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Abstract: Ultra-wideband (UWB) networks are gaining wide acceptance in short- to medium-range
wireless sensing and positioning applications in indoor environments due to their capability of
providing high-ranging accuracy. However, the performance is highly related to the accuracy of
measured position and antenna delay of anchor nodes, which form a reference positioning system of
fixed infrastructure nodes. Usually, the position and antenna delay of the anchor nodes are measured
separately as a standard initial procedure. Such separate measurement procedures require relatively
more time and manual interventions. This paper presents a system that simultaneously measures the
position and antenna delay of the anchor nodes. It provides comprehensive mathematical modeling,
design, and implementation of the proposed system. An experimental evaluation in a line-of-sight
(LOS) environment shows the effectiveness of the anchor nodes, whose position and antenna delay
values are measured by the proposed system, in localizing a mobile node.

Keywords: antenna delay; localization; node calibration; two-way ranging; ultra-wideband

1. Introduction

The use-case applications of real-time localization systems (RTLSs) are essential across
various fields, such as in healthcare, industries, surveillance, crisis management, and
so on [1–3]. Global positioning system (GPS)-based RTLSs are used in a wide range of
applications; for example, they are commonly used for automobile navigation, as they
provide global coverage and an average accuracy of 1–5 m when using consumer-grade
devices [4,5]. However, their applicability is limited to outdoor RTLSs, since they require
LOS with GPS satellites [1,5]. The advent of wireless technology and the large-scale
proliferation of wireless communication devices have opened doors for several indoor
RTLS applications in recent years [6,7]. For such indoor RTLS applications, the global
navigation satellite system is, in general, not suitable due to the stringent requirement of
high localization accuracy [8].

An indoor RTLS facilitates localization of mobile assets in an indoor environment [9], where
a reference positioning system of fixed infrastructure nodes, known as anchor nodes, is
needed, and it is to be used to localize other mobile nodes within its coverage area. Usually,
calibration of these anchor nodes is performed as a standard initial procedure to determine
their positions [10]. This can be obtained by external measurement equipment (such as
a laser or surveyor) or by the system itself, i.e., auto-calibration. The former procedure
can be expensive and is often time-consuming. However, auto-calibration can automate
and simplify the calibration procedure with no requirement of additional measurement
equipment, thus making it far less tedious.

Most indoor RTLSs are based on radio communication technologies, such as wireless
local area networks (WLANs), Bluetooth, radio-frequency identification, infrared, and
UWB [7,11]. WLANs and Bluetooth do not require any dedicated infrastructure, while

Sensors 2022, 22, 864. https://doi.org/10.3390/s22030864 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22030864
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4310-7054
https://orcid.org/0000-0001-9540-4806
https://doi.org/10.3390/s22030864
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22030864?type=check_update&version=1


Sensors 2022, 22, 864 2 of 13

the other three technologies require dedicated infrastructure for their operations. This
characteristic of WLANs and Bluetooth makes them common and popular candidates for
indoor localization because of their use of off-the-shelf mobile devices and relatively low
additional infrastructural cost [12–14]. However, they are less accurate and insufficient for
applications with high accuracy requirements. As an example, a WLAN-based localization
method presented by Yang et al. [15] achieves an accuracy of roughly 70 cm. As shown
by the comparisons carried out on indoor positioning technologies in [11,16], UWB is
particularly interesting due to its capability of providing high accuracy, material penetrabil-
ity, coverage, and scalability. These capabilities were introduced and supported in IEEE
802.15.4a as UWB physical layer (PHY) [17,18] and were later integrated into the IEEE
802.15.4 standard as UWB PHY [19]. Recently, in 2020, the IEEE 802.15.4z-2020 standard [20]
was introduced, which aims to introduce new capabilities and enhance the already-existing
standards for UWB technology. Some of the notable features of the standard are improved
ranging, reduction to on-air transmissions, the introduction of simultaneous ranging, and
improved timestamp robustness and security.

