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Abstract: The performance of humanoid robots is improving, owing in part to their participation
in robot games such as the DARPA Robotics Challenge. Along with the 2018 Winter Olympics
in Pyeongchang, a Skiing Robot Competition was held in which humanoid robots participated
autonomously in a giant slalom alpine skiing competition. The robots were required to transit
through many red or blue gates on the ski slope to reach the finish line. The course was relatively
short at 100 m long and had an intermediate-level rating. A 1.23 m tall humanoid ski robot, ‘DIANA’,
was developed for this skiing competition. As a humanoid robot that mimics humans, the goal was
to descend the slope as fast as possible, so the robot was developed to perform a carved turn motion.
The carved turn was difficult to balance compared to other turn methods. Therefore, ZMP control,
which could secure the posture stability of the biped robot, was applied. Since skiing takes place
outdoors, it was necessary to ensure recognition of the flags in various weather conditions. This was
ensured using deep learning-based vision recognition. Thus, the performance of the humanoid robot
DIANA was established using the carved turn in an experiment on an actual ski slope. The ultimate
vision for humanoid robots is for them to naturally blend into human society and provide necessary
services to people. Previously, there was no way for a full-sized humanoid robot to move on a snowy
mountain. In this study, a humanoid robot that transcends this limitation was realized.

Keywords: ski robot; humanoid; carved turn; ZMP control; vision recognition

1. Introduction

For robots to be useful in society, they must be able to perform all the activities that
humans can perform [1]. If this is not possible owing to limitations associated with the
form of robots, their widespread application is restricted. Therefore, the development
of humanoids that resemble human shapes and can best imitate human behavior will
greatly contribute to the enhanced utility of robots. However, since humanoids employ
low-stability movement called bipedal walking, more research is needed to improve their
stability. Moreover, the usefulness of humanoid robots will increase only when their ability
to mimic human behavior under harsh environmental conditions is established via rigorous
experimentation.

Skiing is a human behavior that is typically performed under extremely harsh envi-
ronmental conditions, such as cold temperatures and snow. If a humanoid can successfully

Sensors 2022, 22, 816. https://doi.org/10.3390/s22030816 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22030816
https://doi.org/10.3390/s22030816
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6920-2079
https://orcid.org/0000-0002-8450-4534
https://orcid.org/0000-0002-3470-8221
https://orcid.org/0000-0003-0539-9519
https://doi.org/10.3390/s22030816
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22030816?type=check_update&version=4


Sensors 2022, 22, 816 2 of 19

perform this activity under harsh conditions, this is a further upgrade of the robot’s capa-
bilities. If robots can be used in such a difficult working environment, they can serve as
very useful tools in rescues or for the exploration of unfamiliar areas [2].

Currently, research on special types of robots that can perform tasks on behalf of
human counterparts in various environments and circumstances, such as exploration [3,4],
crop collecting [5,6], and disasters [7–9], is being actively conducted. However, these
special types of robots have limited universal applicability because of their specialized
form. Therefore, research on the use of humanoids under different circumstances, such
as walking [10–13] or the climbing of stairs and ladders [14–16], is ongoing. The objective
is to facilitate the performance of various universal tasks by imitating human behavior.
The Defense Advanced Research Projects Agency (DARPA) held the DARPA Robotics
Challenge (DRC) from 2012 to 2015 to address this aim by creating various situations that
could occur at nuclear power plants. At DRC, various types of robots, including humanoids,
were tested on challenging tasks such as driving vehicles, getting out of cars, opening
doors, turning valves, drilling walls, breaking through rough terrain, and climbing stairs.
Various robots, such as ATLAS, developed by Boston Dynamics (Team WPI-CMU [17]
and Team IHMC [18]), Valkyrie (NASA JSC [19]), DRC-HUBO + (Team KAIST [20], Team
DRC-hubo@UNLV [21]), and THORMANG, developed by Robotis(Team ROBOTIS, Team
SNU [22]), have been developed to successfully complete the aforementioned tasks.

