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Abstract: Music can generate a positive effect in runners’ performance and motivation. However, the
practical implementation of music intervention during exercise is mostly absent from the literature.
Therefore, this paper designs a playback sequence system for joggers by considering music emotion
and physiological signals. This playback sequence is implemented by a music selection module that
combines artificial intelligence techniques with physiological data and emotional music. In order to
make the system operate for a long time, this paper improves the model and selection music module
to achieve lower energy consumption. The proposed model obtains fewer FLOPs and parameters by
using logarithm scaled Mel-spectrogram as input features. The accuracy, computational complexity,
trainable parameters, and inference time are evaluated on the Bi-modal, 4Q emotion, and Soundtrack
datasets. The experimental results show that the proposed model is better than that of Sarkar et al.
and achieves competitive performance on Bi-modal (84.91%), 4Q emotion (92.04%), and Soundtrack
(87.24%) datasets. More specifically, the proposed model reduces the computational complexity and
inference time while maintaining the classification accuracy, compared to other models. Moreover,
the size of the proposed model for network training is small, which can be applied to mobiles and
other devices with limited computing resources. This study designed the overall playback sequence
system by considering the relationship between music emotion and physiological situation during
exercise. The playback sequence system can be adopted directly during exercise to improve users’
exercise efficiency.

Keywords: convolutional neural networks; emotion classification; deep learning; music selection
module; physiological data

1. Introduction

Recent years have seen the burgeoning development of measurement technology
and the application of this technology to wearable devices. With the increasing demand
for physical exercise, functionality requirements for wearable devices have become more
critical. Even though there are many studies attesting to the positive effects of exercise [1–4],
most people still ignore the importance of physical exercise. The fact that hypomotility
has become the fourth risk factor for global death was indicated by the World Health
Organization (WHO). Approximately 60–85% of adults live statically worldwide, and
two-thirds of children lack exercise. This situation increases the risk of cardiovascular
disease, diabetes, and obesity compared to those who exercise regularly. Additionally, it
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leads to over two million people deaths every year. From the perspective of health, people
who have good cardio respiratory endurance can exercise longer, do not get tired easily,
and avoid disease. The central purpose of this study is to extend people’s sports time by
exposure to suitable music.

The concept that people who listen to different types of music will change emotions
and physical states has been widely accepted. Several studies have shown the relationship
between psychology and physiology [5,6]. According to Bason et al. [7], the heart rate
changes mainly for the following reasons. First, the heart rate is changed by the external
auditory stimulation that leads to the neuron coupling into the cardiac centers of the brain,
further arousing the sinus entrainment of rhythms. Another cause of changing the heart
rate is the autonomic nervous system (ANS) that controls and sustains homeostasis in our
body, such as blood pressure, body temperature, and sleep qualities. It mainly consists
of the parasympathetic nervous system (PNS) and sympathetic nervous system (SNS).
Additionally, it is typically distinguished by opposing characteristics. For instance, in an
emergency state, the SNS increases the heart rate, but on the other hand, the PMS typically
retards the heart rate in the static state. Some studies indicate that quality of life can be
improved by differenttypes of music, such as raising sleep quality, relieving pressure,
supporting exercise, and enhancing brain liveliness [8–10]. In summary, we could further
infer that there supposedly is a connection between music stimuli and heart rate.

According to the above-mentioned factors, listening to different music genres changes
one’s emotions and heart rate, which is a kind of music therapy method. There are some
benefits of music therapy, such as socialization, cognition, emotion, and neuron motor
function [11]. Continuing music therapy research has led to many new and fascinating ap-
plications in sports and autistic and handicapped fields. According to Van Dyck E et al. [12],
music rhythm can affect running cadence. In other words, the slower rhythm of music
brings out a decrease in running cadence; on the other hand, the faster rhythm of music
gives rise to an increase in running cadence. Moreover, another significant research of
promoting exercise efficiency is proven by Karow et al. [13]. They provided extensive
discussions of the importance of primary selected music. For instance, primary music could
make humans more powerful and more stimulated during exercise. Moreover, it could
effectively decrease the Rating of Perceived Exertion (RPE), which evaluates the degree of
effort that a person feels by themselves. Consequently, music could draw attention away
from uncomfortable feelings [14].

Nowadays, most playlists are supplied by famous sports brands, which causes un-
familiarity to the users. In addition, the playback mode is typically played by sequence
or at random. However, we consider that the previous playback mode is not reasonable
during exercise and that the playback sequence should be adjusted depending on the
different physical situations of each person. As a result, we propose an algorithm to solve
the playback mode during exercise. In order to apply it to individuals, we also consider
the biological data and fuzzy algorithm [15]. The fuzzy algorithm is based on the different
exercise levels to suggest the canter speed through the biological data of users. We intend to
introduce a complete music system consisting of pace match music rhythm, music emotion
classification, fuzzy algorithms, and selection music module.

There are many ways to implement emotion classification models. First, simple ma-
chine learning models include random forest trees, KNN, and K-means. Although these
traditional methods can solve the problem quickly with a small amount of data, they
only obtain low accuracy of classification results [16]. Second, RNN [17] has a time series
algorithm to solve the emotion classification task. However, the disadvantage of its archi-
tecture is prone to generating gradient disappearance and gradient explosion. However,
the LSTM and GRU improve time series models to avoid the gradient disappearance and
gradient explosion, which need additional parameters to control different gates [17]. To
achieve higher accuracy is necessary to overcome the variety of audio in music emotion
classification tasks. On the other hand, CNN provides translation-invariant convolution,
which can be used to overcome the diversity of audio signals. Thus, we deduce that the
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model with CNN can improve the classification accuracy in the emotion recognition task
based on the characteristics of CNN. From the perspective of practical application, the
accelerating technology is more mature than other types, and it brings the possibility of
classification with CNN in the audio field.

