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Raczyński, T.; Janczak, D.;

Jakubowska, M. CNT/Graphite/SBS

Conductive Fibers for Strain Sensing

in Wearable Telerehabilitation

Devices. Sensors 2022, 22, 800.

https://doi.org/10.3390/s22030800

Academic Editor: Egidio De

Benedetto

Received: 26 November 2021

Accepted: 18 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

CNT/Graphite/SBS Conductive Fibers for Strain Sensing in
Wearable Telerehabilitation Devices
Piotr Walter 1,2,* , Bartłomiej Podsiadły 1, Marcin Zych 1, Michał Kamiński 1, Andrzej Skalski 1,
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Abstract: Rapid growth of personal electronics with concurrent research into telerehabilitation
solutions discovers opportunities to redefine the future of orthopedic rehabilitation. After joint injury
or operation, convalescence includes free active range of movement exercises, such as joints bending
and straightening under medical supervision. Flexion detection through wearable textile sensors
provides numerous potential benefits such as: (1) reduced cost; (2) continuous monitoring; (3) remote
telerehabilitation; (4) gamification; and (5) detection of risk-inducing activities in daily routine. To
address this issue, novel piezoresistive multi-walled carbon nanotubes/graphite/styrene–butadiene–
styrene copolymer (CNT/Gr/SBS) fiber was developed. The extrusion process allowed adjustable
diameter fiber production, while being a scalable, industrially adapted method of manufacturing
textile electronics. Composite fibers were highly stretchable, withstanding strains up to 285%, and
exhibited exceptional piezoresistive parameters with a gauge factor of 91.64 for 0–100% strain range
and 2955 for the full scope. Considering the composite’s flexibility and sensitivity during a series of
cyclic loading, it was concluded that developed Gr/CNT/SBS fibers were suitable for application in
wearable piezoresistive sensors for telerehabilitation application.

Keywords: strain sensor; conductive polymer composite; conductive fiber; textile electronics

1. Introduction

The recent prevalence of personal electronics in everyday usage holds a great premise
towards the rapid development of rehabilitation-assisting devices. Investigation of new
and emerging rehabilitation modalities has gained even more significance during the
COVID-19 pandemic, as telemedicine and telerehabilitation have been widely adopted.
The opportunity to remotely consult patients, verify rehabilitation progress, and adjust
exercises accordingly is not the only advantage. Monitoring orthopedic rehabilitation
through personal electronics devices allows the acquisition of motor metrics and biomarkers
outside the doctor’s office. It improves the reliability of the assessment because (1) patients
can be monitored over an extended period; (2) individual’s motor performance is not
influenced by ongoing clinical examination, which can distort typical motor patterns and
spatiotemporal parameters. Numerous research has reported non-inferiority of in-home
telerehabilitation in comparison with face-to-face rehabilitation [1,2]. Moreover, wearable
medical devices offer the opportunity to gamify the orthopedic rehabilitation process to
motivate participants, which has been proven effective in several fields of disabilities [3,4].

After joint injury or operation, convalescence includes free active range of move-
ment exercises, such as bending and straightening of the joints. Instead of continuous
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professional observation, whenever possible, the patient could perform the exercises inde-
pendently with feedback from the wearable flexion sensor. This could greatly improve the
rehabilitation process, reducing the necessary time of medical supervision. Venkataraman
et al. described “although formal gait analysis using motion-capture systems is the gold
standard for evaluating gait and mobility performance, such analysis is expensive and
requires a specialized laboratory setup that may not be feasible or practicable for clinical or
home settings” [5]. Low-cost, wearable sensors would also enable continuous monitoring
of the patient’s everyday activities to identify risk-inducing movements and prevent future
health complications.

