this paper, 10~ is taken.

(4) Choose

The selection operation of genetic algorithm is to retain the excellent genes in the
population, so that the individual genes with high fitness value can be better inherited to
the next generation, so as to improve the convergence speed and accuracy of the algorithm
in the operation process, so as to achieve better calculation results. In this paper, roulette
selection method is selected, that is, the proportion of individual fitness value in the whole
population, where the proportion calculation formula is Equation (18):

_ _GAf()
N = TrGAr® (18)

This method cannot guarantee that individuals with high fitness value will be selected.
If chromosomes with low fitness value are selected, it is likely to cause population degrada-
tion and decrease the convergence rate.

(5) Crossover and variation

In the running process of genetic algorithm, two individuals of the first generation
exchange information according to certain methods and produce two offspring individu-
als [61]. Firstly, a certain crossover probability is set, and then the location of the crossover
point in the gene is generated according to the crossover probability. The genes behind the
crossover point are the genes exchanged between the first two individuals, resulting in the
second generation of individuals. The crossover operation is described in binary terms,
with chromosomes Xj, Xj. First, set a crossover mutation probability Cy4., which is 0.8 in
this paper, and generate a random decimal ¢4, as Equation (19).

Crate < Crate (19)

The following crossover operation occurs.

Mutation operation and crossover operation are used to increase the diversity of the
genetic algorithm in the process of optimization. The interactions are shown in Figure 2.
The main purpose is to improve the local search ability of genetic algorithm and mutation
is to change a gene of the parent with a certain probability, while maintaining the logical
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relationship of genes, compilation operation is as Equation (20): First, set a mutation
probability M,4., this paper takes 0.8, randomly generate a decimal 714., when:

Mrate < Myate (20)

The following mutation operation occurs.

xi{tfofofufufofofofuifurJofo]

o[ iJoJoJouJu]riJoJoi]o]

@Ramdom cross position

xt[ifoJoiJifJofefrJoJofuifol

xslafiJoJoJofrJoJoJeifofo]

Figure 2. Schematic diagram of binary encoding crossing.

For the setting of crossover and genetic probability parameters, different parameter
selection has different effects on the quality of the algorithm, but the setting of parameters
at present mainly depends on the experience of predecessors. The mutation process is
shown in Figure 3.

xtlrfofofififofofoftfrfofo]

@ Position of random variation

xf[1foJoJiJofoJoJoJiJifofo]

Figure 3. Schematic diagram of binary code variation.

3.3. Overview of the GAPSO

In this paper, a hybrid GAPSO algorithm is proposed to guide the evolution direction
of genetic algorithm particles by using the extreme value sharing characteristic of the
particle swarm optimization algorithm. GAPSO hybrid algorithm is based on the frame-
work of genetic algorithm, which ensures the evolution of population through individual
selection, crossover and mutation operation within the genetic algorithm. At the same time,
particle swarm optimization algorithm is used as an assistant to assist the evolution of all
individuals to move toward the extreme point. In the genetic algorithm, the operation of
chromosomes makes the whole evolve in the optimal direction through the selection and
crossover between individuals, and it is inevitable that individual degeneration will occur,
which will slow down the rhythm of the whole and affect the judgment of the algorithm as
a whole. Therefore, in the evolutionary process of genetic algorithm, fitness value (same
as individual extreme value) is discriminated for all individuals. For degenerate particles,
particle swarm optimization algorithm is used to give them the evolutionary direction and
search for optimization again, so that all individuals have the same evolutionary direction.

The solving steps of the GAPSO algorithm are as follows:

Step 1: Initialize the population size, iteration times, termination conditions, boundary
conditions and other system configurations, as well as the individual fitness values
and population fitness values of the two algorithms.

Step 2: Initialize population individuals and randomly generate all individuals within the
boundary. Individual and population fitness values were calculated and preserved.
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Step 3: The genetic algorithm is used to calculate the population and update the fitness
value of particles and the fitness value of the population.

Step4: Judge whether the fitness values of all individuals become better, and use particle
swarm optimization algorithm to optimize the degraded individuals.

Step 5: Judge whether the fitness value optimized by particle swarm optimization becomes
better and update the fitness value.