The purpose of this paper is to develop an algorithm for the playback sequence, which
adopts CNN-based models for music emotion classification, also considering physiological
data adjusting playback sequence immediately, as shown in Figure 1. Figure 2 represents the
CNN framework for the music emotion classification. In summary, the key contributions
of this paper are:

1. We develop the playlist sequence algorithm concerning physiological data and emo-
tion classification. This innovation can provide the kind of solution that was developed
by previous studies.

2. Develop an emotion classification model with multiple kernel sizes and apply it to
our proposed playback sequence system.

3. The results from our experiment indicate that the accuracy of the classification strategy
is superior to that of other past research.

Figure 1. Overview of the proposed playback algorithm. The wearable devices pass the measured
signals to smartphone. The smartphone integrates the signals, music elements, and emotion classifier
into the algorithm to provide suitable playback mode for individual.

Figure 2. Flowchart of CNN based music emotion classification. Start from original music files, then
through convolutional layers and hidden layers, and make predictions with a classifier softmax at
the end.

This paper is structured as follows. Section 2 introduces the existing work on the
current research progress of the emotion classification method and summarizes the ad-
vantages and disadvantages of the models. Next, Section 3 provides an overview of the
model, including the classification and flow of the selected music module. Then, Section 4
conducts the experiment of music datasets on smartphones to evaluate the performance of
the models. Finally, Section 5 concludes the research work of this paper and summarizes
the overall mentions.
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2. Related Works

This section will introduce the situation of music intervention during exercise and the
traditional deep learning model for music emotion classification based on manual features.
Then, we will review classification technologies containing the preprocessing method of
audio signals and the progress of deep learning models.

2.1. Music Intervention during Exercise

People have considered music to affect the senses since the 18th century, and several
researchers have examined the effects of music [18,19]. The primary factors that give
rise to the various performances of exercise are the rhythmic, melodic, and harmonic
qualities of music. Through synchronizing pace and tempo, people improve their exercise
performance. For example, listening to music during exercise can release feelings of
discomfort, improving performance and enjoyment [20,21]. The effects of music during
physical activity have also been investigated roughly, and there exist several significant
points in the literature. Consequently, we will separate the literature into three parts to
review the benefits of listening to music during exercise. First, different types of music
have different effects on the brain. For example, funk music may make people active,
and up-tempo beats make people passionate for working out [22–24]. The tone of the
music is connected with certain emotions in the music field. For example, the major key
typically represents the delighted, and the minor key represents sadness. Second, music
can alter the degree of psychomotor arousal (muscular activity associated with mental
or movement) and consequently is regarded as either a sedative or a stimulant during
physical activities [25,26]. Last, Nikol et al. supposed that humans would simply respond
to rhythmical elements in continual extreme activities [27,28]. According to the results,
subjects achieve synchronization between movement and tempo; moreover, this can make
physical activity become an experience of reducing stress.

The evidence of the existing topic is unanimous and shows that music can affect
the ability of attention and a series of emotions, such as increasing work efficiency and
motivating rhythmic movements [27,29]. Nikol et al. [27] and Terry et al. [29], who supplied
the definition about effects on humans, are unanimous regarding the effect of mild- and
low-intensity activities. According to the American College of Sports Medicine(ACSM),
exercise intensities are divided by percent of maximum heart rate (MHR), which separates
intensities into three stages. For example, low intensity is between 50% and 63% of MHR,
moderate intensity is between 64% and 74% of MHR, and high intensity is between 75%
and 95% of MHR. Generally, the training zone is between 70% and 85% to keep them
healthy. The MHR is calculated as below Equation (1)

MHR = 208− 0.7 ∗ Age, (1)

where Age is the age of users. However, in high-intensity activities, it is only effective before
peripheral fatigue [30]. Consequently, high-intensity exercise typically depends on the Borgs
Ratings of Perceived Exertion scale (RPE) [31] to evaluate the degree of fatigue in experiments.
The purpose is to prove that music stimuli also exist in high-intensity exercise.

The effects of music on high-intensity exercise are less well documented than low to
moderate exercise intensities in the literature. Maddigan et al. [32] designed an experiment
about the high intensity of exercise and found that listening to music during activity
elicited an increase in exercise duration, breathing frequency, and HR. In light of this,
increasing breathing frequency can accelerate oxygen exchange, while HR can balance
the requirements of physiology. Although the literature mentioned above has shown that
listening to music has many benefits during exercise, the research still has not implemented
the playlist order based on the benefits of music yet.
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2.2. MECS

The music emotion classification systems (MECS) were developed by different re-
searchers in the field of machine learning techniques [33,34]. MECS is used to classify the
emotion of music clips, which roughly contains several steps, such as data preprocessing,
data collection, feature extraction, and classification. During the data preprocessing stage,
the raw data should reform to a standard format for a fair evaluation, such as sample rate
(44,100 Hz) and precision (16 bits). Moreover, music emotions are unstable, encompassing
different emotions during entire songs. For example, the information of music clips con-
tains abundant features, namely, timbre, energy, rhythm, pitch, and tonality, which stand
for the percipient dimensions of songs. In the literature, many researchers mainly adopted
the most representative 20–30 s clips of songs for emotion classification [33–35]. In order
to classify emotions, Russel et al. [36] and Thayer et al. [37] have developed the emotion
models, which is used to separate the emotions of songs into different classes.

Music emotion classification through the features of visual representation has been
widely explored in a decade, such as Mel-spectrogram, Short-Time Fourier Transform
(STFT), and Mel-frequency cepstral coefficients (MFCC). The spectrogram contains a great
description of the transient variation of energy distribution on frequency bins. Moreover,
the spectrogram is similar to an image and includes enough texture information. There
are lots of traditional texture descriptors that have been utilized to describe the content
of spectrograms in the computer vision field. These descriptions include local phase
quantization, local binary patterns (LBP), Laws texture filter, and Gabor filters. Furthermore,
in terms of the classifier, there are some common traditional classification approaches, such
as support vector machine (SVM) [38] and Gaussian Mixture Models (GMM) [39], which
can train with the above descriptions methods. Although the above traditional classification
methods have achieved higher productive results than human-level (60–70%) methods
on some music datasets, traditional classification methods still heavily rely on feature
engineering [40].