To detect joint flexion with a wearable sensor, flexible strain gauges are considered
to be the most promising solution. Conventional metal strain gauges and extensometers
fail to meet the requirements posed by capturing the garment elongation associated with
joint flexion. Moreover, their gauge factor at ~2% and 5% of maximal strain [6] are insuffi-
cient for wearable sensor applications. Textile strain sensors must be lightweight, flexible,
stretchable, strictly integrated with the garment structure, and withstand strains up to
55% [7]. Due to these requirements, conventional electrical solutions cannot be adopted to
textile strain sensors. Apart from the flexibility aspect, there are challenges regarding un-
conventional substrate adhesion to the textile, thermal expansion compatibility, resistance
to washing, environmental resistance, and stability of electrical parameters over time.

To meet the requirements posed by flexible, stretchable textronic sensors, substantial
research has been devoted to the development of elastic conductive polymers composites
(elastic CPCs). The vast majority of these solutions are composites based on conductive
particles immobilized in an elastomer matrix. The conductive phase of the CPC may
constitute of metal particles (gold [8,9], platinum [10], silver [11–14], copper [15,16], and
nickel [17,18]), metal oxides (ZnO [19,20], Fe3O4 [21,22], and RuO2 [23]) carbon nanostruc-
tures (carbon black [24–26], graphite [27], graphene [28–32], and carbon nanotubes [32–37])
and their oxides (reduced graphene oxide [38,39] and graphene oxide [40]). The elastomer
matrixes most commonly used are: poly (dimethylsiloxane) (PDMS) [9,20,28,31,35,41],
TPU [33,38,42–45], PU [46–48], SBS [49,50], and Ecoflex [8,25,51,52].

Although CPCs outperform conventional electric materials in terms of mechanical
properties, their usage in textile electronics poses two significant challenges—manufacturing
process and stabilizing their electrical properties, especially under strains. Numerous
CPC solutions have been reported, yet most manufacturing methods fail to scale into
electronics production. The majority of these solutions are manufactured as separate,
fully-functional structures, and only at the end are they coupled with the substrate using
gluing [53–55], stitching [56], or fastening with adhesive tape [14,54,57–59]. These methods
are not repeatable or/and are hand labor-intensive and therefore not scalable for high-
volume production. However, the application of screen printing and heat transfer printing
has been reported [60–62]. These manufacturing methods enable large-format, scalable,
time-efficient production of sensors firmly embedded in the textile fibers of the substrate.

Although screen-printing techniques offer numerous advantages, their usage in flexi-
ble strain sensors is limited by several factors. Firstly, screen-printing requires a relatively
uniform, planar surface of the substrate. It is particularly challenging considering various
forms of orthoses and fiber thickness of the bands stabilizing the joints. Secondly, due to
low layer thickness, screen-printed strain gauges often require a higher print area over the
textile substrate in comparison with fibers. The polymer layer impairs uniformity of the
textile elasticity, which can significantly alter the stretching of the fabric, restrict the user’s
movement, and result in additional creasing of the fabric. In response to mentioned require-
ments, substantial research has been conducted towards the development of conductive
fibers in fiber-based electronics that are expected to be lightweight, long-lasting, flexible,
and conformable [7].

Therefore, we present a novel CPC piezoresistive fiber intended to meet the require-
ments of textile, fiber-based electronics and suitable for strain sensing in telerehabilitation
application. Our composite is based on the elastomer–styrene–butadiene–styrene copoly-
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mer (SBS), with the addition of a carbon conductive phase. Numerous proportions of
graphite (Gr) and multi-walled carbon nanotubes (CNT, MWCNT) and SBS elastomer have
been tested. Out of 14 compositions, 4 with superior conductivity were selected and further
characterized with strain testing, piezoresistive testing, and cyclic loading. Fibers with
diameters of 1 mm, 0.5 mm, and 0.2 mm have been successfully manufactured from pre-
pared granulate. The employed method of hot extrusion allows scalable, bulk production
of continuous fibers with adjustable diameter, determined by an interchangeable nozzle.
The developed composite fibers exhibit exceptional piezoresistive parameters with a gauge
factor up to 2955 and maximal strain over 200%. With their high flexibility and small
diameter, the fibers can be easily integrated as textronics strain gauges by knitting directly
onto the garment.