In this regard, UWB networks are widely used in indoor RTLSs, since they have the
advantage of providing accurate timestamp information of the transmitting and receiving
signals by the UWB nodes in scenarios satisfying LOS conditions, while complex techniques
are needed for non-line-of-sight (NLOS) conditions to obtain accurate results [6]. The
timestamp information is, in turn, used to compute the time of flight (TOF) between two
UWB nodes, which is usually estimated with two-way ranging (TWR) methods [19,21–24].
These TWR methods usually focus on minimizing the TOF error between the UWB nodes
due to the clock offsets that exist due to imperfections in clock oscillators in physical
environments [25,26]. Although the technology estimates the distance between two nodes
with centimeter-level accuracy, the correctness of the position of the anchor nodes is crucial
for a highly effective UWB-based RTLS. Moreover, another significant aspect that affects
the accuracy of the UWB-based RTLSs is the antenna delay of the UWB nodes [27]. It is
device-specific and is mainly caused by the underlying analog circuitry that produces a
quasistatic bias in the reported timestamp values [27]. The timestamp values reported
by the UWB nodes are usually different from the correct timestamp values if the antenna
delay values of the UWB nodes are not considered. This leads to an error in the computed
TOF and compromises the accuracy of the calculated range unless the reported timestamp
values are corrected by taking into account the antenna delay values of the UWB nodes.
Hence, to obtain a more accurate UWB-based RTLS, it is necessary to effectively determine
the position and antenna delay of the anchor nodes during the calibration process.

The auto-calibration methods present in the literature [28–30] require a reference
system of predefined coordinates for placement coordination among a fixed number of
anchor nodes, which is either done by manually setting their positions or by constraining
their placement. Then, other anchor nodes are placed arbitrarily at their specific locations.
Hence, these methods rely on strict assumptions on the placement of a set of anchor nodes
in the reference positioning system in a predefined order to determine the relative positions
of all other anchor nodes within the coverage area. Moreover, although essential, none of
these methods comply with the measurement of the antenna delays of the anchor nodes.
Several methods specifically dedicated to the measurement of antenna delays of UWB
nodes are available in the literature [27,31–33]. These methods usually differ in the adopted
TWR principles [19,21,23] and the number of TWR sessions performed between a pair of
UWB nodes. The overall calibration process of the anchor nodes is relatively long, since
the measurements of their position and antenna delay are performed separately in the
existing literature. Hence, to exploit the plug-and-play features of an ideal UWB-based
RTLS, the calibration process should comply with collectively measuring the position and
antenna delay of the anchor nodes as a standard initial procedure. This would simplify
the calibration process by making it less time-consuming and requiring fewer manual
interventions.
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In this paper, we present a novel node calibration system that simultaneously mea-
sures the position and antenna delay of anchor nodes in a UWB-based RTLS. During the
measurement process, the UWB network is set to comprise anchor nodes located at fixed
unknown locations whose position and antenna delay values are to be measured, as well
as a mobile node that is placed at predetermined known positions. Then, the position and
antenna delay of the anchor nodes are estimated based on the TWR sessions performed
between each pair of mobile and anchor nodes. Finally, we evaluate the effectiveness of the
proposed system with an experiment that considers RTLS applications such as tracking
assets in an indoor office. The results show that the post-calibrated anchor nodes whose po-
sition and antenna delay values are measured by the proposed system make more accurate
localization of a mobile node. The key attributes of the proposed system are as follows.

• It simultaneously measures the position and antenna delay values of anchor nodes in
a UWB-based RTLS.

• It does not require a reference system of predefined coordinates for placement coordi-
nation among anchor nodes.

• The measurement process does not require clock synchronization of the UWB nodes.

2. Node Calibration System

In this section, we provide the comprehensive mathematical modeling, design, and
implementation of the proposed system. Based on the principle of multiple simultaneous
ranging (MSR) [34] and the property of time difference of reception of two packets transmit-
ted from different sources, we formulate the proposed system to simultaneously measure
the position and antenna delay values of anchor nodes in a UWB-based RTLS.

