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Abstract: To control autonomous vehicles (AVs) in urban unsignalized intersections is a challenging
problem, especially in a hybrid traffic environment where self-driving vehicles coexist with human
driving vehicles. In this study, a coordinated control method with proximal policy optimization
(PPO) in Vehicle-Road-Cloud Integration System (VRCIS) is proposed, where this control problem
is formulated as a reinforcement learning (RL) problem. In this system, vehicles and everything
(V2X) was used to keep communication between vehicles, and vehicle wireless technology can de-
tect vehicles that use vehicles and infrastructure (V2I) wireless communication, thereby achieving a
cost-efficient method. Then, the connected and autonomous vehicle (CAV) defined in the VRCIS
learned a policy to adapt to human driving vehicles (HDVs) across the intersection safely by rein-
forcement learning (RL). We have developed a valid, scalable RL framework, which can communi-
cate topologies that may be dynamic traffic. Then, state, action and reward of RL are designed ac-
cording to urban unsignalized intersection problem. Finally, how to deploy within the RL frame-
work was described, and several experiments with this framework were undertaken to verify the
effectiveness of the proposed method.

Keywords: reinforcement learning; connected and autonomous vehicles; urban unsignalized
intersection

1. Introduction

The world city population has increased to 55% in the past decades, and is expected
to increase to 68% in 2050, leading to an intensification of traffic congestion affecting safety
[1]. In addition, according to the investigation, 6 million traffic accidents occurred in the
United States in 2018, causing more than 3.5 million deaths and 2.5 million injuries. There-
fore, vehicle coordination and management are worth studying to improve the security
and efficiency of future transportation systems in complex conditions, especially in urban
environments. Today, there are many efforts to solve the problems, such as (a) research
about the traffic structure, and (b) research about the autonomous vehicle. Difficulties in
automatic driving at crossroads are mainly due to complex traffic conditions. The no-sig-
nal intersections are more complicated and challenging for the city view, involving multi-
vehicle interaction [2—4]. Therefore, this paper specifically discusses autonomous driving
in the unsignalized intersection, while considering a basic scenario where human drivers
and autonomous vehicles coexist, as shown in Figure 1.

Autonomous navigation technology has two types: sensor and communication type.
In sensor systems using a camera, radar and laser radar can directly detect the surround-
ing obstacles. However, that has a limited smaller detection area when the obstacle hin-
ders the sensor. The limitations of sensors can be broken by vehicles and everything (V2X)
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communication technology. V2X refers to a technique by which the vehicle exchanges in-
formation with other vehicles, roads, and other infrastructure by a wireless network [1].
V2X, as a new technology, not merely provides a safer and more comfortable traffic envi-
ronment, but is important for reducing accident rates, reducing pollution, and improving
traffic efficiency. With the development of V2X communication technology, information
sharing and vehicle coordination between connected and automated vehicles (CAVs) and
connected vehicles (CVs) improves safety and efficiency [5]. As aforementioned, this pro-
vides the possibility for the safety and efficiency of no-signal intersections. However, in
an autonomous vehicles problems in urban traffic environments with unsignalized inter-
sections, rule-based, optimization-based, learning-based and so on were proposed.

HDVs
OB Hovs
R v

Figure 1. Connected and automated vehicle (CAV) (red) and human driving vehicles (HDVs) (yel-
low and green) will collide when they cross an unsignalized intersect.

Traditional intersections (such as signal intersections) are not necessarily the best
strategy in the CAVs environment. Rule-based methods have been proposed by Zhang
[6] and Zhao [7] which have been used to solve different traffic scenarios based on the
first-in-first-out (FIFO) rule. Dresner and Stone [8] introduced a reservation-based scheme
that requires CAVs to reserve a space-time slot inside the intersection. Lee and Park [9]
minimized the total length of overlapped trajectories of CAVs crossing an intersection.
Gregoire et al. [10] decomposed the coordination problem into a central priority assign-
ment and trajectory planning. It has been proven that FCFS-based A.LM. and its variants
can reduce delay and emissions compared to traditional signal control under certain traf-
fic conditions (Fajardo et al., 2011; Li et al., 2013) [11].