2. Experimental
2.1. Fiber Preparation

Utilized composite substrates consisting of styrene–butadiene–styrene (SBS) triblock
copolymer Europrene SOL T 166 (Versalis, San Donato Milanese, Italy), graphite (Gr)
powder MG1596 (Sinograf SA, Toruń, Poland), multiwall carbon nanotubes (CNT) NC7000
(Nanocyl SA, Sambreville, Belgium), and chloroform (Merck KGaA, Darmstadt, Germany).

SBS was prepared by mixing copolymer granulate with chloroform (50 wt%) and
subjected to ultrasound sonification until a homogenous solution was achieved. Similarly,
CNT agglomerates and graphite were dispersed within separate chloroform solutions and
30′ of sonification. Carbon suspensions were mixed with SBS solution so that CNT to Gr to
SBS weight ratios would correspond to the target filament’s yield composition (Table 1),
as solvents are evaporated in the following steps. Solutions were thoroughly mixed using
an MS7-H550-Pro magnetic stirrer for two hours to ensure uniform distribution of the
carbon particles and initial evaporation of the solvent. Then, the solution was mixed by
hand, poured onto a large area container, followed by drying at 50 ◦C for 24 h to evaporate
the remaining chloroform. The composite cast was fragmented with pliers into ~1 cm
chunks and poured into the hopper of the extruder. A single screw extruder with dual
heating zones (set to 150 ◦C) was incorporated to manufacture continuous CPC fibers with
diameters of 0.2 mm, 0.5 mm, and 1 mm corresponding to the interchangeable extruder’s
nozzle diameter.

Table 1. Conductive SBS fiber compositions of various CNT and Gr filler loading. Fibers with
diameters of 0.2 mm, 0.5 mm, and 1 mm were extruded and assessed based on electrical conductivity.

Fiber Notation Carbon Filler Loading Conductivity Qualification

CNT wt% Gr wt% ø0.2 mm ø0.5 mm ø1 mm

- - 10 — — —
- - 20 — — —
- - 30 — — —
- - 40 — — —
- - 45 — — —

FGr - 50 + + —
- 2 - — — —
- 5 - — — —

FCNT 10 - N/E + +
- 2 2 — — —
- 5 2 — — —
- 5 5 — — —

FM1 5 10 + + +
FM2 5 15 + + +

“+”—fiber conductivity exceeding 5 S m−1; “—”—fiber conductivity below 5 S m−1; N/E—fiber not extruded due
to rheological performance.
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2.2. Carbon Content Selection

To establish a filament’s yield target carbon content, numerous filaments of various
CNT/SBS, Gr/SBS, and CNT/Gr/SBS ratios were prepared (Table 1). The preliminary
composition selection was carried out based on the electrical conductivity requirement. For
application on knee-stabilizing bands with joint flexion detection, 10 cm of the flexible fila-
ment was assumed as the target length. To ensure an appropriate resistance measurement
for the portable and wearable electrical module, a subjective maximum resistance value of
5·106 Ω was established for the stretched fibers. A 50-fold increase in initial resistance for
50% elongation was assumed through preliminary testing. Therefore, for 10 cm in length
filaments, a maximum initial resistance value of 1·105 Ω was desired. Assuming 0.5 mm
filament diameter, the calculated value of 5 S·m−1 was the target minimal conductivity
for composite selection. Fibers with graphite content above 50% and fibers with over 10%
CNTs failed to extrude due to the rheology of the melted mixture. FGr, FCNT, FM1, and
FM2 fibers of 0.5 mm diameter were chosen for further characterization.

2.3. SBS Fiber Characterization

Static tensile tests and fibers’ critical strain were investigated with the Cometech
QC-506M2 tensile testing machine (Cometech Testing Machines Co., Ltd., Taichung City,
Taiwan). Fibers were characterized at 50 mm in-between jaws length, and custom soft
jaws were employed to reduce the stresses resulting from the specimen fixing. The critical
strain was calculated as maximal elongation at the breaking point relative to the initial
sample length. Preliminary conductivity qualification of the fibers was performed by
2-point resistance measurement using Fluke 177 multimeter (Fluke Corporation, Everett,
WA, USA). Further conductivity assessment was established with 4-wire resistance probing
with Keysight 34461A multimeter (Keysight Technologies, Santa Rosa, CA, USA).