The above method of MECS concerning accuracy is still slightly insufficient. Some of the
research continuously tries to improve techniques of classification accuracy. Lee et al. [41] are
the pioneers who introduced a deep learning framework to audio classification. Researchers
trained a convolutional model that contains two hidden layers and found that the model
learns hierarchical features from the preprocessed audio signals. To some degree, Lee et al.
inspired future research on deep learning approaches applied to audio classification tasks
as feature extractors. Several studies have suggested the benefits of CNN in the audio field;
for example, Liu et al. [33] and Bilal et al. [34] used CNN technology on MECS and found
that the music emotion classification process was much faster than in previous studies.

There are a lot of deep learning models and machine learning algorithms in the
literature; however, they were mostly developed on desktops that had a powerful GPU
to process complex computation. Nowadays, the requirement of various applications
is increasing with technological advancement. Some practical applications are typically
implemented on mobile. By contrast, the mobile is limited by insufficient computation,
which leads to the inference time being delayed. As a result, Howard et al. developed the
MobileNet [42], which consisted of depthwise convolution and pointwise convolution, as
shown in Figure 3B,C. This method reduces the considerable computation compare with
the stander convolution, as shown in Figure 3A. The depthwise separable convolution is
through expressing convolution as a two-step process.
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Figure 3. The depthwise separable convolution separated the standard convolution (A) into two
parts: depthwise convolution in (B) and pointwise convolution in (C). The 1 × 1 convolution filters
are called pointwise convolution in depthwise separable convolution.

Inspired by this, we will improve the previous classification models for mobile appli-
cation. The challenge of this development is to maintain the latency issue while achieving
high classification accuracy simultaneously. In this paper, a proposed MECS is developed
by considering the following points.

1. The proposed MECS is a classification method that separates the different music
types into certain classes by using CNN. In addition, CNN is typically used for
feature extraction in deep learning techniques without requiring manual feature
extraction [33,34]. Consequently, this method saves a great amount of time for feature
extraction. The feature of the spectrogram is learned by different layers of CNN. In
order to reduce computation, we adopt the depthwise separable convolution from
MobileNet [42] as shown in Figure 3A,B. In order to distinguish the slight differences
between each feature, we also adopt the Inception block [43], which contains multiple
kernel sizes to extract features. The purpose of this is to consider the slight variation
on the spectrogram.

2. The experiments are conducted by using CNN in order to classify the songs in four
and eight classes of emotion.

3. 4Q emotion [44] and Soundtrack dataset [45].
4. The training accuracy, training loss, validation accuracy, and validation loss are

implemented for all experiments. In addition, the results are compared with the
different models on the same dataset to verify the performances.

2.3. Selection Music in Exercise Field

Many music selection systems have been developed to aid motivation and perfor-
mance during physical activities. Im4Sports is one of the first systems to provide cus-
tomized music based on the music tempo and previously selected songs for users during
exercise [12]. Additionally, PersonalSoundtrack [46] and TripleBeat [47] are music players
developed explicitly for runners, which sync the user’s running speed (as measured by
their heart rate) to the music’s rhythm. With technological progress, wearable devices have
gradually replaced complex measurement devices. Additionally, Alaa Khushhal et al. [48]
demonstrated the accuracy of wearable devices during exercise. The aforementioned mostly
adopted the heart rate to select music with a specific tempo to control the performance
of users.
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In terms of research advances, music emotion is one of the parameters to affect the
performance of users. Recently, Ming-Chuan Chiu et al. [49] considered musical emotions
and used machine learning to identify the emotion and select appropriate music based
on users’ physiological signals. In this paper, the music playback algorithm took physical
activities and musical emotions into account and redesigned the emotion classification
method to develop a complete playback algorithm. The selection music module is detailed
in the following section.

3. Method

In this section, we will first give an overview of the music selection strategy. Then, we
will describe the proposed MECS in detail.

3.1. Strategy of Selecting Music

The Standard Deviation of NN (Normal to Normal) intervals (SDNN) is a significant
parameter to represent the emotion of users. However, it is difficult to quantify SDNN
during exercise. Contrary to this, measuring HR is more straightforward, so converting HR
data to SDNN is required. To implement the strategy of selecting music, we consider user
emotion, physiological data, and music emotion as the basis parameters. Music selection
approach is divided into the following steps:

1. Detecct User Heart Rate
We measured the data through the wearable device, which already had signal process-
ing and noise processing in place at the measurement time. Consequently, we used
the API to transfer the data directly to the phone for use. In addition, the accuracy of
the Apple Watch in the exercise field has been proven by Alaa Khushhal et al. [48].

2. Convert HR Data to R-wave and R-wave interval
In this study, SDNN is employed to identify the emotion. Directly measuring SDNN
is not feasible during exercise because SDNN is analyzed by electrocardiogram, which
needs to be measured in a stationary state. Consequently, measuring the HR and
converting it to SDNN is feasible. Before converting the HR to SDNN, obtaining the
R-wave and R-wave intervals (RRi) is required, which represents the elapsed time
between two successive R-waves of the QRS-wave signal on the electrocardiogram.
To convert HR to RRi, we use the following formula [50]:

RRi ≈
60
HR

. (2)

The deviation of its values from the mean with the root-mean-square (RMS) can
determine SDNN. It is obtained by the following formula:

SDNN =

√√√√ 1
N

N

∑
i=1

(RRi − RRi)2, (3)

where RRi represents the mean of the RRi.
3. Define emotion of users

The SDNN values are used to determine the emotion of the user. According to
Medicore et al. [51], the feelings of users are roughly separated into four ranges by
SDNN, as seen in Table 1. The intervals of SDNN are used to select the music, and the
purpose is to maintain the users’ emotions at a certain level.