Step 6: Update the population fitness value for the next individual direction determination.

Step7: Judge whether the termination condition is met. If so, end the calculation; other-
wise, return to the third step for loop iteration.

3.4. Hybrid Optimization Algorithm Based on Two-Stage Adaptive Adjustment

In the mixed calculation process of mine water scheduling, the overall defects of the
genetic algorithm and particle swarm optimization algorithm have been complementary,
but for solving specific cases, the internal details need to be optimized and adjusted.
The optimization process is shown in Figure 4. Therefore, this section uses the scheduling
process of mine water in each stage and the optimization process of the algorithm to adjust
the hybrid algorithm. The first stage is the optimization process of the genetic algorithm.
The main factors affecting the performance of genetic algorithm are crossover probability
and mutation probability. Crossover probability affects the overall evolutionary process of
the algorithm. Through crossover changes between different chromosomes, more excellent
individuals appear, while variation mainly plays an auxiliary role. When the algorithm
falls into the local optimal solution, mutation operation can make the algorithm jump out
of the constraint. Then, it is the second stage, the optimization process of particle swarm
optimization algorithm. According to the characteristics of the algorithm, the performance
of the algorithm is mainly related to the inertia weight w; the larger the weight, the stronger
the global search ability, the smaller the weight, the stronger the local search ability. To sum
up, how to adjust the influence factors of genetic algorithm in the first stage, namely
crossover probability and genetic probability, and the influence factors of particle swarm
optimization in the second stage are very important.

In the first stage of optimization, the traditional genetic algorithm is fixed for crossover
probability and mutation probability, that is, all the particles evolve at a fixed rate, which is
easy to cause problems such as oscillation in the optimization process and slow convergence
speed. Therefore, in order to solve the above problems and adjust the evolution direction
of each particle in the iteration process, based on the analysis of status of individuals in
the population to decide the crossover probability and mutation probability of particles,
achieve the goal of adaptive evolution of individual particles and improve the optimization
performance of the genetic algorithm, which can quickly achieve optimal dispatch of
mine water.

Firstly, the fitness value of each particle is determined. In order to fit the characteristics
of genetic algorithm and particle swarm optimization algorithm, the reciprocal of the
objective function is adopted as the fitness function, and the minimum fitness value is taken
as the optimization goal. Namely, the fitness function as Equation (21):

1

Fit = .
M vN (Yy+Eij+6) xQij QijxT
Yit1 s (“’1 —Zxs  TWagxz

(21)
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Figure 4. Mine water optimization flow chart based on hybrid algorithm.

Then, the optimal fitness value fmi, and the average fitness value f;4 of the population
were obtained as Equations (22) and (23):

=

favg = % ) fit (22)

1

fmin = argmin{fit(Xi(1)),fit(Xi(2)),fit(Xi (3)), R ,flt(Xl(k))} (23)

Through the study of genetic algorithm, it is found that the particle crossover proba-
bility between 0.6 and 0.9 is the most suitable [62]. When the fitness value of particles is
higher than the average value, the crossover probability of particles is randomly selected
between 0.6 and 0.9, and excellent particles are reserved as far as possible. When the fitness

Il
—_
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value of particles is lower than the average value, the crossover probability of particles is
0.9, that is, the particles with poor mass will be crossed with the maximum probability.

In this paper, the crossover probability of particles will be adjusted according to the
individual’s current fitness value in the process of iteration, namely the formula is as
Equation (24):

avg —Jmin (24)
P cl f ! > f ave

where P represents the crossover probability of the current particle, P.; represents the max-
imum crossover probability, which is 0.9; P, represents the minimum value of crossover
probability, which is 0.6; f’ indicates the fitness value of the current particle; fmin and
favg represent the minimum fitness value and the average fitness value of the particle
population in this iteration, respectively. The unique mutation operation makes genetic
algorithm jump out of the problem of local optimum. Adaptive adjustment of particle
mutation probability makes genetic algorithm more diverse in the later iteration. The varia-
tion probability of particles is more suitable between 0.01 and 0.1 [63]. When the fitness
value of the particle is better, the mutation probability of the particle is increased. When the
fitness value of particles is poor, the traversal probability of particles is reduced, and the
crossover and optimization of particles are emphasized. The formula of mutation operation
is Equation (25):

P {Pcl _ (Pcl}Pcz)_(]}awg - f/ < fave

ave — fmin (25)
P ml f ! > f avg
where Py, represents the mutation probability of the current particle; P,,; represents the max-
imum variation probability, which is 0.1; P, represents the minimum variation probability,
which is 0.6; f" indicates the fitness value of the current particle; fmin and favg represent
the minimum fitness value and the average fitness value of the particle population in this
iteration, respectively.