In addition, research based on humanoid robots is actively being conducted in sports
fields such as soccer and basketball. In particular, the annual Robo Cup is a world-class
event in which robots developed by different teams around the world compete in a variety
of sporting events. Among the various leagues of RoboCup, the humanoid league began
in 2002 and aims to improve robot performance via competition in robot soccer games.
Ultimately, in 2050, the robot teams aim to compete in the human World Cup championship
and win [23,24].

Skiing is also a challenging task for robots owing to limitations in the development of
sensors [25,26]. In the field of sports science, systematic research on the mechanics of this
activity has been conducted [27–29]. Research has been conducted on stability analysis via
physical feedback data acquisition during skiing, using sensors mounted on the human
body [30] and skiing algorithms [31]. Since researchers could obtain information on the
force and position movement generated during this activity, research has been conducted
to investigate skiing robots. In 2009, Lahajnar et al. developed a robot that could ski on
actual slopes. However, this robot did not have an anthropogenic form. It consisted of only
the lower body, with only four joints and one degree of freedom in the knee joints, without
the upper body [32].

In 2017, the University of Manitoba studied the balancing and turning of skiing robots
using a 45 cm tall, small humanoid robot. The study revealed that these robots could
readily turn around actual snow slopes using simple controllers that control only the
angle of the torso without ZMP calculation [33]. In 2019, Ajou University conducted a
Webot simulation of ski balancing and turning with a 45 cm tall, small humanoid robot.
Balancing was attempted using the ZMP calculation, and a virtual LiDAR sensor was used
to recognize and turn the gates to perform a simulation that passed between the flags [34].
In 2018, Takuma Saga of Osaka University developed a robot with a simple structure to
teach children skiing motion and posture [35].

Until now, skiing robots could not imitate actual adult-sized human behavior, such
as developing only the lower body or using small humanoids. In skiing competitions, the
participants pass through gates installed on the slopes. For robots to perform a similar
action, artificial intelligence algorithms that recognize the flags and generate their paths
must be developed. However, to the best of our knowledge, the development of skiing
robots using AI has not been pursued to date. Therefore, in this study, we developed the
world’s first full-sized humanoid skiing robot with a height of 1.23 m. It can recognize
installed flags in an actual outdoor slope using deep learning and turn through the gates
with a carved turn using the ZMP method generally used in bipedal robots. Using this
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technology, a test was conducted based on an Alpine ski giant slalom competition using the
human Olympic ski rules on an actual slope of 100 m. Figure 1 shows an image of DIANA,
the humanoid robot developed in this study.

Figure 1. Skiing robot DIANA.

2. Hardware
2.1. Mechanical Design

Skiing robots must have sufficient degrees of freedom (DOFs) to perform the sharp
turns that are characteristic of skiing. Figure 2 represents the overall design of DIANA.
DIANA was designed to have a total of 23 DOFs, as shown in Table 1, and to be 1.23 m
in height and 30 kg in weight. The head region, where a stereo camera was mounted,
was designed such that the camera can recognize flags more accurately while undergoing
various changes in field of view during skiing with Roll-Pitch-Yaw 3 DOFs. The arm was
designed to move the ski pole with X-Y-Z 3 DOFs. In particular, the action of skiing causes
a change in the center of mass owing to the movement of the upper body, so DIANA was
designed to move the upper body in the angulation (the lateral movements of creating
angles at the waist) and rotation directions by enabling the structure of the waist to move
in the roll and yaw directions. In addition, the lower body facilitated Roll-Pitch-Yaw-X-Y-Z
6 DOFs so that the ski plate could be located in the desired location and direction.
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Figure 2. Three-dimensional design of skiing robot DIANA.

Table 1. DIANA’s degrees of freedom (DOFs).

Degrees of Freedom (DOFs)

Left Right

Head 3
Arm 3 3
Waist 2
Hip 3 3

Knee 1 1
Ankle 2 2
Total 23

Figure 3 shows the specifications of the sensor that was used for the skiing robot
DIANA, and the design of the sensor mounting unit. A light detection and ranging
(LiDAR) sensor and stereo camera were mounted on the head so that the flags could be
recognized and the distance to the flags could be measured. An inertial measurement unit
(IMU) sensor was installed at the waist, as close to the center of mass as possible, so that
the speed of the robot and the feedback during skiing could be measured. The shape of
the pedal component was designed in accordance with the ISO 5355:2005 standard to be
directly mounted on the ski binding, and F/T sensors were mounted on the feet to estimate
the ZMP of the robot.
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Figure 3. Design of DIANA’s sensors.