The vehicle interaction is modelled as a dynamic system, from the action of the con-
trol vehicle as an input in the optimal control setting. An online model predictive control
(MPC) method is presented by Borek et al. [12], this model is mainly optimal for the en-
ergy of heavy trucks, which uses the best solution to track using dynamic program offline.
Du et al. [13] presented a three-layered hierarchical coordination strategy for CAVs at
multiple intersections. Although experiments have proven well, the MPC-based approach
relies on precise dynamic merge models (including human driving models), which typi-
cally require calculations because each step requires online optimization [14].

However, data driving methods such as reinforcement learning (RL) are increasingly
concerned, and they have been explored in automatic driving roads. The integration of
Deep Learning (DL) and RL, widely referred to as Deep Reinforcement Learning (DRL),
has shown its potential by successfully solving video games [15], 3D locomotion [16], Go
games [17] and many other problems. Vinitsky et al. [18] proposed a merging strategy via
reinforcement learning to control shockwaves from on-ramp merges, which is similar to
the unsignalized intersections scenario. In the literature, there are relatively few studies
using RL to solve AIM problems. Isele et al. [19] proposed a single-agent RL approach to
navigate one autonomous vehicle through the intersection.



Sensors 2022, 22, 779

3 of 16

In general, automatic driving vehicles are autonomous agents that use advanced com-
munication technologies and sensors to perceive and interact with real-time traffic condi-
tions (environment). Our research framework, RL, has been proposed to solve Markov de-
cision processes (MDPs). Generally, in RL, agents learn the optimal policy by trial-and-error
interaction with the dynamic environment formally described by MDPs. RL combined with
deep learning has achieved outstanding success in various areas such as video games [20]
and robotics [21]. These advances have inspired the research community to examine the
performance of deep reinforcement learning in autonomous driving [22]. So, in this paper,
we explore the RL’s ability to combine radars, LIDAR, cameras, sensors, and V2X for auton-
omous driving at unsignalized intersections.

While the rule-based method works well in simple scenarios, it can be very unstable in
complex environments [23]. An optimal strategy is often related to computational complex-
ity issues because online optimization is required at each time step [14]. However, for dy-
namic systems such as Autonomous intersection management (AIM), the traffic environ-
ment changes over time, and predefined strategies may become unsatisfactory, especially
when there is a great deal of uncertainty in a hybrid traffic environment. In this paper, our
goal is to propose an optimal framework that fully considers the real-time traffic dynamics
of the vehicle.

Little attention has been paid to a truly autonomous vehicle in a complex urban envi-
ronment. Most of the previous studies are based on macro-control, and few are based on
micro discussion. On the other hand, many studies aim at either all connected and auto-
mated or multiple vehicles. There is very little discussion of only one connected and auton-
omous vehicle (CAV) and many human driving vehicles (HDVs). To fill these gaps, we pro-
posed a proximal policy optimization (PPO) advanced algorithm-based V2X. The main con-
tributions of this paper are as follows:

e We propose an intelligent transportation system for the Internet of vehicles based on
5G, edge and cloud computing technologies. Moreover, the proposed framework
solves the fine-grained problem of automatic driving vehicles in hybrid traffic.

e  We describe an RL problem in the urban unsignalized intersection of traffic issues (a
CAYV and HDVs coexist on the intersection). In our paper, we consider a dynamic en-
vironment that has a time-varying connectivity topology.

e  This paper proposes deployment algorithms, increasing the possibility of automatic
driving vehicles in a real traffic environment.

e In the experimental part, we used a variety of different performance measurement
methods to measure the algorithm’s performance and ablation experiments.

