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Abstract: Aiming at the problems of low efficiency and poor accuracy in the product surface defect
detection. In this paper, an online surface defects detection method based on YOLOV3 is proposed.
Firstly, using lightweight network MobileNetV2 to replace the original backbone as the feature
extractor to improve network speed. Then, we propose an extended feature pyramid network (EFPN)
to extend the detection layer for multi-size object detection and design a novel feature fusing module
(FFM) embedded in the extend layer to super-resolve features and capture more regional details. In
addition, we add an IoU loss function to solve the mismatch between classification and bounding box
regression. The proposed method is used to train and test on the hot rolled steel open dataset NEU-
DET, which contains six typical defects of a steel surface, namely rolled-in scale, patches, crazing,
pitted surface, inclusion and scratches. The experimental results show that our method achieves a
satisfactory balance between performance and consumption and reaches 86.96% mAP with a speed
of 80.96 FPS, which is more accurate and faster than many other algorithms and can realize real-time
and high-precision inspection of product surface defects.

Keywords: surface defect detection; YOLOV3; multi-scale detection

1. Introduction

In the process of industrial production, due to the influence of technological processes,
production equipment and site environment, there will be various defects on the product
surface. Surface defects not only affect the appearance quality and commercial value of the
product itself but also affect the performance of the product and also affect the safety and
stability of subsequent deep processing [1]. Therefore, surface defect detection has become
a crucial step in industrial production. At present, most detection tasks are completed
manually, which has disadvantages of high management difficulty, poor stability, high
cost, low efficiency, and low accuracy, and is difficult to meet the demands of automated
production of modern enterprises [2].

The defect detection based on machine vision has the advantages of high precision,
high efficiency, strong stability, and secondary damage prevention, which provides an
optimal scheme for online inspection. Therefore, replacing human eyes with machines
has become a trend in industrial surface defect inspection and has been applied in many
industrial fields (steel, road, wood, optical components). The existing research on surface
defect detection methods can be roughly divided into two categories: a traditional method
based on display feature extraction and a deep learning method based on automatic
feature extraction. The former is to identify defects by analyzing texture characteristics
and extracting features manually, which can be traced back to the 1980s and has rich
research achievements. The deep learning method was proposed by Hinton et al. [3],
which was successfully applied in the classical image classification task. In the case of
sufficient samples, the identification accuracy, robustness and anti-interference ability of
deep learning method are far superior to traditional algorithms. Compared with traditional
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algorithms, the most important advantage is that it weakens the influence of feature
engineering on recognition accuracy, adopts supervised and semi-supervised learning to
make the network automatically extract the most representative features, simplifies the
design difficulty of the algorithm, automatically learns the salient features of the image and
completes the task of object detection. For its great performance, many researchers applied
the deep learning method to surface defect detection and surpass traditional methods [4,5].
So the deep learning method is widely used in various industrial scenarios and has become
the mainstream method of defect detection.

Defect detection can be equated to object detection, and the object is a defect. Com-
pared with classification, object detection can obtain more sufficient defect information,
which is convenient for subsequent visual display and quality judgment. Due to the di-
vergent emphasis on detection speed and detection accuracy, the object detection methods
are gradually developed into two directions. Faster R-CNN is one of the most represen-
tative methods of a two-stage method, which uses a region proposal network (RPN) to
generate a candidate box and then achieve classification and position regression. Cheng
and Wang [6] applied Faster R-CNN to damage detection of drainage pipes, achieving
83% mAP. Li et al. [7] adopted ZF-Net as the backbone of Faster-RCNN and added a
maxpooling layer at the head of the network to adapt defects of large-scale differences,
reaching 80.7% mAP. The other is the one-stage method represented by SSD and YOLO,
which uses a single-structure network to detect without RPN to generate a candidate
box, achieving higher detection speed. Zhang et al. [8] used YOLOV3 with batch re-
regularization and focal loss to detect bridge surface damage, which achieved good perfor-
mance. Yin et al. [9] used YOLOV3 to detect sewage pipeline damage defects and obtained
85.37% mAP. Deng et al. [10] used YOLOV2 with graffiti interference to detect cracks and
defects on a concrete surface under complex background. The accuracy of his method
was even higher than that of RCNN (mAP 77% vs. 74.5%), and it had higher real-time
performance (0.17 s vs. 0.23 s). Thus, the one-stage method is simpler and faster, which is
more suitable for end-to-end online defect detection in the industrial field.