Table 1. Emotion interval.

Emotion Sleep Boredom Anxious Panic

SDNN range <20 20~34 35~49 >50
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4. Music Selection Strategy
The strategy of selecting music is inspired by Chiu, M.C. et al. [49], who proved
the relationship between SDNN and music emotion. However, the strategy lacks
consideration for the step per minute (SPM) affected by the BPM of music and breathes
frequency during exercise. Moreover, the method of music emotion classification is
not accurate enough in their experiment. Consequently, in this paper, we improve the
method concerning SPM and replace the original method of emotion classification
with deep learning. The following example explains the process of selecting music
and describing deep learning in the next section.
We adopt the average BPM of an entire piece of music and group it into different
intervals. Each group consists of BPM, which is between n and n + 10. The music
selection module will search for each music group that is closest to the SPM of users
and then randomly select music in that intervals. In order to avoid repetition situations
occurring, the selected music in the latest 10 times will be recorded in the log. More
detail is described in Figure 4. For the beginning of Figure 4, the input of selecting
music module is 90, and the emotion1, emotion2, emotion3, and emotion4 are the
group of music data. In this example, music1_1 to music1_n represent music in the
emotion1, music2_1 to music2_n represent music in the emotion2, and so on. The
reason for selecting music is because it is located in a music group with 85–95 and
corresponds to the emotions of users. We assume that the corresponding group of
music is emotion4. Furthermore, music4_2 is not selected because it has been recorded
in the log, indicating that it has already been played. As a result, the system will select
the other music in the emotion4 and automatically exclude music4_2 simultaneously.

Figure 4. A description of the music selection module.

5. Music Playing Strategy
The strategy of playing music is chosen by the previously mentioned method. In
addition, the purpose is to lower energy consumption as much as possible. As
we know, the inference process is the most energy-consuming. Consequently, we
reduce the usage of the emotion classification model by the following Algorithm 1.
Consequently, we design the algorithm to reduce energy consumption. This main
process includes reducing the classification usage, reserving the 10 songs, which
correspond to the emotion of users, not classification all of the music. When the
step frequency changes, the system will select the music in the piece of the group
based on current SPM, also considering the emotion of users to give corresponding
emotion. This function allows the users to always listen to music at an appropriate
pace for their own step frequency and provides a proper emotion to keep users steady.
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Furthermore, all operations are automatic in the process. Subsequently, we elaborate
the parameters as below. First, we denote S as SPM and denote S average SPM of the
last 10 times. Second, Bnow represents the current BPM of the playing music, and D is
denoted as the number of times of deviation between BPM and SPM. Last, the count
represents a counter, and uBound represents the upper limit of times, which is out of
the range deviation of S and Bnow. The strategy of playing music is presented in the
following manner:
In summary, this algorithm considers the physiological information and adopts the
proposed music emotion classification model in the overall process. As we know,
the process of inference has the most consumption of power. In order to ensure
the application can operate for a long time on mobiles, we developed music played
strategy to reduce the usage of MECS. In the following section, we will propose the
MECS with low parameters, FLOPs (floating-point operations per second), and high
accuracy, to achieve fast inference time on the mobile.

Algorithm 1: The music playing strategy with SPM and emotion

1 Target: next music N;
2 Input: step per minute S;
3 Variable: average of last 10 times SPM S, interval of SPM IS, emotion of users UE,

music emotion E, played music Log, beat per second of present music Bnow;
4 set NS to 10; . store number of music
5 set Count to 0 ;
6 set D to 10;
7 set uBound to 20;
8 while True do
9 declare parameter cache, IS` = [IS1, IS2, . . . , ISn]; . music in interval

10 for i in IS` do
11 if Ei ∈ UE and NS < 10 then
12 NS = NS + 1;
13 Ei ← Model(i); . music emotion classification model
14 else
15 break;
16 end
17 end
18 while Count < uBound do
19 N ← Random[IS`(Ei ∈ UE, IS` 6⊂ Log)];
20 if |S− Bnow| > D and |S− Bnow| > D then
21 Count = Count + 1;
22 else
23 Count = Count− 1;
24 end
25 Log← N;
26 end
27 Count← 0;
28 end

3.2. Music Emotion Classification System

In this section, three parts were divided to elaborate on the process of music emotion
classification. To begin with, we introduce the architecture of the residual–inception block
in detail, then explain the benefit of the separable depthwise convolution on the blocks.
Finally, we illustrate the overall architecture and indicate the configuration of the model.
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3.2.1. Residual Connectivity with Inception Block

Residual connectivity [52], Inception [43], and residual–inception blocks are depicted
in Figure 5. The methods mentioned above improved the model classification accuracy
through different operations, which are implemented through the connection method and
multi-kernel size filters, as represented in Figure 5A,B, respectively. The proposed model
adopts the inception block with residual connectivity to extract the subtle changes and
simultaneously keep the gradient stability, as shown in Figure 5C.

Residual connectivity provides the advantage of shortening connections, allowing
feature maps to be learned by calculating the difference between input and output features.
The residual connectivity block is depicted in Figure 5A. The layer obtains the residual
feature maps of the previous layers and then adds the residual feature and original feature
maps. The `th expresses the number of block depths, and X` is used as an input to the
residual blocks. Next, the feature extraction is denoted as Wi. F(X`, Wi) denoted as the
features of the preceding layers. Additionally, X` and Wi are the functions of x, so we
denoted them briefly as F(x).

