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Abstract: Computer vision has shown potential for assisting post-earthquake inspection of buildings
through automatic damage detection in images. However, assessing the safety of an earthquake-
damaged building requires considering this damage in the context of its global impact on the
structural system. Thus, an inspection must consider the expected damage progression of the
associated component and the component’s contribution to structural system performance. To
address this issue, a digital twin framework is proposed for post-earthquake building evaluation that
integrates unmanned aerial vehicle (UAV) imagery, component identification, and damage evaluation
using a Building Information Model (BIM) as a reference platform. The BIM guides selection of
optimal sets of images for each building component. Then, if damage is identified, each image pixel
is assigned to a specific BIM component, using a GrabCut-based segmentation method. In addition,
3D point cloud change detection is employed to identify nonstructural damage and associate that
damage with specific BIM components. Two example applications are presented. The first develops a
digital twin for an existing reinforced concrete moment frame building and demonstrates BIM-guided
image selection and component identification. The second uses a synthetic graphics environment
to demonstrate 3D point cloud change detection for identifying damaged nonstructural masonry
walls. In both examples, observed damage is tied to BIM components, enabling damage to be
considered in the context of each component’s known design and expected earthquake performance.
The goal of this framework is to combine component-wise damage estimates with a pre-earthquake
structural analysis of the building to predict a building’s post-earthquake safety based on an external
UAV survey.

Keywords: unmanned aerial vehicles; building information modeling; digital twin; computer vision;
post-earthquake evaluation; automated inspection

1. Introduction

In the aftermath of large earthquakes, buildings in the affected region must be eval-
uated for structural integrity and other life safety hazards before occupants can safely
return to their homes and places of work. Typically, inspectors survey a building for
damage indicating degradation to the vertical or lateral load carrying systems, as well
as for nonstructural hazards. In the United States, the procedures for post-earthquake
building inspection are described in ATC-20 [1,2]. After the inspection, earthquake-affected
buildings are assigned placards classifying them into three categories: (1) inspected (green),
no apparent hazards or loss of load carrying capacity; (2) restricted use (yellow), building
specific restrictions are indicated on the placard and are to be enforced by the owner; and
(3) unsafe (red), extreme life safety hazard or imminent collapse danger, no entry permitted.
This effort requires a team of experienced inspectors, comprised of structural engineers and
building officials, to classify the safety of every building in the affected region.

The first step in the inspection process is a rapid evaluation of the building exterior. A
team of inspectors classifies the building based on obvious signs such as partial collapse,
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severe leaning, damaged structural members, damaged parapets and chimneys, or chemi-
cal and electrical hazards. If a building does not clearly meet the criteria for a green or red
tag, it is assigned a yellow tag. A yellow-tagged building undergoes a subsequent detailed
evaluation of the building’s interior, which requires identification and assessment of the
vertical and lateral load carrying systems and inspection for overall condition, foundation
damage, residual drift, and hazardous materials [1,2]. However, inspectors are not per-
mitted to perform any destructive investigations, such as removing architectural finishes,
without owner consent [1], leaving inspectors to infer structural condition from nonstruc-
tural damage, based on their own experience and judgment. The problem is compounded
by a lack of a centralized database of documentation for the buildings being evaluated [3].
If the building’s condition is still uncertain after the detailed inspection, a subsequent
engineering evaluation, requiring analysis by a structural engineer, is performed.

Manual post-earthquake evaluation can be limited by the need to safely mobilize
teams of qualified inspectors. The emergency demands can overwhelm local jurisdictions,
requiring the organization and deployment of non-local inspection teams, which can take
weeks [4]. Moreover, field inspectors can face unsafe conditions in a post-earthquake
environment, ranging from falling and collapse hazards to chemical and electrical dangers.
Emergency search and rescue resources, therefore, must be devoted to ensuring inspector
safety in addition to other emergency response duties [3]. These examples highlight three
major limitations of the current approach for post-earthquake evaluation of buildings:
(1) subjectivity, (2) speed, and (3) safety.