2.2. Water Proof Design

In Figure 4, the appearance of DIANA wearing a skiing suit manufactured for water-
proofing is shown.

Figure 4. DIANA’s waterproof design.

Skiing robots can encounter snow and rain on actual slopes. In addition, a waterproof
design is essential for falling on a slope. A dedicated ski suit using a waterproof fabric
was designed for the robot system. This suit was cut to the appropriate size and shape
to minimize interference with the robot’s movement, and important components such as
electrical parts were double-wrapped to improve waterproofing. In addition, zippers were
used on both the front and rear sides of the suit to detach and attach from the robot easily.
The suit was designed to cover the entire robot. As a result, no safety accidents occurred
due to snow and water penetration during the two-month test period.

2.3. Electrical Design

Figure 5 shows a diagram of the electronic components of the humanoid robot, DIANA.
DIANA requires a lightweight board that can run artificial intelligence models with low
power because of its limited space, load capacity, and power. The electric unit consists of a
component for object inference and a component for posture control. Given that numerous
computations are required for object inference, two types of boards were used to facilitate



Sensors 2022, 22, 816 6 of 19

CPU resource management and to prevent accidents caused by delays in motor control
operations. Both boards operate on the same network via the LAN hub.

Figure 5. Electrical component diagram of skiing robot DIANA.

NVIDIA’s Jetson TX2 is an embedded module that can operate at 7.5 W and is suitable
for inference using CUDA processors. The environmental package for image inference was
the JetPack 3.3 package provided by NVIDIA, in line with the specifications of Jetson TX2.
By attaching Stereo Labs’ Zed Stereo Camera to Jetson TX2, distance can be measured using
the phase difference between the two cameras, as in humans. Intel’s Joule was the board
in charge of posture control and it was implemented by connecting the IMU, LiDAR, F/T
sensor, and Usb2Dynamixel. The computer used for machine learning to create a learning
model was equipped with three NVIDIA Titan xp, CUDA 9.2.148, CUDNN 7.2, TensorRT
4.0.1, and NVIDIA driver 396.37 on Ubuntu 16.04 OS.

3. Vision Recognition Method

The basic rule of the alpine skiing game is to transit all gates. Therefore, DIANA, the
skiing robot, must be able to accurately recognize all gates.

3.1. Color-Based Recognition

The flags can be accurately recognized using highly visible colors. For the same reason,
the skier’s clothes, safety nets, and signs are generally similar in color to the flags. Objects
of similar color can be misidentified as flags. In addition, owing to the outdoor conditions,
the consistency of the image data cannot be guaranteed [36]. Color-based recognition
technology has low outdoor reliability. Therefore, the proven convolutional neural network
(CNN), DetectNet, was used [37].

3.2. Deep Learning Gate Detection

DetectNet [38], developed by NVIDIA, provides reliable performance when inferring
a single class. Therefore, DetectNet is suitable for use by DIANA, wherein only the flag
class needs to be determined. In the case of DIGITS, a GUI provided by NVIDIA, the
learning results can be intuitively checked. As such, the appropriate learning option value
can be quickly determined.

A total of 10,425 images were randomly collected using the Google search engine to
train the model. As a condition of a dataset for learning, the image must include a sloping
background and one or more articles. This is because images without a substrate during
the learning process and the verification stage can yield incorrect learning compensation.
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In some cases, the initial model incorrectly identified another object as a flag, as shown in
Figure 6b.

Figure 6. The correct result of recognition (a), the incorrect result of recognition (b) and the result
graph of training (c).