Although object detection methods based on deep learning have been partially studied
in the industrial field, most of them remain in the laboratory stage and are difficult to be
implemented for two reasons. Firstly, surface defects of industrial products are complex and
varied in scale, it is hard to detect and locate defects of varying sizes in a wide background
area. Secondly, online detection has a very high demand for real-time performance, but
most of the research ignores its speed. However, there remains potential for improvement
when it is applied to the inspection of surface defects in industrial products.

In this paper, we propose an improved inspection method that is based on YOLOV3
for high-accuracy and high-speed inspection of surface detection. Firstly, we use the
MobileNetV2 network as the backbone network in place of the original backbone. Secondly,
an enhanced feature pyramid network (EFPN) structure is constructed especially for small-
size object detection. At the same time, a new module feature fusing module (FFM)
is designed to better integrate the cross-scale features of EFPN. In addition, IoU Loss
branches are added to improve the positioning accuracy of the bounding box and narrow
the detection gap between the one-stage and two-stage methods. In the end, we evaluate
the proposed method on NEU-DET, and the results can demonstrate a clear superiority to
other methods.

2. Related Work
2.1. YOLOV3

Joseph Redmon et al. [10] first proposed the You Only Look Once (YOLO) in 2015.
YOLOV3 [11] was developed in 2018 and is one of the state-of-the-art networks. Different
from R-CNN series two-stage detection algorithms, YOLO uses a single network structure
to complete object tasks. In addition, in YOLOV3, ground truth boxes correspond to
positive samples one by one, while in Faster R-CNN, there is a one-to-many relationship, so
the number of prediction boxes generated by YOLOV3 is less. These characteristics make
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YOLOvV3 have a higher speed and can reach the level of real-time response, which is more
suitable for product surface defect detection tasks in the industrial field.

YOLOV3 uses DarkNet-53 as the backbone network, and it is composed of successive
residual block which contains 1 x 1 and 3 x 3 convolutional layers and uses shortcut
connection, as shown in Figure 1. The feature maps from the backbone are concatenation
with the up sampled feature maps. The constructed feature pyramid network outputs three
feature maps for bounding box regression and target classification, respectively, to obtain
outputs of different scales.

| 1
DarkNet-53 Network ! | Feature Pyramid Network
| 1 |
. P0 .
Convolutional Set Predict
: | Predict |

| Convolutional + Up Sampling |

Concatenation

| Convolutional Set
'

Residual Block x8
Residual Block x2
Residual Block x1

Figure 1. The structure of YOLOV3.
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p2 !
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YOLOV3 draws on the residual structure to extract deep feature information and
multi-scale feature to improve the performance of different scale objects, especially small
objects. However, YOLOV3 trains the complete image, which speeds up the model but
weakens the ability to distinguish the target and background. In addition, Darknet-53 is a
typical deep network with a huge calculation and a large number of parameters. Using
COCO AP as an evaluation indicator, YOLO3 has a weaker performance in accuracy [10].
So YOLOV3 still has some room for improvement in speed and accuracy.

2.2. Lightweight Deep Convolution Network

With the popularity of deep learning, convolutional neural network models in the
field of computer vision are constantly emerging. From initial 6-layer LeNet to 8-layer
AlexNet and from 16-layer VGG16 to 152-layer ResNet, and even developed to DenseNet
of thousands of layers [12]. While the performance of the deep learning network has
improved, the structure of the network is getting complex, the number of parameters is
getting larger and the speed of the network is getting slow, which makes it difficult to
perform real-time detection on mobile and embedded devices in the industrial field. Many
scholars have made many achievements in network lightweight.