The influence of stretching of the samples on its electrical resistance was investigated
on a self-made device. The device allows mounting of the specimen in copper clamps, while
one is fixed and the other can be moved by a stepper motor with a screw gear. Current
elongation and electrical resistance are recorded in 25 ms intervals and transferred to the
personal computer. The measurement range of resistance is from 2 Ω to 50 MΩ with an
accuracy of 2%; the linear range of the movable clamp is 200 mm. Three samples with a
diameter of 0.5 mm were selected to examine the given composite. Linear stretching was
carried out at a speed of 0.15 mm·s−1, while resistance was probed at 39 Hz frequency.
The samples were mounted in the clamps with a 10 mm distance between each clamp.
Cyclic stretching was carried out for the FM1 fiber at a speed of 0.5 mm·s− for preliminary
cyclic loading, addressing dynamics of resistivity drop at the unloaded state, and 8 min of
idle time was set after every 10% stretch–release cycle. For the 500-cycle testing, the same
parameters and mounting were used, but at 20% strain cycles and no idle time between
cycles. For clarity of the graphical representation, only one point indicated resistance in the
stretched/released cycle, which was the maximum value measured in a 0.5 s span after the
encoder recorded the target position.

3. Results and Discussion

Extruded carbon-SBS fibers were highly elastic, which allowed for their storage in
coils. Composites containing carbon nanotubes are matte black in color, while graphite/SBS
fibers exhibit a gray appearance with metallic gloss (Figure 1).

For application as strain sensors in wearable textronic systems, fibers should withstand
the associated elongation of the garment structure during joint flexion. Human skin
during limb movements undergoes stretching over 100%, with local extensions up to 400%,
as reported by on-skin sensor measurements [13]. However, garment textiles typically
experience elongation under 10% since they do not exhibit mechanical compliance with
the body and allow for movement of the garment relative to the skin surface. Most
common yarns like cotton, wool, silk, bamboo, viscose, polyester, or polyamide fibers
exhibit elongation at break in the range of 7–41% [63–65].
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Figure 1. Coils of extruded composite fibers. From left to right, FGr (Gr/SBS), FCNT (CNT/SBS),
FM1 (CNT/Gr/SBS), FM2 (CNT/Gr/SBS) are shown, respectively.

However, for capturing joint flexion, it is necessary to employ a tightly-fitted gar-
ment made from highly elastic synthetic fibers such as nylon or elastane to ensure textile
elongations compliance with skin movement. Generally for wearable sensors, the strain as-
sociated with joint flexion is under 50% [66,67] with reported strains varying from ~40% for
finger bending [68–72], 23–45% for wrist movement [41,66,68,69,72], 35–63% for elbow flex-
ion [68,69,72], and 30–40% for bending of the knee [68,72,73]. Values measured with knee
flexion sensors are congruent with the motion capture analysis conducted by Wessendorf
et al., which provides a value of 44.6% as maximum skin strain (in any direction) associated
with the knee joint for full flexion and the extension cycle [74]. Wu et al. reported 40%
maximal strain of the textronic system embedded onto the kneecap area of tight-fitting
exercise pants [73]. This value was used as a base strain benchmark of our fibers, as they are
intended for motion-capturing telerehabilitation devices. Therefore, with the employment
of a universal testing machine, the critical strain of various compositions was established
for fibers 0.5 mm in diameter (Figure 2).
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Figure 2. Breaking strain for different carbon/SBS composite 0.5 mm fibers with the assessment of
the conductivity of the unstrained fiber. FGr is Gr/SBS filament; FCNT is CNT/SBS composition;
and FM1 and FM2 are mixes of SBS, graphite, and CNT in different ratios.