To eliminate the intermittent misrecognition of safety nets and signs as flags, we
collected and trained the field data. As shown in Figure 6a, the final learning model reliably
recognized the flag within 8 m. The images were divided into training and validation
groups with a 10:1 ratio. Subsequently, 1288 images were collected in the field to increase
the recognition rate. As shown in Figure 6c, we obtained a model with a high recognition
rate, with a mean average precision (mAP) in excess of 0.9. Loss_box represents the
percentage of bounding boxes that was not detected during verification of the learned
model. Loss_coverage refers to the degree to which the detected bounding boxes deviated
from the actual value. Both items had low error rates of 0.1 or less. DIANA is equipped
with a Zed stereo camera and NVIDIA Jetson TX2. Skiing is a fast-moving sport, so image
inference must be performed in a short time. However, the NVIDIA Jetson TX2 is not
fast enough for inferring image data with a resolution of 1024 × 768 or higher. Therefore,
DIANA used 672 × 376, the minimum resolution supported by the ’Zed Stereo Camera’,
and achieved a frame rate of 12.

4. Motion Generation
4.1. Skiing Strategy

During skiing, several turning techniques are performed, including pflug bogens,
Stemm turns, and parallel turns. In this study, the ’carved turn,’ with the lowest deceleration
and the fastest speed, was selected. This maneuver is a turning method that utilizes the ski
side, so, unlike other turns that utilize the ski surface, there is no lateral sliding phenomenon,
so the speed is maximized. Instead, because it mainly uses the side of the ski, it is likely to
result in falling because of its low stability. Therefore, high control performance is required
for driving stability. To perform a ’carved turn,’ we created poses and motion that provided
connections between poses. First, we analyzed the poses of a human skier and selected
poses, a core of turning motion, and neutral motion, to change the direction of turning.
The robot’s poses that were most similar to human poses were selected. The motions were
produced using the fifth polynomial trajectory for a natural transition of the continuous
poses. Figure 7 shows the motion and role of each turning section for DIANA’s carved
turns. Second, we need to decide the path plan, i.e., when to start and finish turning
to drive through the desired route. In this study, the path planner receives the distance
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between DIANA and the gate from the stereo camera and LiDAR sensor, and, based on the
distance, the path planner determines the motion of DIANA. For example, when DIANA
poses in neutral motion, as shown in Figure 7a, if the gate is located on the right-hand side
based on the driving direction, the right turn starts. After this, the LiDAR sensor senses
that the gate passes behind DIANA during turning and the distance exceeds the specific
distance; the turn motion is finished and moved to neutral motion, as shown in Figure 7c.
The distance is specified through repeated experiments. In the simulation, the distance
between DIANA and the gate is not measured separately, but the motion of DIANA is
determined by receiving the position data of DIANA through dynamic calculations.

Figure 7. Motion and role of each turning section for DIANA’s carved turns.

4.2. Carved Turn

Given that the ski is elastic and has a side-cut structure (a wide front and rear and
a narrow center), pressure is applied to its middle section in an edged state (with the
ski-board against the surface), resulting in bending of the ski, and causing curvature.
Transitioning along this curvature naturally leads to turning [39].

Moreover, owing to the structure of the large side-cuts of the carving ski, the impor-
tance of the center of gravity in performing carved turns is high. It is important to use a
posture that applies pressure to the middle of the ski without the center of gravity moving
forward–backward or left–right during the turn [40]. Therefore, we need to control the
ZMP on the x-axis (forward–backward) and y-axis (left–right). However, the ZMP on y-axis
is considered more dominant on the stability. Thus, we only controlled the y-axis of the
ZMP to reduce the number of variables that needed to be controlled.

The pressure transmitted to the ski plate during the carved turn is generated from the
snow surface, produced by an edge operation (tilting the ski plate relative to the ground)
via a centripetal force. To maintain this force, as shown in Figure 7b, the inclination in which
the center of the body is located inside the turn compared to the lower body and angulation
in which the lateral movements of creating angles at the waist is important [41,42]. It is
ideal for the lateral ZMP (zero moment point) to remain in the center of both feet during
inclination and angulation. However, in actual skiing, the edge, which provides the main
centripetal force to the snow surface, is strongly formed on the outside foot and most of
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the snow surface is uneven. Therefore, starting with the outside foot is recommended:
inner foot = 10:0, converge and maintain at 7:3 [43]. In the case of the robot, the weight
of the upper body was much lower than the weight ratio of an individual upper body, so
the center of gravity was not sufficiently outside the foot (foot in the progress of turning).
Therefore, in addition to the movement of tilting the upper body outward, the movement
of pushing the outer foot forward was combined so that the center of gravity was loaded
on the outer ski. Human skiers have limited ankle movement due to ski boots. Unlike
human skiers, DIANA can move its ankles. Thus, DIANA can flexibly adjust the ski edges
for the carved turn as needed. DIANA has the advantage of being able to use a carved turn
without moving as much as a human.