2.1. Principle

Suppose that a wireless network comprises UWB nodes, where a mobile node M and
an anchor node A transmit the first and second packets of a sensing session, called sensing
packets. Let Pi denote the time difference of reception of the two sensing packets at node i.
Then, for any receptor nodes i and j, it can be shown that [34]

Pi − Pj = (TP(A,i) − TP(A,j))− (TP(M,i) − TP(M,j)), (1)

where TP(i,j) is the TOF from node i to node j. Now, suppose that Pi is to be computed as if
it was measured by a preferred clock, and the clock of M is selected as the preferred clock.
To facilitate this computation, let M transmit a third packet of the sensing session. Then,
the ratio of the clock speed of M over the clock speed of i is given by

rM
i =

1, if i = M
tM
Tx(3)−tM

Tx(1)

ti
Rx(3)−ti

Rx(1)
, otherwise,

(2)

where ti
Tx(n) and ti

Rx(n) denote, respectively, the transmission and reception timestamp

values read by node i for the nth packet. In addition, for nodes M, A, and any receptor
anchor node X, the corresponding time difference of reception can be computed by

PM = tM
Rx(2) − (tM

Tx(1) + dM
M)

= PM,U
M − dM

M,
(3)

PA = {(tA
Tx(2) + dA

A)− tA
Rx(1)}r

M
A

= {tA
Tx(2) − tA

Rx(1)}r
M
A + dA

ArM
A

= PM,U
A + dM

A ,

(4)
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and
PX = {tX

Rx(2) − tX
Rx(1)}r

M
X

= PM,U
X ,

(5)

where dj
i is the aggregate transmitting and receiving antenna delays of node i measured

with the clock of node j, and Pj,U
i is the antenna-delay-uncalibrated time difference of

reception of node i measured with the clock of node j.
Now, given PM and PA, the TOF from node M to node A can be obtained from (1) as

TP(M,A) =
(PM − PA)

2
. (6)

In addition, for any receptor anchor node X, an independent equation can be con-
structed based on (1) such that

PM − PX = (TP(A,M) − TP(A,X))− (TP(M,M) − TP(M,X)). (7)

Substituting (6) into (7) and rearranging the terms, we obtain

TP(M,X) − TP(A,X) = (PM − PX)−
(PM − PA)

2
. (8)

Now, if X = A, substituting the corresponding time difference of reception values
from (3) and (4) into (8), we get

TP(M,A) +
dM

M
2

+
dM

A
2

=
(PM,U

M − PM,U
A )

2
. (9)

Similarly, if X 6= A, substituting the corresponding time difference of reception values
from (3), (4), and (5) into (8), we get

TP(M,X) − TP(A,X) +
dM

M
2
−

dM
A
2

=
(PM,U

M + PM,U
A )

2
− PM,U

X .

(10)

Multiplying both sides of (9) and (10) by the speed of light, c, the corresponding range
between a pair of nodes i and j, denoted as R(i, j), and the antenna-delay-induced length
of node i, denoted as Li, is given by

R(M, A) +
LM

2
+

LA

2
= βA,A,M (11)

and

R(M, X)− R(A, X) +
LM

2
− LA

2
= βA,X,M (12)

respectively, where

βA,X,M =


c×

(
(PM,U

M −PM,U
A )

2

)
, if X = A

c×
(

(PM,U
M +PM,U

A )
2 − PM,U

X

)
, if X 6= A,

(13)

is the value computed from the antenna-delay-uncalibrated time difference of receptions of
the respective nodes, hereinafter referred to as sensing information.
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2.2. Linearization via Taylor Series

Consider a set of anchor nodes A = {A1, A2, . . . , AI} located at I fixed unknown
locations and K known positions of a mobile node M with a fixed z−coordinate. Let
pi = [xi, yi, zi], ∀i ∈ {1, . . . , I} and qk = [xk, yk, zk], ∀k ∈ {1, . . . , K} be the three-dimensional
vectors of xyz-coordinates of the positions of the anchor and mobile nodes, respectively.
Then, (11) and (12) can be written, respectively, as