The SqueezeNet [13] used 1 x 1 kernel to replace 3 x 3 kernel to reduce parameter
size. In MobileNetV1 [14], depth-wise separable convolution was used to effectively
reduce the computational costs. The ShuffleNet [15] used point-wise grouped convolutions
and channel shuffle to reduce model computation. These lightweight network models
made it possible for mobile devices to run deep learning models. In 2018, the Google
team introduced linear bottleneck and inverted residual on the basis of MobileNetV1 and
proposed MobileNetV2 [16], which was a widely used lightweight network at present. In
this paper, our method is lightened based on this method.
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2.3. Multi-Scale Features

The most challenging problem in object detection is object scale variance. In the
detection of surface defects, there are great differences within the category of defects,
with different shapes and sizes, and even some defects with extremely small, large or
extreme shapes (such as slender, narrow and tall, etc.) may appear, which makes it hard to
identify and locate defects. This problem can be addressed by using multi-scale features to
detect. SSD directly uses different resolution feature maps to detect, as shown in Figure 2a,
which results in an independent calculation of each feature’s scale and then slow speed.
YOLOV?2 fused multi-resolution feature maps into a single map for prediction, and makes
shallow information easily be ignored, Figure 2b. FPN [17] adopted multi-scale fusion and
prediction, Figure 2c. Followed FPN, evolving MLFPN, NAS-FPN and BiFPN, et al. These
FPN variants improved the performance of multi-scale object detection but using the same
feature map as the original FPN, which was not enough to deal with tiny defect and is
weak for the current small object detection.

() (b) (c)

Input Feature map Predict module

Figure 2. (a) Multi-scale feature prediction; (b) multi-scale feature fusion + single-scale feature
prediction; (¢) multi-scale feature fusion + multi-scale feature prediction.

3. Our Approach

In this section, we introduce our method the improved MobileNet-YOLOv3 in detail,
and the network structure is shown in Figure 3. The MobileNetV2 is used as the backbone
to replace the original DarkNet-53 with lightweight network architecture. Secondly, an
enhanced feature pyramid network (EFPN) is constructed especially for small defect
detection, and a feature fusing module (FFM) is designed to integrate the cross-scale
features of EFPN. In addition, focal loss and IoU loss functions were used to enhance model
accuracy and the learning ability of positive samples.

3.1. Feature Extractor

Darknet-53, as the original backbone of YOLOV3, uses successive convolution and
pooling layers to obtain a semantic feature map, which greatly improves the detection
accuracy, but is weak in speed. MobileNetV2 uses lightweight modules to build a deep
structure network, which is widely used in mobile terminals and embedded devices.
However, it is not accurate enough for industrial defect detection. Using MobileNetV2
as the backbone, we can get a high-speed and precise network. The improved network
structure is shown in Figure 3.

Bottleneck is the lightweight core of MobileNetV2, as shown in Figure 4, which has
three advantages: Firstly, replace traditional convolution with depth-wise convolution
to reduce the number of parameters and computation. Secondly, before convolution,
1*1 expansion layer is added to reduce information loss by increasing input dimension.
Shortcut connection is used to construct inverted residuals when stride is 1, so that the
network can become deeper and more accurate. In addition, replace activation function at
the end of bottleneck with linear to further reduce information loss. Compared with the
original backbone DarkNet-53, MobileNetV2 has certain advantages in speed and accuracy.
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Figure 3. Structure of improved MobileNet-YOLOV3 network. Here Ci denotes the feature map form
backbone, and Pi denotes the corresponding feature pyramid layer on FPN/EFPN. The dash line
between C2’" and C2 means C2" and C2 are derived from the same stage and share the same weights.
P1, P2 and P3 are origin FPN layers. FFM module integrates P3 from P1 and P2, and then through an
top-down framework EFPN to form the extended detection layer P3’. The FPN layers (P0, P1, P2, P3’)
will be fed to the following detector to futher detection.
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Figure 4. The structure of the Bottleneck module.

As a backbone, to compare the performance of Darknet53 and MobileNetV2, see
Table 1. The Box AP in the table was obtained by testing the Pascal VOC data set, and
the FPS was obtained on Tesla V100. It can be seen that, at nearly the same depth, the
MobileNetV2 is only 2/5 the size of DarkNet53. In addition, MobileNetV2 is twice as fast
as DarkNet53 with little loss of accuracy, which can meet the real-time requirements of
online detection.

Table 1. DarkNet-53 vs. MobileNetV2.

Backbone Depth 1 Model Size (M) Box AP 2 FPS 3
DarkNet-53 50 249.2 31.0 54.977
MobileNetV2 52 100.7 29.9 104.291

1 Depth, the network depth of the remaining part of the network when the top classifier is removed; 2 Box AP, box
average precision; 3 FPS, frames per second.