After performing the carved turn, the bent ski returned to its original state and
generated a repulsive force, which required a movement to connect the repulsive force to
the next turn. In the case of DIANA, neutral motion was inserted between each carved turn,
as shown in Figure 7a,c, to absorb the rebound caused by the carved turn. Neutral motion
is a movement of instantly returning angulation and pivoting (an action of internally
rotating the outside foot), gradually performed during the carved turn process, to the initial
state before turning it [44,45]. In the case of DIANA, neutral motion occurred during the
absorption of the reaction force by slightly bending both legs.

4.3. Dynamics of a Carved Turn

To stably drive a robot, the zero moment point (ZMP) must be inside a support polygon
containing both skis. If the ZMP deviates from the outside of the support polygon, one of
the skis is likely to lose contact with the ground, resulting in a loss of stability. According
to the general definition of ZMP [46], the components of the ZMP are represented by
Equation (1).

xZMP =
∑ mi z̈ixi − ∑ mi ẍizi − ∑(Ty)i

∑ mi z̈i
, ẍi = gx, z̈i = gz

yZMP =
∑ mi z̈iyi − ∑ mi ÿizi − ∑(Tx)i

∑ mi z̈i
, ÿi = gy ±

υ2

Ri
, z̈i = gz (1)

To calculate the ZMP, the location, speed, and acceleration of the skiing robot on the
driving route must be calculated. Unlike linear driving, specific dynamic modeling is
required because the force applied to the robot varies depending on the turning angle.

Figure 8 shows a vertical view with respect to the ski slope. Suppose that the force
acting on the skiing robot is the force of gravity and friction between the ski and the surface.
If the coefficient of friction is set as µ and the inclination angle of the slope is set as α, the
acceleration acting on the robot is given by Equation (2).

ẍ = g sin α cos ψ − µg cos α

ÿ = ±rω2

z̈ = g cos α (2)

In the case of the angular speed ω, it depends on the rotation angle, ψ, so an expression
for the relationship between ω and ψ is needed. Given that the tangential acceleration
for rotation is ẍ, when the speed at which rotation occurs is represented as υ0, ω can be
expressed as in Equation (3).

ψ̇ = ω =
∫ t

0

ẍ
r

dt =
υ0

r
+

1
r

∫ t

0
g sin α cos ψ − µg cos αdt (3)

The radius of curvature r is determined for the case in which the ski is bent by an
amount given by the edge angle of the ski θ during the carved turn, which is represented
in Figure 9. The relationship between the radius of curvature and the edge of skiing can be
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expressed as in Equation (4), referred to as the ’The New Skiing Mechanics: Including the
Technology of Short Radius Carved Turn Skiing and the Claw’ by Howe [47].

r =
L2 cos θ

4 + h2

cos θ

2h
(4)

Figure 8. Top view of ski slope.

Figure 9. Curvature radius.

5. Controls for Skiing

DIANA’s system was implemented using the robot operating system (ROS) packages
for each function. Every sensor publishes the data as an ROS message and collects and uses
the data in packages that require data.

DIANA’s control method can be divided into high-level and low-level control. High-
level control determines which posture is adopted depending on the situation, based on
the data collected by sensors as DIANA descends a slope. In low-level control, DIANA
calculates the target position of the motor located in each joint every 8 ms to realize a
specific posture and transmits the command. The aforementioned two control methods
were executed on separate CPUs to minimize any delays associated with the temporary
unavailability of CPU resources. This delay may cause unintentional movement during
motion, which can result in an accident.