When the fitness value of ga particles becomes worse in the iteration process, particle
swarm optimization algorithm will replace genetic algorithm for optimization. In order
to keep the same adaptive adjustment ability of particle swarm optimization (PSO), this
paper will improve the inertia weight. The inertia weight is usually in the range of 0.4-0.95,
and W directly affects the particle optimization speed. Referring to the fitness value of
the current particle, when the fitness value of the particle is better, the moving speed of
the particle should be appropriately reduced. For particles with larger fitness values, they
evolve toward the optimal value at maximum speed. Therefore, relevant parameters are
set in this paper to make the inertia weight as Equation (26):

Pm _ {Pml _ (Pml}szi)(faf'e —f) f/ S favg

_ (w1=w2)(fave *f,) I <
w = {W1 fave *fmin f - fan (26)

wl > favg

w1 indicates the maximum inertia weight, set to 0.95, w, indicates the minimum
inertia weight, set to 0.4. In the initial stage of the algorithm, larger f and larger w are
more conducive to global search; on the contrary, in the late running state of convergence,
smaller f and smaller w are more conducive to local search.

In conclusion, this section of important parameters in the GAPSO algorithm are
optimized and improved. The original fixed parameters improvement for change with the
particle population increased the variability of the algorithm, in theory, to improve the speed
of searching optimization and optimization precision of the particle, with the improved
algorithm called two-stage adaptive genetic particle swarm optimization (TSA-GAPO).

4. Case Analysis and Discussion

In order to verify the feasibility of the TSA-GAPSO algorithm in dealing with the
mine water optimal scheduling problem, this chapter uses the TSA-GAPSO algorithm to
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calculate the economic reuse mathematical model of mine water and compares it with the
PSO algorithm, GA algorithm and GAPSO algorithm to observe the convergence state of
the four optimization algorithms. Then, water in 2015 Dahaize mining areas is redistributed
and scheduled, and its reuse cost and reuse rate are analyzed, so as to verify the superiority
of the TSA-GAPSO algorithm for optimal allocation of mine water.

4.1. Algorithm Simulation Analyses

In this section, the TSA-GAPSO algorithm is used to simulate the scheduling model of
mine water, so as to verify the feasibility of the algorithm in optimal distribution of mine
water. The iteration of the four algorithms is shown in Figure 5, and the statistical index
data of algorithm optimization for the mine water scheduling model is shown in Table 1.
Python, as an interpreted high-level programming language, has penetrated into hot fields
such as big data and artificial intelligence. Based on the advantages of algorithmic editing,
the testing process was completed on Python software. The number of particle swarm
in this paper is 100, and the maximum iteration number is 300. Each particle contains
four features. Finally, the minimum fitness value, average value and iteration time of the
algorithm after iteration is taken as evaluation criteria.

As can be seen from the figure, TSA-GAPSO has a lower fitness value than the single
GA algorithm, PSO algorithm and mixed GAPSO algorithm in terms of convergence
accuracy, that is, it has a better convergence effect. In terms of convergence speed, it can be
seen from the figure that TSA-GAPSO, GAPSO and PSO algorithms reach the optimum
at about 12 times, while GA algorithm reaches the optimum at about 75 times. Therefore,
the first three algorithms had better convergence accuracy.

— GAPSO
— GA
0.0150 F PSO-
—— TSA-GAPSO
0.0148 -
I
0.0146 |\
M
0.0144 -
A i M e
% 0.0142 |
g
= 5
0.0140 -
0.0138 -
0.0136 F |
o.0134 F L o
0. 0132 1 1 1 1 1 1 1
0 50 100 150 200 250 300

iteration

Figure 5. Comparison diagram of algorithm optimization.