2. Research Methodology
2.1. VRCIS (Vehicle-Road-Cloud Integration System)

The Vehicle-Road-Cloud Integration System (VRCIS) uses a new generation of infor-
mation and communication technology to connect the physical, information, and applica-
tion layers of people, vehicles, roads, and clouds. As a whole, a cyber-physical system that
integrates perception, decision-making, and control can realize the comprehensive im-
provement of vehicle driving and traffic operation safety and efficiency. It can also be called
“Intelligent Networked Vehicle Cloud Control System”, or simply “Cloud Control system”.

Figure 2 shows an architecture of cloud edge collaboration in the unsignalized inter-
section scenario, which consists of the Cloud Server, Edge devices (include RoadSide Unit
(RSU) and OnBoard Unit (OBU)) and Vehicles Interactors. CAV and other vehicles infor-
mation (speed, location, and so on) can be observed and shared using V2X technology, and
both cloud and edge servers are equipped with powerful GPU resources for neural network
training. In this proposed scheme, we use Dedicated Short Range Communications (DSRC)
and Long Term Evolution (LTE-V) technology, making sure to communicate between CAV
with HDVs, and vehicles and Mobile Edge Computing (MEC) communicated with Cloud.
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Figure 2. Vehicle-Road-Cloud Integration System (VRCIS). The left part of the figure is the cloud
platform where the algorithm is trained, and the right part is a real traffic scenario where the algo-
rithm is developed. The system communicates through vehicles and everything (V2X) technology.

2.2. Longitudinal Dynamic Models

The intelligent driver model (I.D.M.), as a stand car-following model, is used in our
work, describing the dynamics of single vehicles” positions and velocities. The I.LD.M. is a
time-continuous car-following model for highway and urban traffic simulation. Treiber,
Hennecke and Helbing developed it in 2000 to improve the results of other “intelligent”
drive models, such as Gipps’ model, the latter lost realistic attributes under certainty limits

[24].
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These parameters are represented in Table 1. Table 2 shows the required parameters
in the intelligent driving model.

Table 1. Parameters list.

Symbol Meaning
2 The leading vehicle’s speed
x The derivative of displacement (x)
Vo The desire velocity
5 The acceleration exponent
s* (v, Av;) The desired headway
S; The headway between vehicles
Av,

The difference between the velocity and the lead velocity
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50 The minimum spacing
T The desire time headway
Ypy Acceleration
a The acceleration term
b The comfortable braking deceleration

Table 2. Typical parameters of an intelligent driver model (I.D.M.) in the context of city traffic.

Parameters Value
Desired Speed (m/s) 15
Time gap (s) 1.0
Minimum gap (m) 2.0
Acceleration exponent 4.0
Acceleration (m/s?) 1.0
Comfortable acceleration (m/s?) 1.5

2.3. Proximal Policy Optimization
2.3.1. Background
In this section, we reviewed basic theory about RL to understand the model proposed.
Reinforcement Learning (RL) is a subsequent field of machine learning. It is con-
cerned about how agents interact with the environment and learn to maximize the accu-
mulation return. In RL problems, it is often regarded as an infinite-horizon discounted
MDP, defined by the quintuple (S,A,P,R,y), where se S is a set of states and s is a
specific state; where a e A is a set of actions and a is a specific action; P(S, a, S") de-
fines a probability for a transition from S to S’ by an action; R(s,a) defines the im-
mediate reward for taking action.; y €[0,1] defines the discount factor. In order to max-

imize some cumulative rewards function, we try to seek to learn optimal policy 7, where
the policy is a stochastic policy 7: Sx.A—[0,1], typically the expected discounted sum
over a potentially infinite horizon from each state following policy = :

Vi) =B, .. {IZ/"M 8 = S} (6)

where a, ~7(a,l s,).5,,, ~p(s.1l 5,.a,) and 1, ~r(s,.a,.s,,). Alternatively, the defini-

tion of a state function ¢”(s,a) is expressed as follows:

608 {57 05 =0 %

However, in the proposed problem, a CAV interacts with the environment, which is
just possible to model an MDP model. Our objective is to maximize a reward function to
an autonomous vehicle walking as human driving in an unsignalized intersection by im-
proving a policy.