In the detection task, avgpool layer, full connected layer and softmax layer after CO
layer in MobileNetV2 are removed, and the structure from input to CO layer is retained
as the backbone network of our method. Input size is [1, 3, 416, 416], and see Figure 5 for
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detailed parameters of each layer of backbone. The feature map of C0, C1, C2, C2’, which
output from stage2, stage3 and stage4, are extracted as the detection layer, with size CO
[1,1024,13,13], C1[1, 256, 26, 26], C2 [1, 64, 52, 52], C2’ [1, 64, 104, 104], respectively. We
remove a convolutional layer of stride 2 in stage2 and get feature map C2’. C2 and C2’ are
both outputs of stage2, derived from the same input, and share the same weights, as shown
of stage2 in Figure 5.

Softmax
FC
Avgpool 7x7 1024 -
" Conv2d 1x1 1024 1 132x1024 | CO—>
Bottleneck x1 512 2 132x512
3 Bottleneck x3 256 1 26%2x256 | Cl—> g
Bottleneck x3 128 2 26%x128 %
2 522x64 | C2—— &
2 Bottleneck x4 64 Q
1 1042x64 | C2—> ?_
Bottleneck x3 | 32 1 1042x32 -
| | Bottleneck x2 [ 24 2 1042x24 -
Bottleneck x1 16 1 2082 x64
Conv2d 32 2 208%2x32
Stage Operator Output  Stride  Output o
Channel size

Figure 5. The structure of MobileNetV2 as a feature extractor. Here Ci denotes the feature map from
backbone network MobileNetV2. The C2” and C2 are both derived from the 2nd stage and share the
same weights.

3.2. Extended Feature Pyramid Network

Although the feature pyramid used to fuse three-level feature maps in the detection
layer improves the performance of small object detection, the detection of large and medium
objects is still coupled together. With the decrease of target size, the performance of the
detection will decline rapidly. If the P2 layer is up sampled again following the FPN
structure to get a feature map for small-scale detection, the reconstructed image after
multiple up sampling will contain a lot of noise and even overwhelm the extraction of
semantic information, which will have a negative impact on detection. Therefore, this
paper extends a new level, named extended feature pyramid network (EPPN), at the end of
the original detection layer, as shown in Figure 3. Firstly, the feature fusing module (FFM)
is used to generate a high-resolution feature map P3 on the basis of low-resolution feature
map P1. Secondly, P3 is enlarged by up sample and concatenation with C2’ to obtain P3’,
which is specially used for small target detection. The feature map reconstructed by FFM
not only contains rich semantic information but also has more pixels, which can describe a
finer structure and reduce noise interference compared with the up sample.

Enlightened by the super-resolution method [18], we constructed a feature fusing
module (FFM) to reconstruct high-resolution features from low-resolution features with
minimum loss, as shown in Figure 6. With feature map P1 as the main input, P2 as the
location reference feature, the output P3 can be defined as

P3 = BN (P1) 1 2x & BNgp(BNe1(P1) 124 ||P2) M

where BN,(+) denotes bottleneck convolution layer, the function of c1 and ¢2 is to extract
semantic and location information respectively; 1 25 denotes double upscaling by sub-pixel
convolution [19]; @& denotes residual connection; || denotes concatenation connection.
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Figure 6. This is the structure of the feature fusing module (FFM). P1 and P2 denotes the feature
pyramid layers on FPN. P3 is be obtained with main semantic fearure map P1 and the location
reference feature.

Without FFM, the noises in the up sampled P2 will directly affect the extraction of
meaningful semantics. However, the feature map P3 obtained by FFM not only contains
rich details of small targets which are obtained from upper low-resolution features by super-
resolution reconstruction, but also contains location information from lower high-resolution
features, and also convolution operation reduces noise interference.

The multi-level output PO, P1, P2 and P3’ are obtained by EFPN, then three anchor
boxes are generated in the center of each region. Feature maps in the upper layer use a
larger anchor box to capture a large object, and the lower layers use a smaller anchor box
to extract small objects. We use K-means clustering to determine our anchor box, and the
distance function is defined by IoU so that the error is not affected by box scale, Formula (2)
turns into the following:

d(box, centroid) = 1 — IOU (box, centroid) )
On the NEU-DET dataset, the 12 clusters were in Table 2.

Table 2. Parameters of three anchor boxes.