Wi is the function of three successive operations, consisting of rectified linear unit
(ReLU), batch normalization (BN), and 3 × 3 convolution (Conv). However, the significant
characteristics of individual sound types are distinguished by their different frequency
bands and temporal intervals. Music is regarded as a kind of audio with more features than
audio; besides, music includes many specific elements, such as timbre, rhythm, and pitch.
In addition, music has different features regarding frequency and time selection in various
genres. As a result, the spectrum of music is very sensitive to distinct genres. The benefit of
inception is that it can accept multi-level feature maps using a mix of various kernel sizes.
The performance network is improved by combining multi-level feature maps from various
filters. Additionally, before the inception blocks were proposed, all architectures conducted
convolution on the spatial and channel-wise domains. The inception blocks could roughly
separate the steps into two parts. First, by performing cross-channel correlations using the
1 × 1 convolution. Second, through cross-channel correlations and cross-spatially through
the 3 × 3 and 5 × 5 filters, as shown in Figure 5B.

In the proposed structure, residual connectivity is utilized to connect two inception
blocks and shortcut layers, which are represented in Figure 5C. Based on previous research,
each residual block can keep the original information, simultaneously learning the residual
features. We denote XL as the output of shallow layers and SL as the output of shortcut
layers. Both pass through the add layer, then the combination features are the input of the
residual blocks. Among them, the L is the number of residual blocks. The proposed model
layer is similar to inception, which carries out a non-linear transformation I`(.), where `
is the index of the layer. I`(.) is a composite operation function, including the BN, ReLU,
Conv, or Pool. In the music emotion classification task, we fixed L = 2. Thus, the input of
`th block, ` = 1, . . . , L, while output can be represented as x`:

x` = add(S`, I2`([Yb1, Yb2, Yb3, Yb4])), (4)

where S` is the output of shortcut ; Yb1, Yb2, Yb3, and Yb4 are outputs of the Inception block;
and [Yb1, Yb2, Yb3, and Yb4] are the filter concatenation. Feature maps are concatenated
through the channel dimension at each inception block.
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Figure 5. (A) Residual connectivity. (B) Inception block. (C) Residual-Inception block. (A,B) have
two identical points: one thing is that both use the particular connection method to reserve the
original feature as much as possible; the other thing is that both networks use 1 × 1 convolution as
a bottleneck layer to reduce the computation cost. The difference between (A,B) is the method of
output tensor difference; (A) adopt the add layer, while (B) adopt the concatenate.

3.2.2. Depthwise-Separable Convolution

Inspired by MobileNet [42], the standard convolution layer on the residual–inception
block is replaced with a depthwise-separable convolution, which can effectively reduce
the computation. The structure of depthwise-separable convolution layers contains a
depthwise convolution layer and a pointwise convolution (or called 1 × 1 convolution).
Compared to the standard convolution, the depthwise-separable convolution can effectively
reduce the overall computations by separating the convolution into two parts. We present
the computation of a standard convolutional layer, and a pointwise convolutional layer; a
depthwise convolutional layer is defined as (5)–(7), respectively. The variable names are
described as follows: DF represents the input feature size, kernel size is denoted as DK, the
number of channels is denoted as M, and the number of output channel is denoted as N.
The reduction of overall computation is simplified as (8)

D2
F ∗ D2

K ∗M ∗ N, (5)

D2
G ∗M ∗ N, (6)

D2
F ∗ D2

K ∗M, (7)

D2
F ∗ D2

K ∗M + D2
F ∗M ∗ N

D2
F ∗ D2

K ∗M ∗ N
=

1
N

+
1

D2
K

, (8)

where the overall computation cost depends on the number of parameters, such as input
feature map DF ∗ DF (assume the length and width of feature maps are identical), input
channel M, kernel size DK, and the number of output channels N. More specifically, the
depthwise-separable convolution layer can reduce approximately 80% of the computation
on 3 × 3 convolution layers, compared with the standard convolution. Although the



Sensors 2022, 22, 777 12 of 22

accuracy will slightly decrease while reducing the amount of calculation, we consider
these losses acceptable. Accordingly, the proposed structure differs from the standard
inception block. In addition, we employ an extra BN layer before each convolution, which
significantly enhances the network learning ability even when training on a small-scale
dataset. In addition, we adopt stack three layers 3 × 3 convolution to extract much more
different features, as shown in Figure 6.

Figure 6. (A) shows the standard inception block. (B) represents the modified inception block. The
difference between (A,B) is that (B) replaces the standard convolution with depthwise separable
convolution. Moreover, the BN layer is introduced before the 3 × 3 convolution.

3.2.3. Network Architecture

The proposed model consists of 10 layers when only calculating the layers with
parameters. More specifically, the proposed model mainly comprises convolution layers
and residual–inception blocks, which all implement Conv, Softmax, BN, and max-pooling
operations in each layer. Inspired by [53], this study adopts the BN operation between
each convolution and the ReLU, whose purpose is to calculate the root mean square of
features to perform normalization for each batch. Our emotion classification architecture
is developed based on Sarkar et al. [54], which is built around VGG (visual geometry
group) Net. Moreover, it has a higher classification accuracy than the other researchers.
We visualize the network architecture as depicted in Figure 7A. Sarkar et al. [54] consider
fewer layers than standard VGG Net, and their method alleviates the problem of overfitting
on small-scale training datasets. They stack two convolution layers, followed by a max-
pooling layer as a module (Conv-Conv-Pooling (CCP)). Moreover, their network structure
is stacked by three or four modules.

The proposed model is presented by the following steps: to start with, the 3 × 3 convo-
lution is used as a basic feature extractor, adding BN and a ReLU after each convolution
layer. After that, the kernel size of the max-pooling layer is 1 × 5, which is used to keep
the most significant features of the feature maps. Next, we replace their CCP module
with the residual–inception block and design the network structure by stacking it twice.
In addition, considering that the characteristic of inception is concatenation, each branch
needs to set the same number of filters. In this study, all of the convolution layers use
32 filters in the inception blocks. Then, between two residual–inception blocks, we adopt
the 1 × 1 convolution to reduce the dimension of channels. Finally, the transition layer is
under consideration and is typically used to reduce the complexity of feature maps. The
transition layer makes the channel of feature maps become half of the original by average
pooling, which is connected after the residual–inception blocks in our structure.
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Figure 7. (A) the music emotion classification based on VGG Net [54]. (B) The overall propose architecture.