2.3.2. Proximal Policy Optimization Advanced

Since trust region policy optimization (TRPO) [25] is relatively complicated and we
still want to implement a similar constraint, PPO simplifies it by using a clipped surrogate
objective while retaining similar performance.

In this work, model-free reinforcement learning methods are used to optimize the
control policy in the unsignalized intersection. For policy-based RL algorithms, we com-
pute an estimator for the policy gradient as follows:
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VO=E[V,logry(a, |s,)4 ] (8)

Here, action a per time step t is controlled the parameterized policy 7, (q, |s,) un-
der the state s, and update the parameter @ to maximize the cumulative reward. Where
E [] denotes the empirical average over a finite batch of samples and 4, denotes the

advantage function. The loss function for updating a RL policy to estimate the policy gra-
dient has the form as:

17%0) = £, [log 7, (4 5,) 4, | 9)

Firstly, the probability ratio is denoted between old and new policies as:

wy(a|s)
r0)=—"—"
74, @]9) (10)
Then, the objective function of TRPO becomes:
JTRO0) = E[ r(0) 4y, (5,0) | (11)

Without a limitation on the distance between 6,,; and @ , maximizing J'*"° (@)
would lead to instability with extremely large parameter updates and big policy ratios.
PPO imposes the constraint by forcing #(6) to stay within a small interval around 1, pre-
cisely [l-¢,1+¢], where ¢ is a hyperparameter.

JUP () F [min (rO) 4y, (s.a).clip(r(@).1-e.1+6) 4y (s, a))J (12)

Network architecture applying PPO with shared parameters for policy (actor) and
value (critic) functions. In addition to the clipped reward, the objective function is aug-

mented with an error term on the value estimation Vj(s) and an entropy term H (s, 72'6.)

to encourage sufficient exploration.
/ 2
JCLIP (0) = E|:JCLIP (6)_61 (VH(S)_Vtarget) +02H(S,7[5 ):| (13)

where both ¢, and ¢, are two hyperparameter constants, based on the above formula,
the flow chart of our proposed algorithm is shown in Algorithm 1.

The advantage function nguld (s,a) canbe defined as a way of measuring how much
we can improve by taking action in a particular state. We want to use the reward at each
time step and calculate how much advantage can be gained by taking action, not only in

the short term but also by focusing on a longer time. In order to calculate this, Generalized
Advantage Estimation (GAE) [26] is used.

4 = 048l = 202 (7497 (514001) = (5021)) (14)

where y hyperparameter content is called a discount factor to reduce the value of the

future state, since we want to emphasize more on the current state than a future state;
where lambda is a smoothing hyperparameter content used for reducing the variance in
training which makes it more stable. The parameter A is suggested for 0.99 and the pa-
rameter lambda is suggested for 0.95.

Algorithm 1 PPO with Clipped Objective.

1: Input: initialize policy parameters %, initialize
2:Fork=0,1,2, ... do
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3: Use policy 7, to collect trajectories D, ={r;} by the environment
4:  Compute R, (rewards-to-go)
5. Compute advantage estimates 4 using GAE (advantage estimation algorithm)

6:  Update the policy:
6, =arg mgx] g}”’ ()

8:  Take K steps of minibatch SGD (Adam), where:
T . .
JéiLlP &= E { Zo[min(r, (O) A ,clip(rl @),1-¢,1+ f)A, )H
9: T~ | 1=

10: End for

2.4. RL Formulation

In this section, we intend to transform an unsignalized intersection problem into an
RL problem. First, the simulation scene is modelled as the Markov model. Secondly, the
proposed algorithm controls the CAV to complete the automatic driving. In Figure 3, the
observations returned by the simulator serve as the input of the algorithm proposed in
this paper. Then, the algorithm outputs the optimal continuous actions (throttle, brake
and steering) to control the behavior of CAV, and finally safely arrives at the specified
location. So, defining state, action and reward is of such importance.

. N 4 . "\
Simulator Training C':J

T Actor Network T
: Output

/ .

Input

improvement

Reward and
actions

Observations .