R(qk, pi) +
LM

2
+

LAi

2
= βi,i,k (14)

and

R(qk, pj)− R(pi, pj) +
LM

2
−

LAi

2
= βi,j,k, (15)

where i 6= j, 1 ≤ i ≤ I, 1 ≤ j ≤ I, and 1 ≤ k ≤ K.
Equations (14) and (15) are non-linear with I2K independent equations and 4I + 1

unknown variables, i.e., the xyz-coordinates of unknown positions of the anchor nodes and
the antenna-delay-induced length of the anchor nodes and the mobile node. They can be
expressed as a general form

f (x) = B, (16)

where x is a vector of the unknown variables and B is the sensing information. Now, we
use Taylor series expansion of (16) to linearize the function and obtain the Taylor series
least-squares (TSLS) solutions by iteration. The Taylor series expansion of (16) is given by

f (x) ' f (xn) +
∂ f
∂x

∣∣∣∣
x=xn

∆xn = B, (17)

where xn is a vector of approximate values of the variables at the nth iteration, and ∆xn is a
vector of corrections to the approximate values of the variables at the nth iteration. TSLS
finds the least-squares solutions of (16) by iterating

xn+1 = xn + ∆xn, (18)

where ∆xn is the linear least-squares solution of (17).

2.3. System Design and Implementation

The system for node calibration is designed to estimate the position and antenna delay
values of UWB anchor nodes that are located at fixed unknown locations. The system is set
to operate as follows. The setup includes a set of UWB anchor nodes A = {A1, A2, . . . , AI}
that are located at I fixed unknown locations and a UWB mobile node M that is moved
around and placed at K known positions that ensure LOS with the anchor nodes. The
transmission and reception of packets to and from the anchor and mobile nodes are over
the air, i.e., these nodes are fully wireless. The system further includes two complementary
entities: a UWB-based master node and a computer (PC). The master node operates to
request initiation of a sensing session, collect components of the sensing information from
the other UWB nodes, i.e., the antenna-delay-uncalibrated time difference of receptions of
respective nodes, and log the data to the PC via a serial UART. At each of the K known
positions, the mobile node performs TWR sessions based on MSR [34], where the mobile
node is the selected node of the preferred clock and the transmitter of the first and third
packets during a sensing session, with all the anchor nodes. Hence, each sensing session
yields one sensing information based on (11) and (I − 1) number of sensing information
based on (12). The components of the sensing information are hereinafter referred to as
session-data. After completion of a predefined number of sensing sessions, the collected
sets of session-data are processed at the PC, where the position and antenna delay values
of the anchor nodes are estimated as the TSLS solutions.

The node calibration measurement process follows the following sequence.
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Step 1: Place each of the anchor nodes (powered) at their respective locations, pi =
[xi, yi, zi], ∀i ∈ {1, . . . , I}.

Step 2: Identify the known positions of mobile nodes, qk = [xk, yk, zk], ∀k ∈ {1, . . . , K},
such that they have a clear LOS with the anchor nodes and K ≥ 4I+1

I2 .
Step 3: Session-data collection at mobile node positions, k = (1, . . . , K).

Step 3.1: Place the mobile node M at the k-th position.
Step 3.2: The PC requests the start of sensing sessions from the master node.
Step 3.3: The master node initiates a sensing session based on MSR, where it assigns
M to transmit the first and third sensing packets, Ai to transmit the second sensing
packet, and A \ Ai to listen to the three sensing packets. The master node then collects
the session-data from each respective node after a successful sensing session. The
process of Step 3.3 is repeated for i = (1, . . . , I) sensing sessions, and the sets of
session-data are stored in the PC as a log file.

Step 3.4: The process of Step 3.2 to Step 3.3 is repeated until 1000 sets of log files have
been stored in the PC.

Step 4: The processing of the session-data is performed at the PC, where the xyz-coordinates
of unknown positions of the anchor nodes and the antenna-delay-induced length of
the anchor nodes and the mobile node are estimated as the TSLS solutions of (17).

The implementation of each entity in the system was based on the cooperation men-
tioned above. The UWB nodes were Decawave’s DW1000 UWB transceiver [35], which
complies with the IEEE 802.15.4-2011 standard [19]. The operation of the UWB nodes
was implemented in the C programming language using Segger Embedded Studio [36]
as an integrated development environment, and the PC was implemented using Python
programming.