Feature Feature Map Total Number of Anchor
Map Form Dimensions Scale of Anchor Box [w, h] Box on This Feature Map
Po! 13 x 13 [128, 351]; [262, 228]; [325, 392] 13 x 13 x 3
P1 26 x 26 [55, 318]; [156, 169]; [301, 130] 26 X 26 X 3
P2 52 x 52 [45, 101]; [97, 121]; [291, 56] 52 x 52 x 3
p3’ 104 x 104 [36, 80]; [55, 163]; [107, 90] 104 x 104 x 3

1 PQ, the corresponding feature map in Figure 3.

3.3. Loss Function

In general, YOLOV3 contains two types of loss functions, category loss (classification)
and position loss (regression). Reference RetinaNet [20], the focal loss is adopted for the
classification to resolve foreground-background class imbalance as Equation (3) shows. The
smooth L1 loss is adopted for the regression to enhance the robustness of loss function to
outliers as Equation (4) shows.

As a one-stage detector, YOLOV3 has its natural disadvantage in positioning accuracy
compared with Faster RCNN, Cascade RCNN and other two-stage networks. As the
classification and positioning branch are independent in the one-stage network, it causes
a mismatch between the two branches, so IoU is missing. In order to compensate for the
poor performance caused by the low correlation between classification and localization in
our module, an IoU prediction head is designed parallel with the regression head at the
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last layer of regression branch to predict the IoU of prediction box and ground truth box.
IoU loss function is established based on IoU-aware single-stage method [21] to predict
IoU of the prediction bounding box and ground truth box, modify the score used for NMS,
and further improve the prediction performance of YOLOV3. The IoU loss and total loss
can be defined as Equations (5) and (6).

1 N . M )
Les = N( Y FL(pi,pi)+ Y, FL(VirPi)) 3)
Pos \ jePos i€Neg
L = 1 % Z smoothp1(I" — ¢) 4)
loc = N L1\% 8i
Pos jePos mecx,cy,w,h
1 ¥ .
L[ou = Z CE(IOUi, IOUZ') (5)
Npos i€ Pos
Liotal = Leis + Lioe + Liou (6)

where p; € [0, 1] denotes the predicted probability for category 1, p; denotes ground truth
label, I; denotes the deviation between prediction box and anchor, §; denotes the deviation
between prediction box and ground truth box, IoU; denotes the prediction IoU for each
detected box, IoU; represents the target IoU.

4. Experiment
4.1. Experience Environment and Evaluation Matric

We used Keras, a deep learning framework, to build our model. The whole experiment
was conducted on paddle’s Al studio and is implemented by using Python 3.7. The
parameters of the platform were as follows: Tesla V100 GPU, 32 GB Video Memory, 4 Cores
CPU, 32 GB RAM, 100 GB Disk. In the experiment, the CUDA 9.0 backend and cuDNN 7.5
were used for GPU acceleration.

Different from image classification, object detection not only needs to predict the
correct category of the target but also the location information of the target. In order to
evaluate the performance of our object detection task, the following indexes are used:

(1) Precision, Recall, and F1 Score

Precision measures the accuracy of the model prediction, and Recall measures the
ability of the model detection for positives. F1-Score is the harmonic mean of Precision and
Recall. These indexes are defined as follow:

... TP o
Precision = TP+ P 100% 7)
TP o
Recall = TP+ EN 100% (8)
2
F1 — Score = )

(1 /Precesion + 1/ Recall)
where TP, FP and FN denote true positive, false positive, and false negative, respectively.
(2) AP and mAP

The mean Average Precision(mAP) is our primary indicator for evaluating model
performance. It is the average of Average Precision (AP). AP is calculated by precision
and recall whose definition is finding the area under the P-R curve above. AP is usually
calculated via the 11-point interpolation average precision calculation method, which can

be defined as: .

AP = 11 Z Pinterp (I‘) (10)
re{0,01,...,1.0}
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When we calculate AP for all object classes on all images, we get mAP for all im-
ages datasets.
_ LI AP
K
where K denotes the number of categories. When K =1, mAP = AP.

(3) Params and FPS

mAP (11)

Model sizes (Params) are chosen to compare the space complexity of different modules.
In addition, we use frames per second (FPS) to show the detection speed.