The traditional CNN almost generates the network parameters of 80% on the last
few fully connected layers. Accordingly, we replace the fully connected layer with global
average pooling (GAP) [55]. The considerable parameters are not easy to use to calculate
the fit regularizer, resulting in the weak generalization ability of the model, further bringing
out the overfitting. Compared to the fully connected layer, the strength of GAP lies outside
of the extra parameters, further avoiding the problem of overfitting. It operates through
the average of all feature maps on spatial information. Thus, it is more robust to spatial
translations of the feature maps. In addition, GAP is a regularizer, which forces the final
output feature maps to be directly mapped to the categories confidence maps. Finally, it
puts the feature maps that have averaged into softmax to obtain probability classification,
and the cross-entropy is the selected loss function, which provides a smooth gradient to
make computation much simpler.

The proposed architecture considers computational efficiency and practicality. Accord-
ingly, the model has the strength of a small model size and a certain accuracy level. The con-
figuration of architecture is described in Table 2. As illustrated, the 128 × 1100 × 1 features
are considered as the input of the model. In all convolution layers, we pad zeros to each
convolution to keep the size fixed. As shown in Table 2, the trained model has tiny size,
only 2.4 MB. It contains the model and weight information applicable to personal devices,
even those limited by computation resources.
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Table 2. The configuration of proposed model. The dimension of output shape represent in frame
length, Mel features, and channel).

Layer Filter Size/Stride (Number of Filters) Out Shape Params

Input - (128, 1100, 1) -
Conv1 3 × 3/1 (32) (128, 1100, 32) 448

MaxPool1 1 × 5/None (128, 220, 32) 0

Inception1(front) [3 × 3/1 (32)avergepool] ∗ 1,
[1 × 1/1 (32)conv] ∗ 5, (128, 220, 160) 14,272
[3 × 3/1 (32)conv] ∗ 6

MaxPool2 2 × 2/None (64, 110, 160) 0
Inception1(behind) [3 × 3/1 (32)avergepool] ∗ 1,

[1 × 1/1 (32)conv] ∗ 5, (64, 110, 160) 35,392
[3 × 3/1 (32)conv] ∗ 6

MaxPool(shorcut1) 2 × 2/None (64, 110, 32) 0
Conv(shorcut1) 1 × 1/1 (160) (64, 110, 160) 5920

Add1 - (64, 110, 160) 0

Conv2 1 × 1/1 (32) (64, 110, 32) 5312

Inception2(front) [3 × 3/1 (32)avergepool] ∗ 1,
[1 × 1/1 (32)conv] ∗ 5, (64, 110, 160) 14,272
[3 × 3/1 (32)conv] ∗ 6

MaxPool3 2 × 2/None (32, 55, 160) 0
Inception2(behind) [3 × 3/1 (32)avergepool] ∗ 1,

[1 × 1/1 (32)conv] ∗ 5, (32, 55, 160) 35,392
[3 × 3/1 (32)conv] ∗ 6

MaxPool(shorcut2) 2 × 2/None (32, 55, 160) 0
Conv(shorcut2) 1 × 1/1 (160) (32, 55, 160) 5920

Add2 - (32, 55, 160) 0

Conv3 1 × 1/1 (32) (32, 55, 32) 5280
AveragePool 2 × 2/2 None (16, 27, 32) 0

GlobalAveragePool - (32) 0
Dense Number of Classes (Number of Classes) 132

Total Params 122,340

4. Experiment Results

The structure of the section is divided into several subheadings to describe the experi-
ment results in detail. First of all, the dataset description is provided. Next, we illustrate the
data preprocessing in our experiments. After that, we compare the proposed model with
other research models and analyze the performance. Lastly, we implement the proposed
model on the mobile and present the energy consumption of the overall automatic music
selection system.

4.1. Dataset

This study utilizes the 4Q emotion [44] and the Soundtrack [45] datasets. The sample
rate of audio clips is 44.1 kHz in the above datasets, which are described below in detail.

Bi-modal. This dataset consists of 162 songs. Each song clip is of 30 s duration. The
emotion category is also annotated into four A-V quadrants by Russell’s model. In this
dataset, each emotion category has a different number of music clips, Q1: 52 clips; Q2:
45 clips; Q3: 31 clips, and Q4: 34 clips. In addition, these 162 songs are annotated with
four quadrants. The quadrants are Q1 (A+V+), Q2 (A+V−), Q3 (A−V+), and Q4 (A−V−),
which correspond to happy, anger, sad, and tender, respectively.

4Q emotion. This dataset [44] consists of 900 songs, and the duration of each clip is
30 s. In addition, these 900 songs are annotated with four quadrants. The quadrants are Q1
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(A+V+), Q2 (A+V−), Q3 (A−V+), and Q4 (A−V−), which correspond to happy, anger, sad,
and tender, respectively.

Soundtracks. The dataset [45] consist of 360 audio samples, which are taken from the
background tracks of films with a length of approximately 30 s. Each clip is labeled with a
distinct emotion category, such as wrath, sadness, happiness, fear, surprise, valance, energy,
and tenderness. A clip may have several tags that have different levels of confidence. In
the experiment, in order to clarify the category of dataset, we combine the high and low
classes into the same classes. For example, low energy and high energy are in the same
emotion category. Consequently, there are nine classes in our experiments.