- J S J

Figure 3. The neural network structure of PPO.

2.4.1. State Space

In this study, a state-space represents information about the CAV and surrounding
social vehicles, such as the vehicle’s steering, heading, speed and position, obtained by
V2X technology. We define the state space in Table 3.

Table 3. The composition of the state space.

Name Explain
Speed The current speed of a CAV.
Steering The current steering of a CAV.
Heading Heading angle of a lane at this point (radians)
Position The current position of a CAV.
Collisions Whether there is a collision between CAV and other vehicles
Off the Road Whether the CAV vehicle is off the road

2.4.2. Action Space

Unlike most studies on autonomous driving, we designed the motion space to be
continuous. For example, if the CAV has a vehicle in front of it, does it accelerate to pass
it by throttling and steering, or does it brake? It is all guided by the algorithms that we
have provided. As shown in Table 4, the action space is defined as follows:
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Table 4. The composition of the action space.

Name Scope
Throttle [0,1]
Brake [0, 1]
Steering [-1, 1]

2.4.3. Reward Function

As the most critical factor, the reward function for optimal convergence policies in
RL The purpose of the reward is to maximize discount returns. Our purpose is to avoid
collisions safely, comfortably and quickly the goal. The specific part of each part of the
reward function is designed as follows.

(1) Safety: To avoid collisions. In terms of safety, the penalty function of the CAV for
collisions can be expressed as:

—c, if True

Teollision (St ’ at) = { (15)

0, else False
where ¢ is the absolute value of the penalty factor, this function tells us that we should
minimize the number of collisions in the end.

(2) Comfort: Smaller jerk (angular jerk and linear jerk). In respect of comfort, the penalty
function of the CAV for comfort can be represented

— _p %
rangularjerk =-q aangularjerk (16)

— *
Rinear_jerk = ~€2 ~ Qlinear_jerk (17)

where c1 and c2 are the absolute value of the penalty factor; @,y jerk @Nd @jipeyr jerc are the

lateral jerk and the longitudinal jerk. To avoid sudden acceleration or deceleration of vehicles,
the vehicle occupant may not be discomfort in this reward function.

(3) Efficiency: Get to the target quickly. In terms of safety, the penalty function of the CAV
for efficiency can be expressed as

5, if True
Treached_goal (S¢+ @) = 0, else False (18)
rspeed_reward (St > at) = min(()’ C4 (Vmax_speed ~ Veurrent )) (19)

where ¢ is the absolute value of the penalty factor; Veyrent and vy, peeq are current speed

and the max limit speed. We hope that CAV can reach the goal smoothly and quickly every
time, so when it reaches the goal, give a larger reward
Thus, the complete form of reward function is

1 7% d T speed_reward (20)

Tiotal = eollision T rreachedigoa ff roa

(4) Termination

The Termination condition of an episode in reinforcement learning, when ‘“Termination
= True’ means that the environment needs to be reset, CAV will be randomly generated at a
point again to continue the training of the loop.

When the collision is True, the agent ends an episode and then continues the next loop
training.

2.5. Framework and Development

In the section, a scheme is described at the system level and it is shown in Figure 4. The
implementation of the framework includes two phases: the training phase and the deploy-
ment phase. The CAV is first trained with T intersection and Cross intersection in SMARTS,
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then, which is ported to the Cross intersection, connected to the real scenario with RSU, it starts
to control the CAV.

Info

1

|

|

| Cloud S Eeie collection
\

5G network infrastructure

Traffic

‘/

I

i Road Ridars
A

Autono-
mous
Driving

Commu-
nication nication

ITS Centre Platform

oot R AN < [ Controlcommand J |
> ' . g -

.8
gi SuMO
MEC, _MEC
5 =

1 T
.':-; -

L —J
L
O 9
DSRC ﬁg DSRC

(b)

Figure 4. shows how the training and deployment phases are implemented; (a)Training architec-
ture. (b)Development architecture.