Figure 10 shows a diagram of the software structure of DIANA.
The high-level control determines the carved turn timing by referring to the vision

inference data. A color image with a size of 672 × 376 is acquired from the left camera of the
Zed stereo camera. It is transmitted to DetectNet, which infers flags present in the image
using a pre-trained neural network model.

DetectNet transmits the detected objects to the DIANA Commander, which obtains
object position data from the Zed stereo camera and LiDAR. The positions of the flags
detected via inference are estimated using the bounding box and the depth map. To in-
crease the reliability, the value is compensated using the distance information acquired
from the LiDAR sensor. Depending on the position of the flags acquired via the afore-
mentioned process, the DIANA Commander transmits motion commands to the DIANA
Motion Module.

Figure 11 is a flowchart that shows the process utilized by the DIANA commander in
determining motion based on the sensor data. When the DIANA Commander is initiated,
the results of vision recognition are collected. If the flag is not found, vision recognition is
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performed again. If the flag is found, the gate location is confirmed. If the gate is located
sufficiently far away, the position of the gate is located relative to the sides of DIANA. A
straight pose is assumed if the gate is located in the middle relative to DIANA. However, a
left-turn pose is assumed if the gate is located on the left of DIANA. Otherwise, a right-turn
pose is assumed. If the gate is sufficiently close, the robot performs a scan using LiDAR. If
the gate is detected, a straight pose is initiated. A left-turn pose is initiated if the gate is on
the right side of the slope; otherwise, a right-turn pose is assumed. After a pose is adopted,
the vision recognition process is reinitiated. Low-level control directly sends a command to
the motor to assume a posture according to the high-level control command. The DIANA
Motion Module transmits the target position to the motor controller so that the robot
can assume a specific posture according to the command transmitted from the DIANA
Commander. In this case, the IMU sensor and the F/T sensors measure the ZMP that moves
out of the support polygon owing to an irregular external force and compensates for it by
moving the center of mass.

Figure 10. Diagram of DIANA’s software structure.

Figure 11. Flow chart for DIANA commander.
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6. Simulation
6.1. Simulation Method

Based on dynamic modeling, a simulation of skiing robots was conducted using
MATLAB R2017a(MathWorks). The simulation proceeded in the same order as shown in
Figure 12.

Figure 12. Simulation process.

The driving path of the skiing robot was set as an ideal path, as shown in figure,
based on the magnitude of the slope and the location of the gate. Assuming that there are
no external forces other than friction between the ski and snow, the simulation proceeds
as follows.

1. The motion of DIANA is determined by the path planner according to the path
set by the skiing robot, and the rotation angle ψ and angular velocity ψ̇ of DIANA
are calculated.

2. In the DIANA Motion Module, θjoint is determined by calculating the IK of DIANA
based on the corresponding motion information.

3. In the dynamics calculation module, the ZMP is calculated using ψ, ψ̇, and θjoint
obtained from the path planner and DIANA Motion Module.

4. The dynamics calculation module feeds back the radius of curvature of the ski rski,
DIANA’s position p, velocity ṗ, and acceleration p̈ to the planner.

The main issue in skiing is maintaining stability in the left and right directions to
prevent falling. The stability in the front and rear directions is high because of the length
of the ski and is not significantly affected by changes in the ski motion. However, even
though the left and right directions are significantly affected by external forces such as the
centripetal force and gravity during rotational driving, the support side is very narrow,
and thus is not stable. Therefore, it is necessary to focus on the stability in the left and right
directions. In general, humanoid robots use ZMP for stability analysis [48,49]. The skiing
robot may also calculate stability during driving by determining the presence or absence of
the ZMP inside the support polygon made by the ski owing to the ZMP [50,51].

6.2. Simulation Result

The simulation was conducted in an environment similar to the actual experimental
environment of the skiing robot. The slope angle was set to 15◦, and a ski with a minimum
rotation radius of 8.7 m was used. Figure 13 shows an example (right) of the robot’s motion
and the calculated ZMP at the location indicated on the skiing robot’s path (left) in the
simulation. Figure 14 shows the change over time for ZMPy. The simulation in this study
was performed using ZMP based on the center point between both feet of DIANA during
skiing. In this case, if the ZMP in the lateral direction is inside the support polygon formed
by both skis of DIANA, it can be established that the robot is in a stable state, so the
positions of ZMPy and the ski plates, which are elements in the lateral direction of ZMP,
are as shown in Figure 14.