Only FCNT and FM1 have sufficient elasticity to be applicable in wearable strain sen-
sors (>40%), with FM1 exhibiting outstanding 230% elongation at break and FCNT breaking
at 92% strain. All the fibers display elastic behavior while maintaining adequate conduc-
tivity at an unstrained state; therefore, piezoresistive testing was carried out (Figure 3) to
establish linearity and sensitivity.

Gr/SBS filament FGr proved to have excellent sensitivity to stretching; however, its
usage in strain sensors is limited due to its low breaking point. Fiber based on carbon
nanotubes (FCNT) exhibits excellent linearity and strain working range; its gauge factor,
however, is orders of magnitude lower than that of other filaments. As shown in the
snippets of Figure 3, fibers FCNT and FM2 exhibit highly linear piezoresistive characteristics
within the first 80% of their operating range. On the other hand, R/ε curves of FGr and FM1
are non-linear with a quasi-exponential course. Notably, of the two CNT/Gr/SBS filaments,
FM1 displays an exceptional strain range with superior resistance change. Therefore, FM1
was chosen as the most promising option for high-sensitivity, long-range strain sensing.
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The presented piezoresistive curves ended with the breaking of the samples. It was
prevalent that all the fibers exhibited higher maximal strain in piezoresistive tests compared
with tensile testing. The trend was too evident to be explained by the dispersion of measure-
ments. It is believed that the tensile strength of the fiber could be described by the weakest
link theory, which assumes Weibull distribution of the flaws in the material, therefore
providing fiber fracture probability as a function of the length of the specimen [75,76]:

F(σt) = 1− exp
[
− l

l0

(
σt

β

)α]
(1)

where σt stands for normalized tensile strength; l is the length of the specimen; and l0
stands for reference gauge length, while α and β are parameters for shape and scale of
the specimen. Since the initial Weibel’s description of the statistical theory of damage in
materials in 1939 [77], numerous models have been developed to describe the mechanical
strength of fibers [78,79], fiber-reinforced composites [80], and particle-filled elastomers [81]
with very notable Payne and Mullins effect [82]. Nevertheless, these models indicate a
strong correlation between the length of the gauge and the decrease in the specimen’s
strength. For tensile testing, the 50 mm gauge length was chosen, as it is the prevalent
gauge length for tensile testing. For piezoresistive tests, shorter 10 mm samples were used,
as a consequence of 2 Ω to 50 MΩ resistance measuring range. Therefore, we believe that
the reason for higher elongation at break in piezoresistive characterization is an effect of
shorter gauge length and is explained by the distribution of weak points throughout the
fiber length, as indicated by cited models.

For piezoresistive strain gauges, one of the most critical parameters is the gauge factor
(GF), defined as the ratio of the relative change in resistance (∆R/R0) to the engineering
strain of the specimen (ε):

GF =
∆R/R0

ε
=

∆R/R0

∆l/l0
=

R−R0
R0

l−l0
l0

(2)

where l0 is the initial, unstrained length of the specimen, R0 its initial resistivity; l is the
total length of the strained composite, with R as its measured resistivity. For fibers FGr,
FCNT, FM1, and FM2, the gauge factor was calculated in various strain ranges, as presented
in Table 2.
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Table 2. Gauge factor (GF) of the various composite filaments within several strain ranges. The last
row describes the gauge factor of each filament for maximal strain as measured by piezoresistive
testing (Figure 3).