(1) Training phase

The CAV is trained by interacting with the simulator. The simulator randomly gen-
erates social vehicles to arrive and specifies a CAV to drive from south to west. It obeys
traffic rules and interacts with surrounding social vehicles. The simulator obtains the
state, calculates the current reward rt accordingly, and provides it to the CAV. Using the
Policy-Gradient update formula referenced in the previous sections, the agent updates
itself based on the information from the simulator. At the same time, Ent selects an at
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Map
Vehicles

Routes

action (throttle, steering, brake) and forwards the action to the simulator. Then the simu-
lator will update and change the physical state of the CAV. The steps are repeated until
convergence, and the agent is trained.

The agent’s performance is largely dependent on the quality of the simulator. In or-
der to be similar to the real world, the emulator is randomly generated according to the
real crossroads. To solve the difference in traffic flow at different times in a day, we gran-
ulate according to the traffic density so that the agent can adapt to different traffic flows
at different times during training.

The training goal is to make the CAV smooth, safe and fast from the starting point to
the finishing point, without colliding with the social vehicle or driving off the track.

As pictures 4(a), the vehicle’s information is collected and transmitted to the Cloud.
In addition we were training on the Cloud through the PPO algorithm.

(2) Development

In the deployment phase, the trained agent CAV is migrated to the intersection for
vehicle control and installed the software agent to the road test edge device to implement
the control of the automatic driving vehicle. Here, the agent does not update the learned
J(6) but controls the CAV. V2X provides the state of the current environment, and CAV

selects three consecutive actions based on the trained v-network based on state. This step
is executed in real-time to achieve continuous vehicle control.

3. Experiment and Evaluation

In this section, to verify the effectiveness of the proposed algorithm, we have carried
out many simulation experiments and analyses. We use the SMARTS (Scalable Multi-
Agent RL Training School) simulator, open-source software for autonomous driving sim-
ulation based on Pybullet and SUMO [27]. The role of Pybullet is to perform physical dy-
namics simulation rendering of SUMO to make it closer to the real environment in Figure
5. The Pytorch framework is used for neural network inference training to get the actions
we want in this experiment. Use Python to call SUMO's Traci API to control the entire
traffic system to simulate reality.

Output Info
Action

l

O PyTorch

(//A\\ A

‘» 7

;{/ vlf"A“’w S

0}‘\ I:s’.‘q%\ }“'
VAN AW

\\\V//

Configuration File

RL

Traci API

Figure 5. Autonomous driving simulation theory framework.

3.1. Experimental Settings

The proposed algorithm is trained in the 2]lane and 3lane Cross intersection, and in
the same way, evaluated in the Cross intersection. We use low, medium and high traffic
density levels, as is shown in Table 5. There are three different speed limits in three sepa-
rate traffic densities, shown in Table 6.

Table 5. Traffic density levels.

Density Low Medium High NO Traffic
Ratio 61% 33% 3% 3%
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Table 6. Different speed limits in three different traffic densities.

50 km/h 70 km/h 100 km/h
Low-density 21% 20% 20%
Mid-density 11% 11% 11%
High-density 1% 1% 1%
No-traffic 1% 1% 1%

Select appropriate variables for training through hyperparameter adjustment. In the
proposed scheme, the PPO algorithm uses a neural network to simulate collision-free rules,
minimizing the action loss between the neural network and the rules. There is only one neu-
ral network, including three dense layers and two normalization layers. In the hidden layer,
ReLU is selected as the activation function. The PPO using the adaptive KL penalty algo-
rithm controls the distance between the update strategy and the old strategy to avoid noise
in the gradient update process. Therefore, PPO hyperparameter initialization improves the
effectiveness of RL in various tasks. This study proposes a PPO hyperparameter set for hy-
brid autonomous traffic at un-signalized intersections, as shown in Table 7.

Table 7. Hyperparameter set for hybrid autonomous traffic at un-signalized intersections.

Parameters Value
The number of total training steps 1,000,000

The number of max steps per episode 200
Gamma 0.99
Clip parameter 0.2
Hidden layers 512
Batch size 2048

Learning rate 3x10-°

Optimizer Adam

3.2. Performance

In this section, we show the performance of our algorithm to analyze the experi-
mental results, and a lot of metrics are used.