In response to these limitations for post-earthquake inspection, some jurisdictions
allow structural engineers to develop building assessment plans in advance of an earth-
quake. In the event of an earthquake, the engineer performs an inspection within hours,
rather than days or weeks, with the goal of reducing post-earthquake downtime for busi-
nesses and allowing buildings to be reoccupied more quickly. For example, San Francisco’s
Building Occupancy Resumption Program [5] allows owners to hire an engineer to develop
a post-earthquake inspection plan, which the city reviews and certifies. Recognizing the
benefit of inspectors with direct knowledge of the specific building design, other cities in
California, including Berkeley and Glendale, have also introduced similar programs [6,7].
However, under these programs, a person needs to physically visit a building and therefore
they suffer from the same limitations as traditional manual inspection.

To reduce reliance on manual inspection, researchers have developed methodologies
for automated post-earthquake building inspection using unmanned aerial vehicles (UAVs)
and computer vision [8,9]. Such systems use UAVs to rapidly collect exterior images of a
target building. Computer vision techniques then automatically identify damage on the
building exterior. Such algorithms use image processing pipelines to identify damage such
as concrete cracking, spalling, and exposed rebar [10-14]. More recently, classifiers using
convolutional neural networks [15-20] have successfully been applied to automatically
identify structural component type and structural damage. Beyond identifying structural
damage, Paal et al. [14] developed a classifier to automatically estimate maximum column
drift demand experienced during an earthquake from an image of a damaged column.
However, to make meaningful decisions about the overall safety of the building requires
additional information about the role of the damaged components within the whole struc-
tural system. To fully automate the inspection process, damage identified in images must
be localized to specific building components.

Tying damage to specific components enables that damage to be considered in the
context of the components’” design, connectivity, and function and thus allow the overall
performance of the building to be assessed. Methods have proposed using principles from
performance-based earthquake engineering to predict post-earthquake building safety.
For example, Mitrani-Reiser et al. [21] estimated the probability of an earthquake-affected
building receiving an unsafe placard based on the measured earthquake intensity. In
addition, statistical and machine learning-based classifiers have been developed to predict
a damaged building’s relative reduction in collapse capacity based on simulated damage
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using component fragility curves and seismic demands on the structure [22-25]. However,
these methods are intended for risk assessment and for calibrating building tagging criteria
to meet specific performance targets, rather than for assessing the performance of an indi-
vidual building. Future efforts to incorporate UAV observations from the building exterior
into such a classifier will require observed damage to be associated with specific building
components. As noted previously, current computer vision-based damage assessment
methods do not provide context for the observed damage. This paper, therefore, develops
a framework to automatically associate damage identified from UAV surveys with specific
building components to enable assessment of the global safety of the building.

Building Information Models (BIMs), which store both geometric and semantic data
about a building, offer the potential to provide contextual information for UAV surveys.
Researchers have combined BIM with as-built photographic surveys to monitor construc-
tion progress [26-29]. Such approaches typically generate a 3D reconstruction from site
photographs aligned in the BIM geometric reference frame. Once aligned, semantic infor-
mation stored in the BIM is used to track construction progress. For example, the user can
assess, on an element-wise basis, whether construction is on schedule and whether the
as-built geometry conforms to the design. BIM can fill a similar role for post-earthquake
inspection, providing a way to store data, establish a geometric reference frame for UAV
imagery, and efficiently organize and classify structural components by overlaying BIM on
photographs. Using BIM requires either a modern target building, where a BIM is created
as part of the design process, or sufficient stakeholder investment to justify creating a BIM
to aid in post-earthquake inspection. On its own, however, BIM is not predictive; to predict
global damage and future performance, the BIM and visual survey must be combined with
an analytical model of the building.