Strain Range FGr FCNT FM1 FM2

0–10% 25.05 3.88 5.34 4.94
0–20% 59.94 5.70 7.59 6.18
0–50% - 7.90 20.75 12.71

0–100% - 10.37 60.55 -
0–200% - - 524.7 -

0–max (εmax) 151.5 (34%) 16.70 (134%) 2955 (285%) 15.44 (52%)

As shown in Figure 3 and Table 2, piezoresistive behavior is manifested stronger in
higher strain ranges. Considering the stretchability of FM1 fiber, fibers could be stretched
prior to integration with the textile. If a particular application requires only 50% strain,
then instead of 0–50% working range, the fiber could be working in 150–200% of its range
to increase the piezoresistive response. Therefore, the sensitivity S10% was calculated based
on the resistance change over 1 mm of elongation, equivalent to 10% strain in 10 mm initial
fiber length:

S10%(ε) =
Rε − Rε−10%

l10%
(3)

where Rε is the resistance of the fiber under given strain ε, Rε−10% is the resistance mea-
sured at a 10 percentage points lower strain and length of the specimen, and l10% is an
equivalent of 10% initial gauge length. A substantial increase in the S10% and the gauge
factor in relation to strain was observed (Figure 4), which is consistent with other reports of
piezoresistive composite materials.
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fiber.

Noticeable sensitivity increase is observed in higher working ranges. For elongation
between 0% and 10%, FM1 composite exhibits sensitivity of 2.7 kΩ/mm and the value
increases to 24.4 MΩ/mm within 275–285%. Similarly, gauge factor increases from 5 at 10%
to 2955 at 285%. The strain sensor in wearable textile application undergoes repeatable
straining over movements of the body. To evaluate piezoresistive behavior under recurrent
straining, cyclic testing of FM1 filament was conducted. Fibers of an initial length of 10 mm
were strained by 10% at a speed of 0.5 mm·s−1 followed by an immediate return to the
starting position at an equal pace. Multiple initial strains exhibited significantly higher
resistance response than subsequent cycles; hence cycles 12–17 were chosen to represent
the fiber’s performance under repetitive loading (Figure 5). A period of 1s of stretching
and 1s of unstraining was followed by 8 min of rest time to ensure a return close to the
baseline resistance—the extended idle time allowed to observe repeatability and dynamics
of resistivity decrease after releasing the fiber.
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Figure 5. Cyclic strain testing of FM1 composite fiber. Strains of 10% were separated by 8 min of rest
time to observe repeatability and dynamics of resistivity drop at unloaded state.

Novel CNT/Gr/SBS fiber exhibited satisfactory, repeatable response, however, a slight
decrease in the resistance response can be observed for subsequent cycles. Conducted tests
showed significant time (~5–8 min) needed for total resistance decrease (within ±2%), but
only 5–9 s was necessary for 20% resistance decrease relative to peak value. Further cyclic
testing was carried out to assess applicability for higher frequency (0.25 Hz) strain sensing
and examine the manufactured fibers’ durability (Figure 6).
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4. Conclusions

The extrusion process proved to be a suitable method for producing piezoresistive
composite fibers. It provides a number of advantages: it is scalable, ideal for bulk manu-
facturing; allows for simple fiber diameter adjustment via an interchangeable nozzle; and
produces continuous fibers with no limitations in length since the extruder’s hopper can be
refilled during operation.

Fourteen CNT/SBS, Gr/SBS, and CNT/Gr/SBS composites were manufactured, con-
sisting of various filler ratios. Each composite was subjected to an extrusion process with
nozzles of 1 mm, 0.5 mm, and 0.2 mm in diameter. Out of 42 combinations, four 0.5 mm
fibers were selected for further investigation—FCNT, FGr, FM1, and FMTensile tests re-
vealed that only FCNT and FM1 withstand >40% of strains necessary for wearable strain
sensor applications. Comparison with previous works on piezoresistive composites, based
on polymers from the styrene–butadiene family and various carbon fillers, are presented in
Figure 7 and Table 3.
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Table 3. The composition of reported in the literature piezoresistive composites with carbon fillers
and polymer matrices from the styrene-butadiene family.

Notation in Figure 7 Composite Reference

FM1 CNT/Gr/SBS This work
FCNT CNT/SBS This work

A FLG/SBS [83]
B SBR/NR/Gr [34]
C CNT/SBS [84]
D CNT/SBS [85]
E GO/SEBS [86]
F CNT/SBS [87]
G CNT/SEBS [88]
H CNT/SBS [89]

FLG—few-layer graphene; NR—natural rubber; SBR—styrene-butadiene rubber; SEBS—styrene-ethylene-
butylene-styrene copolymer.