4.2. Datasets and Preprocessing

NEU-DET was used for the experiment, which is a dataset of hot rolled strip steel
surface defects released by Northeastern University, and collects six typical defects of steel
surface, namely rolled-in scale (RS), patches (Pa), crazing (Cr), pitted surface (Ps), inclusion
(In) and scratches (Sc). There were 300 samples for each defect, and a total of 1800 grayscale
images, with the original resolution of 200 x 200 pixels. For object detection, the dataset
provides bounding box annotations which are saved as an XML document, indicating the
category and location of defects in each image.

Figure 7 shows part of the data set. Due to the influence of light and the production
environment, even the morphologies of similar defects are very different, which puts
forward higher requirements for the defect detection model. We use the cross-validation
method to train our model, which aims to extract more information from the limited dataset
and avoid falling into local minima. So, before the training, we divided the NEU-DET
dataset into train set, validation set and test set in a ratio of 7:2:1, containing 1260, 360
and 180 images, respectively. In addition, we use data augmentation operations (mix-up,
random distort, random expand, random crop, random horizontal flip) on the train set
to improve the diversity of sample data and increase the generalization performance of

our model.
(f)

Figure 7. Six kinds of defects in the steel surface. The subset to which the image belongs (a) Cr; (b) In;
(c) Pa; (d) Ps; (e) Rs; (f) Sc.

(d)

4.3. Implementation Details

Set the epoch to 300 to start train, and the early-stop strategy was used to terminate
the training when the accuracy of validation set decreased or remained flat within 5 epochs.
Each epoch contains 79 iterations, in each iteration, the model predicts the category and
coordinate of the prediction box. The intersection-over-union (IoU) indicates the ratio of
overlapping of predict box and ground truth box. If the IoU of predict box is maximum,
we assign a positive label to it, If the IoU is lower than 0.5, we assign a negative label to it,
then, the remaining regions are disregarded. Piecewise learning rate decay strategy and
momentum optimizer are also used during the training. Initialization parameters of the
training process are shown in Table 3.
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Table 3. Initialization parameters of our method.

Parameters Value Note
Size of input images 416 x 416 data
Loss function Liotal Los + Lipe + Liou
Optimizer Momentum 0.9
Batch size 16
Training epochs 300
Learning rate (Ir) 0.000125
Ir_decay_epochs [216, 240] The epoch where the Ir declines
Ir_decay_gamma 0.1 Ir decay rate

The training process took 5 h to get convergence. Loss represents the gap between
the predicted value and the real value, which can be used to evaluate the performance of
the model. In addition, the YOLOV3 and MobileNet-YOLOv3 (MN-YOLOV3) were run in
the same environment to compare the effects of our model. The training loss curves of the
three models are compared as shown in Figure 8.

Loss Curve
50
45 1 — YOLOV3
—— MN-YOLOV3
401 —— IMN-YOLOV3

Loss

0 25 50 75 100 125 150 175 200 225 250 275 300
Epochs

Figure 8. Loss curve of the three YOLO models.

According to Figure 7, the decreased amplitude of loss is large at the beginning of
training, indicating that initial super parameters such as learning rate are reasonable. After
a period of training, the change of loss gradually tends to be stable, and not as obvious
as that in the initial training period. There is a slight oscillation in the curve, which is
related to batch-size setting, but the overall trend is declining. This stage is the fine-tuning
stage. When loss hardly changes, the model converges. The YOLOV3, MN-YOLOV3 and
improved MN-YOLOV3(IMN-YOLOV3) finally converge to 8.84, 10.58 and 6.45 when
the epoch is 285, 280 and 260, respectively. It can be seen that our method has the best
performance at final converge loss, which is 2.39 and 4.13 smaller than that of YOLOV3
and MN-YOLOV3. In terms of convergence speed, although MN-YOLOV3 is inferior in
the early training stage, our model eventually converges at an earlier epoch.

4.4. Experimental Results and Analysis
4.4.1. Experiment Results

The test defect images were detected with a trained network and 180 images were
completed within 6 s. At the period of testing, all predicted boxes are positive samples,
therefore, IoU is set to 0.5 to divide TP, FP and negative samples. The P-R curve of our
method for different defect types is shown in Figure 9a. It can be seen from the P-R curve
that our method has high detection accuracy and recall rate for In, Pa, Ps and Sc, which
have clear boundaries and are quite different from the background. The detection effect on
Cr and Rs is not good, these two kinds of defects vary greatly in scale and the boundary
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is not clear. The P-R curve shows the tradeoff between accuracy and recall at different
thresholds and is a useful indicator when there have imbalanced samples. According
to the red dotted line in Figure 9a, the break-even point (BEP) with precision equal to
recall can be obtained. Figure 9b is the score-recall curve, representing the proportion of
objects detected. Compared with the other three defects, Cr and Rs have a smaller curve
enclosing area, because there are more defects in one picture, and it is more difficult to
detect them completely.
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Figure 9. (a) P-R curve and BEP; (b) score-recall curve. In red dotted line, there have recall equals to
precision. The point where the P-R curve intersects the red line is the break-even point.