3. Numerical Results
3.1. Experimental Evaluation

In this section, we present an experimental evaluation of the proposed system. Con-
sidering a TWR-based RTLS application in an indoor environment, at least four nearby
anchors, those not on the same plane, are considered to estimate a three-dimensional
position of a mobile node. A crucial consideration for anchor placement is to avoid NLOS
conditions between mobile and nearby anchors, since they would induce positive biases
on the estimated TOFs that may vary dynamically and significantly as the mobile moves
around. Several NLOS mitigation techniques are present in the literature [37–39]. However,
a TOF estimated from NLOS conditions cannot have LOS-equivalent results. Hence, to
ensure that a TOF estimated from NLOS conditions is rarely used for position estimation,
we assume a rule of anchor placement where a mobile node in the coverage area should
typically find LOSs to at least four nearby anchors.

In this regard, the experimental setup included a master node, four anchor nodes,
a mobile node, and a PC. Each of these nodes was based on Decawave’s DW1000 UWB
transceiver [35]. The four anchor nodes to be calibrated were mounted on pillars in an indoor
hallway, as shown in Figure 1. Let the address identification of the four anchor nodes be
A1, A2, A3, and A4. In addition, two points were identified at ground level to be the known
positions of the mobile node M such that they had a clear LOS with the four anchor nodes.
The coordinates (unit: cm) of the known positions of the mobile node were identified as
q1 = (320, 0, 0) and q2 = (0, 400, 0), as shown in Figure 1. Then, based on the above experi-
mental setup and following the measurement process detailed in Section 2.3, we performed the
calibration of the anchor nodes. The measurement results show that the positions (unit: cm)
of the four anchor nodes were A1 = (444.99, 541.36, 224.57), A2 = (448.98,−78.8, 216.44),
A3 = (−132.42,−118.46, 195.31), and A4 = (−143.76, 546.57, 206.83), and the antenna-
delay-induced lengths (unit: cm) of the four anchor nodes and the mobile node were
LA1 = −12.92, LA2 = 14.77, LA3 = −21.59, LA4 = −48.66, and LM = 12.32, respectively.
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(a) (b)

Figure 1. (a) Experimental layout (unit: cm). The positions of the anchor nodes, the known positions
of the mobile node, and the test points for the mobile node. (b) Measurement and test environment.

Then, the accuracy of the proposed system was evaluated by using it to localize a
mobile node at a number of test points in LOS coverage with the four anchor nodes. Here,
we considered three calibration cases of anchor nodes: a pre-calibrated case where both
the position and antenna delay values of the anchor nodes were roughly guessed; a post-
calibrated (with antenna delay) case where both the position and antenna delay values
of the anchor nodes were obtained from the measurement process; and a post-calibrated
(without antenna delay) case where only the position values of the anchor nodes were
obtained from the measurement process while the antenna delay values were roughly
guessed. A set of 20 test points were identified in the indoor hallway, denoted as T1, T2, . . . ,
and T20, as shown in Figure 1a, where the mobile node was to be localized. The mobile
node was placed at each test point, where 1000-sample ranges were obtained for each
possible pair of the mobile and anchor nodes for two existing state-of-the-art TWR methods:
alternative double-sided TWR (AltDS-TWR) [23] and MSR [34], where the mobile node was
the selected node of the preferred clock and the transmitter of the first and third packets
during a sensing session. Finally, the positions of the mobile node were estimated at each
test point as the TSLS solutions, and root-mean-square errors (RMSEs) were computed to
analyze the accuracy of the three calibration cases.

3.1.1. Numerical Results for AltDS-TWR

Figure 2 shows the mean of the estimated positions of the mobile node at each test point
from AltDS-TWR for the three calibration cases of anchor nodes. As seen in Figure 2b,c,
the means of the estimated positions for the two post-calibrated cases were closer to the
ground-truths (indicating the test points) compared to the pre-calibrated case in Figure 2a.
Moreover, from the plots in Figure 2b, we can see that the estimated positions were
approximately superimposed over the ground-truths. This suggests the effectiveness of
the post-calibrated (with antenna delay) case over the pre-calibrated and post-calibrated
(without antenna delay) cases. The localization errors for the three calibration cases of
anchor nodes are summarized in Table 1.