Formerly reported CNT/SBS piezoresistive fibers utilizing the extrusion process had a
gauge factor of 30 and a maximum strain of up to 20% [84]. Our FCNT composite exhibits
a superior working range with the maximal strain of 92% and 134% for fiber lengths of
50 mm and 10 mm, respectively. The calculated gauge factor for the 0–100% range was
10.37 and 16.7 for the whole range until fiber rupture.

The proposed composite ratio of 10 wt% to 5 wt% to 85 wt% for CNT, Gr, and SBS
respectively proved to yield even better results. Fiber FM1 consisting of the CNT/Gr/SBS
composite exhibited a gauge factor of 60.55 for 100% strain range, 534.7 for 200%, and
2955 for the whole range up to rupture (285%). The presented CNT/Gr/SBS fiber exhibits
superior strain range and gauge factor, compared with other reported works with com-
posites based on poly (styrene–butadiene–styrene) elastomers. Notably, calculating GF
near the fiber’s breaking point usually yields higher values, which are not indicative of
working range sensitivity as achieving such strains is not repeatable due to significant
fatigue. Lowering conductive filler content near the percolation threshold can also inflate
gauge factor values, while introducing severe unrepeatability and irreproducibility. The
developed CNT/Gr/SBS fiber has conductive filler content relatively distant from the
percolation threshold, exhibiting satisfactory conductivity (13.6 ± 0.7 S·m−1) repeatably
throughout over 5 m of extruded filament. Measuring fibers’ elongation at break showed
the evident influence of the gauge length on the measurement outcome—230% for 50 mm
length of FM1 and 285% for 10 mm. This correlation is supported by theoretical models
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in the literature devoted to conventional materials yet is frequently not considered in the
piezoresistive composite reports.

Conducted testing revealed significant time (~5–8 min) necessary for the resistance
value to return to the baseline. To assess applicability for the on-body telerehabilitation
devices, cyclic strains at 0.25 Hz frequency were performed on the FM1 fiber. Throughout
all 500 cycles, the dynamic of the resistance changes was sufficient, leaving the strain
response clearly distinguishable from adjacent release values. While relative resistance
change was apparent within the cycle, the absolute resistance value for the same 20% strain
decreased significantly throughout the series, especially in the initial cycles. For application
in wearable sensors, the electric signal from piezoresistive fiber has to be digitally analyzed
to provide the current strain value accurately.

Combining carbon nanotubes and graphite in the SBS composite induces several
advantages over CNT/SBS or graphite/SBS composites as summarized below:

Carbon nanotubes exhibit non-linear current/voltage characteristics; graphite, on the
other hand, is highly linear within low electric fields—as observed in the literature [90,91]
and our experimental data for Gr/SBS and CNT/SBS fibers. Combining CNT and graphite
in the composite results in a nearly linear characteristic, while maintaining electromechan-
ical advantages of carbon nanotubes content. Linearity of the U/I curve is desirable in
sensor applications, as it results in a constant resistance response with respect to the applied
probing voltage.

Composites with conductive particles of high aspect ratio, such as carbon nanotubes,
tend to have significantly lower gauge factors than materials filled with low aspect ra-
tio particles, such as graphite [24,43,92]. The addition of the graphite to the CNT/SBS
composition greatly increased the sensitivity of the manufactured fibers at a similar initial
conductivity baseline.

Carbon nanotubes are far more potent than graphite at improving carbon/SBS com-
posite conductivity. Introducing CNT allows for lower wt% total carbon content at the same
conductivity, which further enhances mechanical properties—stretchability and fatigue
strength.

Reported methodology of preparing carbon nanotubes/graphite/poly (styrene–
butadiene–styrene) composite fibers proved to attain excellent mechanical and piezoresis-
tive behavior while maintaining a scalable, industrially adapted manufacturing process.
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