In the experiment, DIANA was pushed directly to the starting point. Therefore,
assuming that the initial velocity is one factor that affects the result, the simulation was
conducted by changing the initial velocity. If the initial velocity is low, as in Figure 14
(green), it is evident that ZMPy is stable between the two skis. However, in this case,
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the turn starts relatively late compared to the other cases, and more time is required for
completion. However, if the initial velocity is high, such as in Figure 14 (blue), the turn
starts relatively early compared to the other cases, which implies that less time is required
for completion. If a third turn is performed, ZMPy is out of the ski plate. Thus, it can
be predicted that driving will be relatively unstable compared to the other cases. In the
simulation results, the appropriate initial velocity value was approximately 4.8 m/s. In
the actual test, several variables can have an effect, so identical results are not necessarily
expected when tested under the same conditions. However, initiating DIANA at an
appropriate speed has a significant influence on stability.

Figure 13. DIANA simulation path (left) and DIANA’s motion with ZMP (right).

Figure 14. ZMPy variants according to time.

7. Field Test

DIANA was used to conduct a field test at Phoenix Park, located in Pyeongchang,
Korea, on 12 February 2018, to evaluate its performance. Phoenix Park is characterized by
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a low temperature and a large amount of snow on a site of 6.6 × 106 m2. It is renowned for
its excellent snow removal ability and snow quality among ski resorts in Korea.

7.1. Environment

On the day of the experiment, the average wind speed was 5 m/s, the minimum
temperature was −16 ◦C, and the maximum temperature was −7 ◦C. Considering the
performance of DIANA, a total of five gates were installed on an 80 m long slope based on
the rules of the original alpine competition. As shown in Figure 15, the experiment was
conducted on an actual ski slope with an average inclination of 15°.

Figure 15. A view of the slope (left) and a plan view (right).

7.2. Test Result

Figure 16 shows a chronological list of the scenes wherein DIANA recognized the
flags as it traveled down the slope. DIANA correctly recognized the flags while moving
down the slope and did not misidentify any objects.

Figure 17 shows the skiing motions of DIANA on the slopes, arranged according to
time. It was confirmed that DIANA was able to drive on the slope by transiting through the
gates while performing a carved turn. Figure 18 shows the y-axis value of ZMP calculated
based on the force data measured using the F/T sensors installed on both feet, while
DIANA was in motion, and the y-axis of ZMP calculated using the simulation results. This
is a comparative graph. It is evident in Figure 17 that DIANA is performing neutral motion
in approximately 1.8 s to 2.6 s, carved turn motion in approximately 2.6 s to 4.8 s, and
neutral motion again in approximately 4.8 s to 5.6 s. The aforementioned motions can be
represented by areas Figure 18a, Figure 18b, and Figure 18c and are consistent with Figure
7a, Figure 7b, and Figure 7c.
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Figure 16. Recognition result of skiing DIANA.

In section (a), it is evident that a weight shift occurs during ’neutral motion’. In the
(b) section, a full ’carved turn’ occurs, and in the beginning, it is evident that ZMPy moves
toward the ski plate corresponding to the outer foot as the outer foot pressure increases. In
the second half, ZMPy returns to the baseline. A weight shift occurs during neutral motion
in section (c), and ZMPy moves to the ski plate corresponding to the outer foot as a ’carved
turn’ is performed again after section (c).

However, the overall ZMPy enters the support polygon that constitutes the ski plate
of both feet, and a continuous ’carved turn’ is successfully performed without falling, even
in actual skiing.



Sensors 2022, 22, 816 16 of 19

Figure 17. The scene wherein DIANA travelled down the slope.