The RMSEs (unit: cm) of the estimated xyz-coordinates and positions of the mobile
node at each test point from AltDS-TWR for the three calibration cases of anchor nodes
are given in Table 1. For the pre-calibrated case, the average RMSEs of the estimated xyz-
coordinates for all of the test points were 16.56, 10.6, and 20.75, respectively. For the post-
calibrated (with antenna delay) case, the average RMSEs of the estimated xyz-coordinates
for all of the test points were 2.9, 2.58, and 3.92, respectively. For the post-calibrated (without
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antenna delay) case, the average RMSEs of the estimated xyz-coordinates for all of the
test points were 3.26, 3.53, and 12.53, respectively. From these analyses of the estimated
results of the xyz-coordinates in Table 1, we may conclude that the post-calibrated (with
antenna delay) case showed a desirable performance improvement in estimating all three
coordinates of the mobile node at the test points. For the estimated positions in Table 1, the
maximum RMSEs were 36.76, 8.2, and 25.59, while the minimum RMSEs were 20.12, 2.64,
and 8.81 for the pre-calibrated, post-calibrated (with antenna delay), and post-calibrated
(without antenna delay) cases, respectively. For all of the test points, the RMSEs for the two
post-calibrated cases were significantly reduced compared to those of the pre-calibrated
case. The averages of the RMSEs for all of the test points were 29.78, 5.94, and 13.78
for the pre-calibrated, post-calibrated (with antenna delay), and post-calibrated (without
antenna delay) cases, respectively. Here, the post-calibrated (with antenna delay) case had
RMSE reductions of approximately 80.05% and 56.89% compared to the pre-calibrated and
post-calibrated (without antenna delay) cases, respectively. This further signifies that the
post-calibrated (with antenna delay) case of anchor nodes was effective in localizing the
mobile node at each of the test points.

Table 1. Comparison of the RMSEs (unit: cm) of the estimated xyz-coordinates and positions of the
mobile node at each test point from AltDS-TWR for the pre-calibrated, post-calibrated (with antenna
delay), and post-calibrated (without antenna delay) cases of anchor nodes.

Test
Point

RMSE (cm)

Pre-Calibrated Post-Calibrated Post-Calibrated
(with Antenna Delay) (without Antenna Delay)

Coordinates
Position

Coordinates
Position

Coordinates
Position

x- y- z- x- y- z- x- y- z-

T1 6.19 15.27 18.19 24.54 1.68 6.48 3.03 7.35 1.51 2.91 9.08 9.65
T2 14.35 13.34 22.47 29.81 4.47 4.18 2.19 6.5 3.1 2.66 10.01 10.81
T3 19.34 9.75 25.47 33.43 1.78 1.05 7.07 7.37 2.17 4.31 7.37 8.81
T4 26.08 7.41 23.36 35.79 1.45 1.16 4.11 4.51 1.18 7.53 13.75 15.72
T5 28.58 6.35 18.55 34.66 3.6 1.17 2.3 4.44 2.12 5.22 15.94 16.91
T6 8.01 15.37 19.86 26.36 4.71 1.52 5.26 7.23 5.91 2.08 6.33 8.9
T7 7.49 10.98 21.36 25.16 2.52 1.26 5.68 6.34 1.73 2.16 8.72 9.15
T8 15.19 8 24.82 30.18 1.24 3.38 6.06 7.05 2.61 2.03 11.89 12.34
T9 21.72 9.08 28.24 36.76 1.46 1.36 3.07 3.66 4.46 8.03 23.89 25.59

T10 26.84 7.76 20.36 34.57 2.59 0.98 4.44 5.23 1.62 3.08 17.87 18.2
T11 2.03 16.4 11.49 20.12 1.76 1.26 1.5 2.64 1.75 1.14 13.04 13.21
T12 7.43 13.88 17.63 23.64 4.39 3.23 5.94 8.06 1.18 1.18 12.34 12.45
T13 17.27 9.51 17.98 26.68 4.49 2.24 3.48 6.11 3.82 3.11 12.8 13.71
T14 19.85 8.66 20.75 29.99 1.18 2.31 5.5 6.08 2.23 2.37 14.34 14.71
T15 26.47 7.84 18.95 33.49 1.28 1.55 3.43 3.98 4.7 2.32 13.24 14.24
T16 6.55 16.7 21.68 28.14 4.72 1.34 4.59 6.72 2.44 1.67 11.06 11.45
T17 8.6 10.17 16.75 21.39 3.51 6.73 3.03 8.17 2.1 5.66 14.29 15.51
T18 19.06 8.99 26.67 33.99 5.63 4.73 3.63 8.2 7.73 5.6 10.01 13.83
T19 23.31 8.03 23.56 34.1 4.04 3.9 2.33 6.07 8.96 5.98 8.26 13.57
T20 26.93 8.52 16.86 32.89 1.63 1.84 1.82 3.06 3.8 1.62 16.29 16.81
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Figure 2. Means of the estimated positions of the mobile node at each test point from AltDS-TWR for
the three calibration cases of anchor nodes: (a) pre-calibrated case, (b) post-calibrated (with antenna
delay) case, and (c) post-calibrated (without antenna delay) case.