The detection results are shown in Figure 10.
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Figure 10. Partial of visual results of detection on NEU-DET. For each image, the green box is the
prediction bounding box, and the white label is the class and score. The subset to which the image
belongs (a) Cr; (b) In; (c) Pa; (d) Ps; (e) Rs; (f) Sc.

4.4.2. Detection Results Comparison

To verify the performance of the proposed method in the detection of hot rolled strip
steel surface defects, we compare it with five other methods which are also for steel defect
detection. Table 4 shows the results of detection. In the last three lines of Table 4, it can be
seen that the detection accuracy of YOLOV3 varies greatly in different kinds of defect. Ps,
Pa and Sc have high detection AP and can be well detected, but the AP of the remaining
three kinds of defects is low, especially Cr with AP of 44.70%. The reason is that the prior
anchor of YOLOV3 is clustered from the COCO dataset, which cannot well adapt to the
detection of NEU-DET which is used in this paper. MN-YOLOV3 uses anchor clustered
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by NEU-DET and carries out a pre-training operation on the feature extractor. It can be
seen that the AP of most defects was significantly improved, especially In, Ps and Rs by
24.13,17.24 and 17.22 percentage points, respectively. After the improvement of anchor
size, the model has stronger adaptability to our dataset, but the AP of Cr and Rs, which
have fuzzy boundaries, are still at a low level. When IMN-YOLOV3 is used, the feature
map for detection is extended from 3 to 4 layers through EFPN with FFM fusing strategy.
The detection accuracy of Cr was significantly improved, which increased from 56.42%
to 72.04%, an increase of 15.62%, effectively solving the low detection accuracy of Cr. In
addition, AP of other defects is improved also. This result demonstrates that our multilevel
features have superior adaptability to different scale defects.

Table 4. Detection results on NEU-DET.

Method Backbone mAP Cr In Pa Ps Rs Sc

FRCN ResNet50 77.9 52.5 76.5 89.0 84.7 744 90.3

DDN [22] ResNet50 82.3 62.4 84.7 90.7 89.7 76.3 90.1
DE_RetinaNet [23] ResNet50 78.25 55.78 81.91 94.69 89.24 70.17 77.70
RAF-SSD [24] ResNet50 75.10 71.10 75.50 80.10 72.60 75.30 75.40
ECA+MSMP [25] ResNet50 80.86 55.61 77.84 93.90 74.43 89.72 93.66
YOLOV3 DarkNet53 69.10 44.70 60.80 84.40 74.50 61.10 87.20
MN-YOLOV3 ! MobileNetV2 82.90 56.42 84.93 93.78 91.74 78.32 92.19
IMN-YOLOV3 2 MobileNetV2 86.96 72.04 86.87 94.78 94.28 80.58 93.19

I MN-YOLOV3, YOLOV3 with improved anchor size and pretrained operation; 2 IMN_YOLOV3, MN-YOLOV3
with EFPN structure and FEM fusing module.

Compared with other methods on NEU-DET detection, it is clear that our method
outperforms FRCN, DNN [22], DE_RetinaNet [23], RAF-SSD [24] and ECA+MSMP [25] in
terms of mAP. We find that FRCN, DDN [22], DE_RetinaNet [23] and ECA+MSMP [25] are
poor for the detection of Cr. Although the AP of RAF-SSD [24] for Cr is 71.10%, which is
almost the same as the AP of this method. However, the effect of other defects is not very
good, so the mAP is 11.86% smaller than our method. Although RAF-SSD [24] has an AP
of 71.10% for Cr, which has reached the same level as our method, the accuracy on other
defects is not good, so mAP is 11.86% lower than IMN-YOLOV3. It can be seen that our
method can not only effectively detect Cr, the most difficult defect to detect, but also detect
other defects more effectively.