In terms of convergence speed, GA algorithm is optimal at about 20 iterations, PSO is
optimal at about 30 iterations and GAPSO is optimal at about 15 iterations. Compared with
GA algorithm and PSO algorithm, GAPSO had better convergence accuracy. Therefore,
in terms of comprehensive evaluation, TSA-GAPSO has relatively good convergence state.
This paper compares the algorithms mentioned in References [34-36] and finds that they
are similar to Reference 30 and better than the convergence speed of the algorithms in the
other two papers. In order to verify the stability of the TSA-GAPSO algorithm and the
superiority of the TSA-GAPSO algorithm in the mine water scheduling model, this paper
has performed 100 simulation experiments. The maximum value, minimum value and the
average value of each algorithm are counted, and then the differences of each algorithm
are analyzed.
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Table 1. The algorithm statistics index data of mine water dispatching model.
Algorithm Max Min3 D-Value Average
TSA-GAPSO 1.42E-02 1.32E-02 1.00E-02 1.35E-02
GAPSO 1.44E-02 1.35E-02 9.06E-03 1.39E-02
GA 1.68E-02 1.54E-02 1.42E-02 1.59E-02
PSO 1.53E-02 9.11E-03 6.20E-03 1.47E-02

As can be seen from Table 1, the overall effect is similar to that in Figure 5. Among the
four algorithms, TSA-GAPSO has the best optimization effect, reaching 1.35E-02. GAPSO
followed with 1.39E-02. The optimization degree of single GA algorithm is the worst. It is
proved that the hybrid algorithm is better than the single algorithm in mine water optimal
scheduling. As can be seen from the minimum value, the minimum value of PSO is the
smallest, 9.11E-03, followed by TSA-GAPSO, 1.32E-02. However, as can be seen from the
different value, the fluctuation range of PSO is large, about 6 times that of TSA-GAPSO,
and the relative stability is poor. Through the above analysis, TSA-GAPSO has a good
comprehensive evaluation effect and has a good optimization performance in mine water
optimization scheduling.

4.2. Case Verification Analyses

Next, the mine water in 2015 in the Dahaize mining area will be redistributed to
compare the reuse cost of the four algorithms in mine water scheduling and verify the
practicality and superiority of the hybrid improved algorithm.

It can be learned from the first chapter that there are four water pools of mine water
reuse: underground clean pool, middle pool, high pool and reuse pool. Water has 14 points,
mainly for downhole hydraulic support, grouting in the use of water, cooling water, under-
ground water underground mine fire and dust removal, etc., five water points, and ground
fire water, dust, coal in the use of water, heat exchanger station water, cooling water, boiler
water, green water, drinking water and other water with nine points. According to the
survey of the mining area, the water inflow in the mining area far exceeds the water con-
sumption, so the dispatching and distribution in this paper does not need external water
supply, and the monthly water inflow is shown in Figure 6.

100,000
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30,000 ~ 40, 000

10,000 ~ 50, 000

Water inflow (m*)

50,000 ~ 60, 000
20,000 60,000 ~ 70,000
70,000 ~ 80,000

> 80, 000

Month

Figure 6. Water inflow in Dahaize coal mine.

According to the investigation of water consumption mechanism and water consump-
tion in the mining area, it can be found that the dispatching mode adopted in the mining
area is the nearest principle, that is, when the water point is used, the nearest water supply
point will supply, which will inevitably lead to the accumulation of water supply and
unreasonable dispatching. Therefore, this paper will use the optimization algorithm to
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redistribute mine water and compare it with the nearest distribution method to verify the
superiority of the optimization algorithm in the reuse efficiency and cost. The annual water
consumption of the mining area is shown in Figure 7.
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70,000 ~ 80,000
> 80, 000
0 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12
Month

Figure 7. Bar chart of water consumption in mining area.

The distribution map of water consumption in the mining area of wetland was ob-
tained through investigation. As shown in Figure 8, the monthly water consumption in
the mining area is between 15,000 and 20,000. The amount of water used fluctuates and
adjusts according to the actual situation. Through the analysis and calculation of water
consumption, it can be known that the recycling rate of mine water cannot reach 100%.
As a result, surplus mine water will be discharged into the environment or transported to
the nearest water treatment plant upon completion of treatment after meeting the mine
need as far as possible.