3.1.2. Numerical Results for MSR

Figure 3 shows the means of the estimated positions of the mobile node at each test
point from MSR for the three calibration cases of anchor nodes. Similarly to the plots in
Figure 2, the means of the estimated positions for the two post-calibrated cases, as seen in
Figure 3b,c, were closer to the ground-truths compared to those of the pre-calibrated case
in Figure 3a. In addition, as shown in the plots in Figure 3b, the estimated positions were
approximately superimposed over the ground-truths. This suggests the effectiveness of
the post-calibrated (with antenna delay) case over the pre-calibrated and post-calibrated
(without antenna delay) cases. The localization errors for the three calibration cases of
anchor nodes are summarized in Table 2.

The RMSEs (unit: cm) of the estimated xyz-coordinates and positions of the mobile
node at each test point from MSR for the three calibration cases of anchor nodes are given
in Table 2. For the pre-calibrated case, the average RMSEs of the estimated xyz-coordinates
for all of the test points were 16.85, 26.86, and 14.44, respectively. For the post-calibrated
(with antenna delay) case, the average RMSEs of the estimated xyz-coordinates for all
of the test points were 3.49, 3.18, and 8.31, respectively. For the post-calibrated (without
antenna delay) case, the average RMSEs of the estimated xyz-coordinates for all of the
test points were 9.43, 8.85, and 20.43, respectively. From these analyses of the estimated
results of the xyz-coordinates in Table 2, we may conclude that the post-calibrated (with
antenna delay) case showed a desirable performance improvement in estimating all three
coordinates of the mobile node at the test points. For the estimated positions in Table 2, the
maximum RMSEs were 53.48, 16.66, and 29.91, while the minimum RMSEs were 26.38, 5.91,
and 16.59 for the pre-calibrated, post-calibrated (with antenna delay), and post-calibrated
(without antenna delay) cases, respectively. For all of the test points, the RMSEs for the
two post-calibrated cases were significantly reduced compared to that of the pre-calibrated
case. The averages of the RMSEs for all the test points were 35.53, 9.74, and 24.64 for the
pre-calibrated, post-calibrated (with antenna delay), and post-calibrated (without antenna
delay) cases, respectively. Here, the post-calibrated (with antenna delay) case had RMSE
reductions of approximately 72.59% and 60.47% with respect to the pre-calibrated and
post-calibrated (without antenna delay) cases, respectively. This further signifies that the
post-calibrated (with antenna delay) case of anchor nodes was effective in localizing the
mobile node at each of the test points for MSR as well.



Sensors 2022, 22, 864 10 of 13

Figure 3. Mean of the estimated positions of the mobile node at each test point from MSR for the
three calibration cases of anchor nodes: (a) pre-calibrated case, (b) post-calibrated (with antenna
delay) case, and (c) post-calibrated (without antenna delay) case.

Table 2. Comparison of RMSEs (unit: cm) of the estimated xyz-coordinates and positions of the
mobile node at each test point from MSR for the pre-calibrated, post-calibrated (with antenna delay),
and post-calibrated (without antenna delay) cases of anchor nodes.