Digital twins have been proposed as a means to provide predictive information about
an as-built structure. As used herein, a digital twin is a physics-based probabilistic simula-
tion model that is continuously updated using sensor information and load history from the
physical system [30]. Such systems have been proposed and deployed for manufacturing,
industrial, aerospace, and civil engineering applications [31,32]. In civil structural health
monitoring, frameworks have been proposed that meet the criteria of a digital twin. For ex-
ample, Hughes et al. [33] described a probabilistic system for risk assessment and decision
making using sensor data and demonstrate its application on a laboratory truss structure.
Zhu et al. [34] developed a real-time digital twin framework for structural health moni-
toring applications using vibration data, whereby the digital model can be continuously
and efficiently updated to reflect changes to the structure. Gardner et al. [35] proposed a
scheme to characterize and predict unanticipated nonlinear acceleration responses with
a digital twin. However, while useful for updating a digital twin for predicting seismic
response, many of these examples have been limited to simulation or scaled laboratory
experiments. Angjeliu et al. [36] developed a digital twin model of a historic cathedral in
Milan, Italy, and successfully predict existing damage using their calibrated digital twin to
model the evolution of the structure through its lifetime. Such a model has the potential for
predicting future performance under extreme loads and directing repair and maintenance
operations. Lin et al. [37] developed a digital twin of a scale model of the Sutong Bridge
in China, specifically for characterizing seismic performance. By testing a physical scale
model to failure under increasing earthquake excitations, the authors demonstrated finite
element model updating procedures to accurately predict the failure modes and intensity
measures of the physical specimen using the digital twin. However, while successful at
predicting collapse or existing damage to the structure, neither [36] nor [37] employed
the digital twin to incorporate observed damage and revise collapse predictions for the
earthquake-damaged structure. Indeed, digital twins have yet to be fully exploited for the
post-earthquake assessment problem.

This paper proposes a BIM-based digital twin framework to tie computer vision-
derived damage observations to specific structural and nonstructural components of the
target building. BIM plays an integral role in this framework: it will serve as a reference
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frame for registering UAV photographs and 3D point cloud reconstructions, enabling dam-
age identified on the building’s exterior to be tied to specific structural and nonstructural
building components with predetermined models for expected damage progression as a
function of seismic demand. Combined with a pre-earthquake structural analysis to predict
individual components’ relative contributions to global building strength and stability,
the digital twin will ultimately enable rapid decision making in the post-earthquake en-
vironment. First, an overview of the proposed digital twin framework is presented. The
methodology for connecting the BIM and UAV survey to guide the building assessment
is discussed. To demonstrate the proposed approach, an example will be presented of a
reinforced concrete moment frame building on the University of Illinois campus in Urbana,
Mlinois. A second example, using a synthetic graphics environment to impose damage
on a building, will demonstrate how the digital twin is used for BIM-guided 3D change
detection for assessing nonstructural damage. Finally, a discussion is provided describing
how the proposed BIM-based digital twin will be integrated with a structural analysis
to predict the reduced capacity of the earthquake-damaged building. The framework
presented will ultimately allow for automated decisions regarding a damaged building’s
based on images acquired from a UAV.

2. Methodology

This section describes the steps to develop the proposed digital twin framework.
An overview of the digital twin components is presented in Figure 1. The first step in
constructing the digital twin occurs before the earthquake with an initial assessment of
the building, including a walkthrough, drawing review, and structural analysis. A BIM
of the as-built building shell is then developed using commercially available software.
Subsequently, an initial photographic survey of the building is flown and a 3D point cloud
of the target building is created and aligned with the BIM. This combination of aligned
BIM and point cloud, set of survey images, and structural analysis model, forms the digital
twin. After an earthquake occurs, a second, post-earthquake UAV survey is conducted, and
an updated 3D point cloud is generated from the survey images. The digital twin guides
selection of an optimal set of images from the survey and identifies building components
in the images. The digital twin also applies 3D change detection between the pre- and
post-earthquake point clouds to identify damaged nonstructural components. By tying
damage to individual building components, each component can be considered in terms of
its individual expected performance to infer component-level demands and subsequently
building-level performance and safety. The following sections describe each step of this
process in detail.

2.1. Pre-Earthquake

Before an earthquake occurs, the baseline digital twin is assembled. At this stage,
as shown in Figure 1, the digital twin consists of a set of UAV photos, a 3D point cloud
generated from those photos, a BIM, and a structural analysis model. The procedure
begins with a preliminary assessment of the building to inform BIM and analysis model
development, as well as an initial UAV survey to capture the baseline state of the building.