In the normal operation process, the concept of green mining should be followed, so
all mine water needs to be treated. Therefore, mine water scheduling belongs to reuse
in the process of treatment and has relatively little influence on the process of treatment.
Optimal scheduling mainly refers to the selection of optimal scheduling schemes by us-
ing algorithms.

It can be seen from the scheduling situation of the group of graphs that the algorithm
redistributes the scheduling water amount of mine water. In most cases, the intermediate
pool has the largest amount of dispatching, because the water quality of the intermediate
pool meets the surface production water in most mining areas and the cost is relatively
low. Due to the limitation of water quality, some mine water can only be regulated by
fixed pools, for example, drinking water can only be regulated by multiplexed pools, so
the number of multiplexed pools also exist all the time. There is also a relatively large
amount of dispatching water in underground clean water pools, because it takes a lot
of dispatching time and economic cost to dispatch underground water resources to the
surface. Therefore, water from underground clean water pools is generally used to allocate
underground water.

The amount of each pool is scheduled at the overall optimal recycling cost under the
constraints of the restrictive conditions. The following compares the scheduling cost to
analyze the optimization cost of various algorithms and the operating efficiency of the
processing system.

It can be seen from Table 2 that the recycling cost of mine water dispatching is the
highest in the fourth quarter, because the recycling amount of mine water increases in this
quarter. On the whole, the reuse cost of mine water varies slightly according to different
optimization methods. TSA-GAPSO algorithm has the highest cost reduction rate, reaching
9.09%. The scheduling recycle cost based on the GA algorithm is the lowest but also reaches
6.67%. As can be seen from the table, with the reduction in cost, the running time of the
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mine water treatment system is reduced, that is, the efficiency of optimal scheduling will
also be improved accordingly. On the basis of nearby scheduling, optimization efficiency
based on TSA-GAPSO is improved by 5.81%, and optimization efficiency based on GAPSO,
GA and PSO is improved by 3.95%, 2.99% and 3.85%, respectively. To sum up, the TSA-
GAPSO based mine water optimal scheduling algorithm proposed in this paper has good
practicability and superiority.
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Table 2. The algorithm statistics index data of mine water dispatching model.

Dispatching Recycling Cost (Ten Thousand CNY)

Scheduling Condition Total Cost Reduction Rate (%) Running Time (h) Efficiency Improvement (%)
The First Quarter The Second Quarter The Third Quarter The Fourth Quarter
Schedule to the nearest 6.72 7.04 7.76 8.51 30.04 - 35,040.00 -
TSA-GAPSO 6.03 6.70 6.72 7.86 27.31 9.09 32,879.85 5.81
GAPSO 6.20 6.97 6.93 7.57 27.67 7.89 33,599.04 3.95
GA 6.51 6.85 7.00 7.83 28.20 6.13 339,59.91 2.99
PSO 6.65 6.80 6.57 8.02 28.04 6.67 33,637.83 3.85
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5. Conclusions

Based on the analysis of the operation characteristics of the treatment system and
the current situation of water consumption in the mining area, this paper constructs
the water demand model of the mining area. The economic reuse objective function is
designed according to the demand of mining area. In order to calculate the objective
function, according to the characteristics of the GA algorithm and PSO algorithm, this
paper proposes a GAPSO algorithm which uses PSO algorithm to assist optimization on the
basis of the GA algorithm mechanism and improves it. In addition, the utilization function
of mine water is used to compare the allocation of mine water and the performance of
the algorithm before and after improvement to verify its effectiveness. The convergence
results show that the optimal scheduling has higher cost and efficiency than the traditional
scheduling, and the hybrid improved algorithm can obtain more mine water allocation
schemes in less iterations than the basic algorithm. The theory presented in this paper
can provide theoretical support for mine water and other scheduling problems. However,
the main purpose of this paper is the reuse cost of mine water. We will further improve
the reuse mechanism and effect of mine water, such as the introduction of an evaluation
mechanism, to make our experiment more real. Finally, we will study how to experience
the reserved mine water scheduling resources and plan the scheduling scheme according
to the preset scheduling path.
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