Figure 18. Comparison of ZMPy based on simulation and field test results.
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8. Conclusions

In this paper, we present the research process and results for a humanoid robot
with a height of 1.23 m as it participated in a human giant slalom match on an actual
slope. The flags were recognized based on the stereocamera’s image information using
’CNN&DetectNet’, distances to flags were measured using LiDAR sensors, and the path for
the robot to ski was created based on the flags’ locations. For the robot to follow a given
path, appropriate rotational and switching motions were created by imitating the posture
of humans skiing, and a stable carved turn was used by compensating for motions in real
time based on information from F/T sensors and an IMU sensor so that the robot did not
fall despite various environmental changes. A numerical simulation tool was developed
using MATLAB R2017a to evaluate the validity and stability of the carved turn motion
prior to the actual slope experiment and the development of the robot.

Finally, the motion of DIANA in simulation analysis was verified via experimentation
on the actual slope.

We created a learning model by utilizing a convolutional neural network for flag
recognition. The artificial intelligence model presented in this study stably recognized flags
even in outdoor environments under various weather conditions.

In addition, unlike previous studies, a humanoid robot with a height of 1.23 m and
23-DOF was used to autonomously complete actual giant slalom skiing tasks with carved
turns, similar to human skiers on actual slopes.

The performance of the robot on various human skiing tasks was evaluated as success-
ful if tasks that are difficult for humans to perform were conducted in harsh environments.
As such, the results of this study advance the technology of humanoid robots by closing
the gap between the abilities of humanoid robots and their human counterparts. If the
humanoid skiing robot continues to be developed, it could be used in the future as a means
to save lives if people are isolated or trapped in snowy mountains.

However, this research is limited to implementing the same level of turning as a
human skier, because DIANA does not control the ZMP in the x-axis (forward–backward)
and does not consider damping disturbance caused by uneven snow surface. Therefore, in
outdoor experiments, DIANA falls sometimes depending on the surface conditions. In the
future, if the ZMP control of the x-axis can also be performed to identify and correct the
effects on stability, it is expected that the humanoid robot will be able to perform a more
stable carved turn by overcoming the unevenness of the snow surface. Based on this study,
we intend to continue the development of skiing robots with higher stability and faster
speed by investigating slopes with higher difficulty. Just as Robocup aims to outperform
humans at the highest level in soccer, we intend to continue to pursue research on skiing
robots with the aim of breaking human skiing records at the Winter Olympics.
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51. Petrič, T.; Nemec, B.; Babič, J.; Žlajpah, L. Multilayer control of skiing robot. In Proceedings of the 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 4832–4837.

http://dx.doi.org/10.3389/fspor.2020.00025
http://dx.doi.org/10.3390/s16040463
http://www.ncbi.nlm.nih.gov/pubmed/27043579
http://dx.doi.org/10.3390/s19040902
http://www.ncbi.nlm.nih.gov/pubmed/30795560
http://dx.doi.org/10.1017/S0263574708004955
http://dx.doi.org/10.1017/S0269888916000163
http://dx.doi.org/10.3390/s19173664
http://www.ncbi.nlm.nih.gov/pubmed/31450736
http://dx.doi.org/10.3390/app8122643
http://dx.doi.org/10.1145/3297156.3297159
http://dx.doi.org/10.1145/3065386
https://developer.nvidia.com/blog/detectnet-deep-neural-network-object-detection-digits/
http://dx.doi.org/10.1080/0264041031000140284
http://dx.doi.org/10.1055/s-2007-993384
http://dx.doi.org/10.1080/14763141.2020.1788630
http://dx.doi.org/10.1111/j.1600-0838.2009.00956.x
http://www.ncbi.nlm.nih.gov/pubmed/19558385
http://dx.doi.org/10.1111/cgf.13606
http://dx.doi.org/10.1109/ROBOT.2002.1014740

	Introduction
	Hardware
	Mechanical Design
	Water Proof Design
	Electrical Design

	Vision Recognition Method
	Color-Based Recognition
	Deep Learning Gate Detection

	Motion Generation
	Skiing Strategy
	Carved Turn
	Dynamics of a Carved Turn

	Controls for Skiing
	Simulation
	Simulation Method
	Simulation Result

	Field Test
	Environment
	Test Result

	Conclusions
	References