4.4.3. Classification Results Comparison

The label corresponding to the IoU with the maximum score and greater than the
threshold 0.5 is counted as the category of the image, according to which the whole image
classification results of our method can be calculated, namely precision, recall and F1-score
indicators. We compared our detection results with traditional classification methods,
the results are shown in Table 5. It can be seen that the performance of the proposed
IMN-YOLOV3 is better than the other three networks in the classification of various defect
categories, especially having a significant improvement in precision, with 14.35%, 3.14%
and 4.15% increased.

Table 5. Classification results on NEU-DET.

Method Task Precision Recall F1-Score
VGG16+CBAM 1 [26] Classification 84.02 81.03 82.50
ResNet50+CBAM Classification 95.23 95.15 95.19
MobileNetV2+CBAM Classification 94.22 95.33 94.77
IMN-YOLOV3 Classification+location 98.37 95.48 96.90

1 CBAM: the attention mechanism is to improve the performance of classification in NEU-DET.
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4.4.4. Real-Time Analysis

Table 6 shows the spatial complexity and the speed of the proposed model and other
detection models which has almost the same network depth. As the speed of the model is
directly related to the hardware environment, the inference time of the models in the table
is obtained by testing validation sets on the Tesla V100 GPU of the Paddle platform with
CuDNN 7.5. Including data loading, network forward execution and post-processing, and
batch size is 1.

Table 6. Space complexity and detection speed of these models on NET-DET.

Method Backbone Pe:;e/ilr)ns In(fg;?sfa;:)ne FPS
Faster RCNN ResNet50 136.0 78.450 12.747
Mask R-CNN ResNet50 143.9 86.096 11.615

SSD VGG16 140.5 21.736 46.007
YOLOV3 DarkNet53 249.2 20.252 49.377
MN-YOLOV3 MobileNetV2 99.2 11.834 84.502
IMN-YOLOV3 MobileNetV2 107.4 12.352 80.959

After replacing the backbone of YOLOV3 with MobileNetV2, the Params has been
reduced to 2/5 of the original, and the speed is nearly doubled. After extending one layer
of the feature map for detection, IMN-YOLOV3 loses a bit of speed but is much more
accurate, which is acceptable. Compared with the two-stage method (Faster/Mask-RCNN),
the detection speed of our one-stage model can reach more than seven times of theirs,
and the model size is also smaller. Under normal circumstances, the maximum speed of
steel production is 30 m/s, and the view field of visual equipment is 50-100 cm. To satisfy
online detection, the speed of the detection model needs to be between 30-60 FPS. The
average speed of our method can reach 81 FPS, which can meet the demand of industrial
online detection.

5. Conclusions

At present, most surface defects in industrial products were inspected manually, which
is time-consuming, too expensive in terms of high labor cost and is prone to misjudgment.
How to detect defects online is a bottleneck in industrial production. Aiming at achieving
high-precision online inspection, this paper presents an end-to-end detection method
based on YOLOV3, called Improved MobileNet-YOLOV3(IMN-YOLOV3). Summarized
as follows:

(a) Using MobileNetV2 network instead of VGG16 as the basic network of YOLOV3 algo-
rithm, which makes the model size half and reference time decreased from 20.252 ms
to 12.352 ms. Achieving significant improvement in speed.

(b) Proposed EFPN extends the feature map for detection from 3 to 4 layers to obtain
more information from different stages. FFM strategy is embedded in the EFPN
to efficiently capture features for the extended layer with minimum noise, which
significantly improves the detection accuracy, especially the noisiest Cr categories.
Indicating that the structure can retain more detailed information while effectively
reducing noise.

(¢) Use an IoU-aware training loss to solve the mismatch problem between classification
confidence and positioning accuracy.

Experiments on the common dataset NEU-DET, IMN-YOLOV3 have obvious advan-
tages in detection accuracy and reference speed. mAP of six categories of strip surface
defects reaches 86.96%, and detection speed reaches 81 FPS, realizing the end-to-end high-
precision online detection. In addition, sufficient comparative experiments are carried out
to demonstrate the performance of our method. In the future, more intelligent data aug-
mentation method, such as GAN, is considered to alleviate the problem of insufficient data
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in industrial detection to further improve the identification and generalization capabilities
of the model.
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