In reinforcement learning, the curve of the reward function is the most important index
to measure the algorithm. Figure 6 shows the stable convergence of our proposed algorithm.
Compared with the default algorithm at SMARTS, the algorithm has increased by 14.8%.

20 Rank-1-P-1.598-default
Rank-0-P-1.835-ours

y

reward_mean

Episode

0.0 0.2 0.4 0.6 0.8 1.0
Total_steps 1.0x108

Figure 6. Episode cumulative mean reward.
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Figure 7a visualizes the mean episode length during the total steps, and both the de-
fault and ours are increasing rapidly. From Figure 7b, the mean speed curve is lowered
first, so episode length increases in Figure 7a. The tendency can explain that the policy
learns how to avoid collision carefully because the CAV gets a larger negative reward.
However, both Figures 6 and 7a show the decreasing tendency of the curve after 20000
steps, which can be explained that CAV has learned how to avoid collision and reach the
target quickly. Among them, the mean length of the episode is reduced by 15.48% than
the default, and the mean speed is 20.83% higher than the default.

Rank-0-P-128.429-default
140 Rank-1-P-108.547-ours

7w e et

N
o

[ =
©
o
g
£
> 100
c
o
<D|
°
2
‘5 80
w
60
0.0 0.2 0.4 0.6 0.8 1.0
Total_steps 1.0x10°
(a)
1" Rank-1-P-8.564-default
Rank-0-P-10.348-ours
10
c 9
o \ e
EI \ 3 /
3 \ : W
3 \ /ol
a 8
(%)
\ an
7 \\ e -
\ /
\
\\ /
6 v\,/\//
0.0 0.2 0.4 0.6 0.8 1.0
Total_steps 1.0x10°
(b)

Figure 7. The length of the episode of each step is getting shorter and shorter, faster and faster. (a)
Episode length mean; (b) Speed mean.

Figure 8a shows a condition of reaching a goal over time. Moreover, the performance
metrics here maximize the goal’s reaching ratio rather than average because we think it is
more intuitive. The algorithm proposed in this article has learned how to reach the goal.
Figure 8b,c show the CAV getting closer to the goal, and its travel distance is growing,
respectively. It can be observed from Figure 8b that the travel distance of our algorithm is
higher than the default at almost every time step, which is 3.88% higher on average.
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Figure 8. Performance of effectiveness total steps in experiment, including reach the goal max rate,
distance travelled and distance from the goal. (a) Reached goal max rate; (b) Distance travelled; (c)
Distance from the goal.
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Figure 9a,b show the angular jerk and linear jerk changes. Based on the above figure,
the angular acceleration increases by 5.96% from the default, and the linear acceleration
ratio increases by 0.57% by default. We can see the angular jerk change is relatively gentle,
but linear jerk changes are uniform since the CAV sacrifices comfortable performance to
learn how to secure and quickly reach the goal. However, we consider this problem in the
reward function and believe that the next work will solve this problem.
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Figure 9. CAV changes in steering angle and linear acceleration during driving. (a) Angular jerk; (b)
Linear jerk.

4. Conclusions

In this paper, we defined the problem of autonomous driving at an unsignalized in-
tersection in mixed traffic as on-policy RL and developed an effective RL algorithm. In
addition, we proposed an VRCIS framework based on V2X. The CAV has more perception
capabilities and can make more precise decisions under this frame. For the PPO algorithm
and framework above, we also gave the training algorithm and the way to deploy the
algorithm to make safe autonomous driving closer to reality.

We finally noted several limitations of our work. First, we need to consider the effects
between neighboring intersections to apply our protocol in the real world. Secondly, the
CAYV may transmit incorrect information with V2V communications. In future work, we
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will design more secure intersection protocols against false data provided by CAVs. In
addition, we will pay attention to other traffic scenarios and plan to test the algorithm in
real-life scenarios.
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