4.2. Data Preprocessing

Han, Yoonchang et al. [56] used Mel-spectrogram with 128 Mel filters for the time-
frequency representation of the audio. They claimed that the 128 Mel filters contain
sufficient spectral characteristics while significantly reducing the feature dimension. Mel-
spectrogram is used as the input to the proposed network in this study, which is achieved
by adding a logarithmic scale to the frequency axis of the STFT function. To prove if the
128 Mel filters achieve the best accuracy in our task, we implemented the experiment with
four different Mel filters. Thus, we set the 30, 60, 90, and 128 Mel filters in the experiments.
The parameter determined the shape of the feature vector before the feature extraction
process. Specifically, we extracted the Mel-spectrogram with 30, 60, 90, and 128 Mel filters
(bins) using the librosa tool [57], setting the hop length as 1024, frame size as 2048, window
function as the Hamming window, and sample rate as 44,100 Hz. When assigning the
above parameters, we used the suitable vector of Mel-spectrogram as the input feature.

4.3. Data Augmentation

Data augmentation is a technique for avoiding model overfitting by augmenting the
number of data used in model training. There are three different augmentation methods
based on the particular qualities of music. The first is time overlapping, which is a useful
technique in picture processing. Window shifting of audio signals generates extra data
by adjusting the overlap to 50% to enhance the valid data size. Second, background noise
was added to the signal, which added a signal-to-noise ratio of 10 dB to implement the
augmentation of the data. The last was pitch shifting, which shifts the pitch of audio
clips. We lowered the pitch of a waveform by a semitone. Under this process, the slight
perturbations increased sample diversity but not impact the original music expression.
Consequently, when we finished the data augmentation process, three times the original
data remained. The results of augmented data are shown in Tables 3 and 4.

Table 3. The amount of data on Bi-Modal and 4Q emotion dataset.

Dataset Q1 Q2 Q3 Q4 Total

Bi-Modal 156 135 93 102 486
4Q emotion 675 675 675 675 2700

Table 4. The amount of data on Soundtrack dataset.

Dataset Anger Energy Fear Happy Sad Surprise Tender Tension Valance Total

Soundtrack 116 224 116 124 112 112 112 236 232 1279

4.4. Training and Other Details

The preprocessing method converts the raw data into Mel-spectrogram, which is
described in Section 4.2. The model utilizes the Mel-spectrogram with 128 × 1100 as input,
and it is trained by using the ADAM [58] optimizer to reduce categorical cross-entropy
between predicted and actual labels. Each dataset was trained with 100 epochs and a batch
size of 32. The learning rate starts with 0.01 and reduces it by a factor of 0.5 automatically
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after five epochs if the loss does not decrease. In order to validate the robustness of the
model, we adopted k-fold cross-validation to evaluate the performance of the proposed
model on the 4Q emotion and the Soundtrack datasets. In all datasets, we separated the data
into training, testing, and validation at 80%, 10%, and 10%, respectively. The experiment
was developed in Python, and the model was trained by using the Keras, Tensorflow, and
Librosa toolkits on NVIDIA RTX-3090 GPU with 24GB RAM. We measured the inference
time of all the models on the iOS mobile device, iPhone 8 Plus, converting the trained
model to ML model (.mlmodel).

4.5. Results on the Bi Modal Dataset

This following section describes the performance of the proposed model and classifi-
cation results. First, comprehensive comparisons with other models, including the number
of parameters, accuracy, inference time, and total FLOPs, are provided on Bi-modal dataset
and 4Q emotion dataset. The inference time is estimated on iOS mobile devices in this
experiment. Afterward, to emphasize the robustness of the proposed model and three
available models, we examined the soundtrack dataset consisting of nine classes for testing
emotion classification. This study also provides various comparisons with different models
to estimate the performance by the following indicators, including total FLOPs, overall
parameters, the accuracy, and the result of cross-validation.

Table 5 exhibits the performance of different technologies on the Bi- modal dataset.
It can be observed that the proposed method attained an accuracy of 84.91%, which is
better than Sarkar et al. (81.03%) [54], VGGNet (63.79%), Inception v3 (64.15%), and ResNet
(77.36%). The results indicate that the proposed model has great advantages of accuracy.
Moreover, we implement the architecture proposed by Sarkar et al. and validate the result
on the Bi-modal dataset. In the following section, we use the same configuration with
Sarkar et al. proposed model to test different datasets and compare them with ours.

Table 5. On Bi-Modal datasets, the result present as bold.

Method Accuracy Param FLOPs

VGG-16 63.79% 14,992,068 85,681,045,528
Inception-v3 64.15% 21,810,404 15,803,943,448

ResNet-18 77.36% 13,994,372 11,539,579,288
Sarkar et al. 81.03% 1,203,140 17,710,549,784

Ours 84.91% 122,340 1,878,742,552

4.6. Results on the 4Q Emotion Dataset

Table 6 exhibits the performance of various designs on the 4Q emotion dataset. It
can be seen that the proposed method achieved an accuracy of 92.07% on the 4Q emotion
dataset. The accuracy is 20.32% and 15.23% higher than those of the SVM with ReliefF
(baseline) [44] and VGG-16, respectively. In comparison with Chaudhary [59], the accuracy
of the proposed model improved by 3.65% and FLOPs of the model were reduced by 68%. In
addition, comparing our model with CCP [54], the accuracy rose by 5.56%, and the training
parameters and FLOPs by 89.8% and 89.3%, respectively. The results indicated that the
proposed model has significant advantages of computation and accuracy. Furthermore, our
approach outperforms VGGNet, Inception, and ResNet in terms of classification accuracy
by 15.23%, 9.6%, and 7.21%, respectively. The experimental results indicate that our
residual–inception block-based model is effective.
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Table 6. On 4Q emotion datasets, the result present as bold.