2.1.1. Preliminary Building Assessment

The initial assessment investigates the building design, as-built state, and expected
earthquake performance. The engineer first reviews the design drawings and visits the
building to identify both structural and nonstructural components on the building exterior
that may be damaged during an earthquake and would be visible in a UAV survey. A
structural analysis is performed to further identify structural damage-sensitive components
and identify potential structural collapse mechanisms. In this context, damage-sensitive
components are structural and nonstructural building components that may be damaged
during an earthquake, are visible from the exterior of the building, and may be indicative of
damage on the building interior. While the exact nature of the analysis will vary depending
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on construction type, a performance-based framework, such as described in FEMA P58 [38],
should be used to identify structural components that are expected to be damaged and
how those individual components affect global structural strength and stability. For each
damage-sensitive component, both structural and nonstructural, an appropriate component
fragility curve, or family of curves, is selected or computed. The component fragility curves
define the probability of meeting or exceeding a discrete, qualitative damage state and will
enable any observed damage to be linked back to the structural analysis model after an
earthquake occurs.

UAV Survey: o Building Information
2D Images and W
3D point cloud

building for subsequent
damage identification

Role: Common geometric reference
frame; localize damage to specific

Structural Analysis building components

Role: Interpret observed damage to
infer structure-level performance

Figure 1. Schematic overview of the components of the digital twin system.

2.1.2. BIM Development

Next, a BIM is developed for the digital twin in which the damage-sensitive com-
ponents are explicitly modeled. While the geometry should be modeled as accurately as
possible, details such as bolted connections or individual rebar need not be represented.
Structural elements should approximately conform to BIM Level of Detail (LOD) 300 [39],
where the shape and location are modeled precisely. Nonstructural elements should con-
form to LOD 200 at minimum, where the geometry is modeled approximately. Typically, a
model developed during the building design process is sufficient, provided that exterior
damage-sensitive components are modeled. For any exterior structural components mod-
eled in the BIM, the corresponding elements in the structural analysis model should be
identified. Typically, in the proposed application, the BIM is developed using commercial
software such as Autodesk Revit [40], and exported to the open Industry Foundation
Classes format [41] for incorporation into the digital twin.

2.1.3. UAV Survey and 3D Reconstruction

A photographic UAV survey of the target building is flown, and the collected images
are used to create a 3D point cloud of the building, termed herein as the 3D reconstruc-
tion. The survey is planned so that the damage-sensitive components identified in the
preliminary assessment will be imaged. The building should be photographed from a close
enough distance that the smallest damage to be considered can be resolved. Following
the survey, the images are input to a 3D reconstruction pipeline, including structure from
motion for sparse reconstruction [42] and multi-view stereo for dense reconstruction [43].
Only those images that are successfully registered in the 3D reconstruction are used in the
subsequent methodology. This pipeline calibrates the UAV images, computing a set of
intrinsic and extrinsic camera parameters for each image. The extrinsic parameters locate
the camera in the 3D point cloud reference frame. By transforming the point cloud to the
BIM reference frame, the location and orientation of each image can be defined in the BIM
reference frame. The transformation between the point cloud and BIM is determined by
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selecting manual point correspondences between the two models. This transformation,
represented by a 4 x 4 transformation matrix, includes a rotation, translation, and scaling.
The collection of BIM, transformed point cloud, UAV images, structural analysis model,
and individual component performance models form the baseline digital twin.

2.2. Post-Earthquake

Following an earthquake, a UAV survey is again flown to capture a set of images of the
earthquake-affected building. A post-earthquake point cloud is generated from the images
and manually registered with the BIM using the same procedure as the pre-earthquake
point cloud. The transformation matrix, T, is computed as part of the registration and
is used in the subsequent steps. The new set of images and point cloud is included as
part of the digital twin. The BIM is used to guide image selection for subsequent damage
identification and to associate any damage with specific damage-sensitive components.