Test
Point

RMSE (cm)

Pre-Calibrated Post-Calibrated Post-Calibrated
(with Antenna Delay) (without Antenna Delay)

Coordinates
Position

Coordinates
Position

Coordinates
Position

x- y- z- x- y- z- x- y- z-

T1 21.26 26.2 18.79 38.62 3.23 3.85 10.3 11.47 6.99 15.32 17.38 24.2
T2 14.97 26.36 10.18 31.98 3.49 4.19 9.99 11.38 9.96 15.44 13.94 23.07
T3 12.19 24.29 5.04 27.64 2.59 2.75 8.16 8.99 10.6 13.06 16.19 23.35
T4 9.33 23.31 8.07 26.38 2.3 2.55 5.26 6.28 11.69 12.22 15.31 22.82
T5 9.93 22.96 13.7 28.52 4.64 2.62 5.16 7.42 9.34 12.71 17.57 23.61
T6 21.63 29.13 19.56 41.22 4.91 2.83 5.91 8.19 10.35 11.11 23.39 27.89
T7 23.07 25.13 11.47 35.99 3.58 2.83 9.22 10.29 6.15 7.77 18.47 20.96
T8 17.77 23.13 5.27 29.65 2.99 3.83 6.76 8.33 8.57 7.05 19.05 22.04
T9 14.23 24.92 14.84 32.3 3.18 2.94 5.82 7.25 9.8 10.13 23.27 27.21

T10 11.33 24.25 19.8 33.29 3.99 2.59 6.51 8.07 10.52 11.46 23.69 28.34
T11 30.55 32.62 29.37 53.48 3.6 2.23 14.79 15.38 4.41 6.98 17.73 19.55
T12 24.88 30.97 12.06 41.51 3.15 2.29 13.85 14.38 5.79 7.3 18.14 20.39
T13 15.52 27.11 5.14 31.66 3.88 3.08 13.05 13.96 11.77 6.44 17.2 21.82
T14 14.82 26.05 14.42 33.26 3.14 3.09 7.46 8.66 10.21 8.02 22.5 25.98
T15 11.28 24.86 21.99 35.05 3.16 2.64 7.21 8.31 11.52 9.47 25.93 29.91
T16 25.7 36.78 12.42 46.55 5.01 2.14 7.31 9.12 7.77 4.21 25.26 26.77
T17 23.7 29.51 10.5 39.28 2.92 6.04 15.25 16.66 5.89 3.04 15.21 16.59
T18 14.81 28.27 14.66 35.12 4.37 4.63 4.97 8.08 11.31 3.49 26.33 28.87
T19 11.12 26.02 19.62 34.43 3.2 3.68 4.67 6.75 12.73 4.62 26.38 29.65
T20 8.93 25.31 21.91 34.65 2.5 2.7 4.62 5.91 13.32 7.08 25.75 29.84

From these analyses of the test results for the two TWR methods, we can conclude
that the proposed system can effectively estimate the position and antenna delay values
of anchor nodes, where the post-calibrated (with antenna delay) case of anchor nodes
can provide more accurate localization of a mobile node. For the post-calibrated (with
antenna delay) anchor nodes, the RMSEs of the estimated xyz-coordinates and positions
of the mobile node for both TWR methods were within the same order of magnitude
and with centimeter-level accuracy. Hence, the proposed system should be applicable
for the calibration of anchor nodes in the current accuracy-demanding UWB-based RTLS
applications. Finally, in Table 3, we summarize by comparing our results with those of other
state-of-the-art auto-calibration methods, which mainly differ in providing simultaneous
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measurement of the position and antenna delay values of the anchor nodes during the
calibration process.

Table 3. Comparison of auto-calibration methods for UWB-based anchor nodes.

Method Result Clock Reference Calibration RMSE (cm)Synchronization System

Hamer et al. [28] Experiment Required Required Position 9.7
Vashistha et al. [29] Experiment Required Required Position 30
Almansa et al. [30] Simulation Not required Not required Position 135

Proposed Experiment Not required Not required Position and 5.94
antenna delay

4. Conclusions

This paper presented a novel node calibration system that simultaneously measures
the position and antenna delay values of the anchor nodes in UWB-based RTLSs. Based
on an experiment comparing the accuracy when localizing a mobile node at a number
of test points satisfying LOS conditions, the post-calibrated (with antenna delay) case of
anchor nodes whose position and antenna delay values were measured by the proposed
system provided more accurate location estimations. The results show the significance of
the proposed system in maintaining a highly effective UWB-based RTLS.
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