2.2.1. BIM-Guided Automatic Image Selection by Component

The first step in this process is to use the BIM to automatically select images of the
damage-sensitive building components from the hundreds or thousands of UAV images
collected during the post-earthquake survey. The objective here is to determine a set of
images of a given building component that ensures maximal coverage for subsequent
damage assessment.

The automatic image selection methodology is based on previous work in UAV path
planning. One approach to UAV path planning is to use the BIM model as an a priori
representation of building geometry to plan and evaluate proposed paths for the UAV
surveys [44-46]. Ibrahim et al. [45] assigned each face of each building component a unique
(R, G, B) color identifier and simulated a UAV flight. Then, the proposed path was evaluated
based on whether a component is adequately covered by the acquired imagery by counting
the number of visible pixels of that component’s unique color. This metric is applied in this
paper to evaluate the prominence of a building component in a UAV image.

Figure 2 shows the elevation of the rendered BIM for a typical building, where each
BIM component is assigned a unique color identifier. First, the BIM file is parsed and its
geometry converted to a triangle mesh using IfcOpenShell in Python [47]. The elements
in the mesh corresponding to each BIM component are assigned a unique (R, G, B) color
identifier as well as one of three classes, (1) structure (beams and columns), (2) nonstruc-
tural walls, and (3) mechanical, electrical and plumbing (MEP). The color-coded mesh is
displayed in Python using Open3D [48]; the BIM can be rendered from the perspective of
any UAV image used in the 3D point cloud reconstruction. A minimum of five canonical
exterior views of the building are established: four elevations in each cardinal direction
and one plan view of the roof, that show the full extent of the building. The camera matrix
for each of these canonical views, Pcan, is defined by the user.

Figure 2. Elevation view of a BIM. Each component has a unique RGB color identifier.
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The 3D reconstruction pipeline outputs a list of images used in the point cloud recon-
struction, each with a camera matrix P parametrized by the intrinsic camera matrix K, and
extrinsic matrix, defined by a rotation matrix, R and a translation vector, t [42]:

P = K[R|{] @

The extrinsic parameters are defined relative to the reconstruction reference frame. The
point cloud in the reconstruction reference frame is transformed to the BIM reference frame
by a 4 x 4 transformation matrix T. The extrinsic camera matrix is converted to the BIM
reference frame by the relation:

[Rprm|temv] = [R[t]T? )

where Rgpv and tgpv are the camera’s rotation matrix and translation vector in the BIM
reference frame. For a given input image with known K, Rppv and tgpv, the color-coded
BIM can be rendered from the same perspective in the Open3D visualizer. Following [45],
the number of pixels of each unique color is counted in the rendered BIM to create a list
of imaged components, based on their unique RGB identifier. This count determines how
prevalent a component is in the image. Only elements with a minimum count of 500 pixels
are considered to ensure the component of interest is sufficiently visible in the image.
By iterating through all images used in the reconstruction, a dictionary is created that
maps from an image to a list of components contained in the image. To select images, this
dictionary is inverted to map from unique building component to a list of images where
that component appears.

For each damage-sensitive component, a set of images {Iy, ... ,I} is determined. For
a component C, all images containing C are ranked in order of number of pixels that
correspond to C, based on the RGB identifier. The number of pixels is a proxy for how
prominent the component is in an image. The first image, I, is the image with the most
pixels of C. The extent of I; is projected on to the appropriate canonical building view,
Ic. To project the image, a corresponding depth image, D; is used, as shown in Figure 3.
Dy is automatically output as part of the 3D reconstruction process. The usable extent of
Dy is determined by the convex hull of the nonzero points, as zero (black) values indicate
infinite distance. The 3D locations of the convex hull vertices in the camera reference frame,
Xcam = (Xcam, Yeam, Zcam) are then estimated by the relation [48]:

Zeam = d @)
Xeam = (u - Cx) * Zcam /f (4)
Yeam = (Z) - Cy) * Zeam /f (5)

where (u,v) is the 2D image coordinate of the vertex in the input image, d is the value of the
depth image at the vertex coordinate, and cy, ¢, and f are the principal point coordinates,
and focal length in pixels, which are determined from the camera intrinsic matrix [42].
Then, the 3D coordinates each vertex in the BIM reference frame, Xpym, are computed and
projected to the 2D point ucan on the canonical building elevation:

Xgim = REpv (Xcam — teim) (6)

Ucan = PeanXBIM (7)

The bottom image in Figure 3 shows an example of the UAV image extent projected onto
the color-coded building elevation. First, image I; is projected onto the color-coded BIM
elevation. The number of pixels of element C covered by the projection of I; is compared
to the total number of pixels. Next, the image with the second highest number of pixels
containing component C, I, is projected, continuing until all pixels of C are covered by the
image projections, or the list of images containing C is exhausted.
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Figure 3. Example UAV image (a), depth map (b), and depth map with convex hull highlighted (c).
The vertices of the convex hull are projected on to the canonical building elevation (d).

The result is a set of optimal images for each damage-sensitive component on the
building’s exterior, which can be used for subsequent damage assessment. For example,
the images can be input to an image processing pipeline for damage identification, like [14],
or to a neural network for damage detection, like [9,18]. The specific damage detection
methodology is outside the scope of this paper. Damage detection should take advantage
of pre- and post-earthquake building surveys to identify new changes associated with the
earthquake, using a change detection method like [49]. For example, the system should be
able to distinguish between previously exposed rebar resulting from environmental degra-
dation and newly exposed rebar from heavy earthquake damage. Identified damage then
needs to be linked to a building component to interpret the impact on building performance.

2.2.2. BIM-Guided Component Identification in 2D Images

Subsequently, damage identified from the images is linked to a building component.
Previous studies [15] have demonstrated using CNNs for structural component type identi-
fication. However, to link damage with individual elements in the BIM, and eventually, the
structural analysis model, the component type and unique identifier must be determined.
The same procedure described in the previous section is used to render 2D views of the
BIM model from the same perspective as the UAV images. This color-coded BIM image can
be used as a prior label estimate for each pixel in the target image. However, registration
errors between the BIM and point cloud and geometric modeling errors in the BIM can
cause misalignment between the image and the rendered BIM perspective. Therefore, a
Markov random field-based segmentation scheme using GrabCut [50] is used to refine the
initial component labels from the BIM.

GrabCut [50] is a foreground segmentation algorithm that relies on limited user
interaction to separate foreground and background pixels using graph cuts. The user
specifies initial background and foreground pixels, typically by drawing a box around
the foreground object. With these initial assignments, GrabCut estimates a probability
distribution of RGB values for foreground and background. Pixel labels are assigned
iteratively based on an energy minimization, where the total energy is a sum of unary and
pairwise potentials. The unary potential indicates how likely a pixel belongs to a certain
class; the pairwise potential encourages coherence in groups of neighboring pixels of
similar RGB intensities. An optimal set of foreground /background labels is estimated with
a minimum cut algorithm [51]. The algorithm continues iteratively, alternating between
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estimating a new probability distribution for the foreground and background pixels, and
then assigning optimal pixel labels. For this study, OpenCV’s [52] GrabCut implementation
is used. Rather than the user drawing a box, the rendered BIM perspective serves as an
initial foreground label estimate.

For the segmentation, three classes of building elements are considered: structural, MEP,
and wall/background. Each object type in the BIM is assigned a corresponding class. For
each class, the colors of all non-class objects are set to black to create a mask corresponding
to that class. Example masks for the structural, MEP and wall classes are shown in Figure 4.

Figure 4. Original input image from the UAV survey (a), with the structure (b), wall (c), and MEP (d)
masks generated from the BIM.

However, the alignment between the UAV image and rendered BIM perspective is
imperfect. Therefore, using these masks as initial foreground labels, GrabCut is run to
refine each segmentation mask. Figure 5 shows the refined GrabCut segmentation masks.
Note that overlap occurs between the masks due to the initial misalignment and because
GrabCut groups pixels based on color intensity. For example, the initial structural element
mask includes portions of the brick wall, in particular areas in shadow. Therefore, the
GrabCut algorithm assigns shadowed regions of the wall to the foreground class in the
structure mas<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>