Method Accuracy Param FLOPs

SVM + ReliefF 71.75% - -
VGG-16 76.84% 14,992,068 85,681,045,528

Inception-v3 82.47% 21,810,404 15,803,943,448
ResNet-18 84.86% 13,994,372 11,539,579,288

Sarkar et al. 86.42% 1,203,140 17,710,549,784
Chaudhary et al. 88.47% 375,012 5,922,046,296

Ours 92.07% 122,340 1,878,742,552

The proposed model has the most remarkable accuracy and the fewest parameters,
with lower FLOPs and better accuracy than the others. Classification accuracy comparison
between the proposed system and two other architectures is presented in Figure 8 for
emotion classification. It can be observed that the proposed model has higher accuracy
than other models at the following four different frame length experiments. The Mel filters
of 128 produce the highest classification accuracy compared to the other experiments; the
accuracy of different Mel filter sizes with 30, 60, 90, and 128 are 89.76%, 90.42%, 91.11%,
and 92.07%, respectively.

(A) (B)

Figure 8. (A) represents the result of classification accuracy comparison of the proposed system
with the other architecture. The y-axis accuracy (%) means the number of correct classifications/the
number of all data. (B) shows the result of elapsed time in classifying audio file comparison the
proposed system with two different models.

4.7. Results on Soundtrack Dataset

We compare the proposed model with some recent models, including three different
deep learning models and two traditional classification methods, as shown in Table 7.
Sarri et al. [60] classified the features with SVM and k-NN on the Soundtrack dataset,
fetching an accuracy of 54%. The result is obviously insufficient, so the neural network as
the classifier gradually replaces SVM and k-NN. The development of the VGG network
replaces the old technique of extracting features, resulting in the accuracy substantially
rising by 12%. Moreover, the RNN-based architecture was developed, which can describe
dynamic time behavior and possesses the ability to extract the slight changes on the
spectrogram. The MCCLSTM [61] consists of long short-term memory (LSTM) and CNN,
and the result demonstrates that it achieves an accuracy of 74.35 %. However, when
the accuracy needs to be further improved, the number of parameters needs to be kept
low at the same time. The LSTM-based architecture is not easy to implement in low
parameters because the LSTM unit parameter requires four times more than the CNN-based
architecture. As a result, the CNN-based architecture represents a significant direction of
development. Sarkar et al. committed to improving the VGG network and developing the
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CCP module to replace the original VGG network. There are some benefits of the CCP
module, described as follows. First, CCP alleviates the issue of overfitting on small training
datasets. Second, the CCP module achieved higher accuracy than the VGG network, which
achieved an accuracy of 82.54%. Finally, Chaudhary et al. utilized a different architecture
of convolutional layer kernel, fetching an accuracy of 83.98%. In addition, Chaudhary et al.
developed architecture through stacking various kernel size convolutions and achieving
higher accuracy and lower FLOPs. However, the accuracy is still lower than the proposed
models, and FLOPs are higher than ours. According to the experiment results, the accuracy
of the proposed model outperforms all the compared models, whether on the 4Q emotion
and Soundtrack dataset.

Table 7. On Soundtrack datasets, the result present as bold.

Method Accuracy Param FLOPs

SVM BE of 54.63% - -
k-NN BE of 56.45% - -

VGG-16 68.12% 14,992,068 85,681,045,528
MCCLSTM 74.35% 2,487,978 1,230,683,852
Sarkar et al. 82.54% 1,203,140 17,710,549,784

Chaudhary et al. 83.98% 375,012 5,922,046,296

Ours 87.24% 122,340 1,878,742,552

To prove whether the model generalizes well to new data, we performed a 10-fold
cross-validation on each dataset. Figure 9 illustrates the training, testing, and validating
accuracy in each iteration. The training, testing, and validation data are 80%, 10%, and 10%,
respectively. The experimental results show that the classification results of the different
datasets and the new data achieve a competitive level to represent the proposed model
possessing generalization ability.

Figure 9. (A) represents the result of cross validation on the 4Q emotion dataset, and (B) shows the
result of cross validation on Soundtrack. (A,B) are separated the individual dataset into ten times
iteration to validate the model performance. The average of (A) (4 classes) is 92.07%, and the average
of (B) (9 classes) is 87.24%.
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4.8. Runtime of the Developed Application

The strategy of playing music is chosen by the previously mentioned method. In
addition, the purpose is to lower energy consumption as much as possible. As we know,
the inference process is the most energy-consuming. Therefore, we reduce the usage of
the emotion classification model by developing the following algorithm to reduce energy
consumption. As a result, we design the algorithm to reduce energy consumption. This
main process includes reducing the classification usage and reserving the 10 songs that
correspond to the emotion of users, and does not classify all of the music to achieve the
lower power consumption. The Table 8 depicts the energy usage of the proposed system
during the process.

Table 8. Resources consumption of the developed system in the situation of jogging.

Index CPU RAM Max. CPU Usage Max. Memory Consumption

Phone A A10 Fusion 2 GB 34.6% 228.1 MBQuad-core 2.34 GHz

Phone B A11 Bionic 4 GB 18.1% 247.5 MBHexa-core 2.39 GHz

Phone C A12Z Bionic 6 GB 13.7% 237.7 MBHexa-core 2.49 GHz

Phone D A14 Bionic 6 GB 14.7% 178.4 MBHexa-core 2.99 GHz

5. Conclusions

This paper presented a specific network for detecting music emotions while running
the music selection system. The proposed model intends to use the low-level information
in log-scaled Mel-spectrograms to make a classification choice. The proposed method is
proven competitive with existing deep learning architectures on the 4Q emotion and the
Soundtrack datasets. Furthermore, four different numbers of Mel filters are used to generate
the input spectrograms. We discovered that the increasing number of Mel filters results
in higher classification accuracy as well. Thus, we can deduce that the more Mel filters
we set, the more features we obtained. Specifically, the proposed model achieves 84.91%,
92.07%, and 87.24% on Bi-modal, 4Q emotion, and Soundtrack datasets, respectively, higher
than other emotion classification models, and the inference time is lower as well. The
proposed emotion classifier will be used in the field of music therapy. In addition, this
paper designed a selection module based on a set of physiological data of users and music
emotional variables for when the user is running. Furthermore, we lessened the energy
consumption by reducing the usage of the emotion classification model to ensure that it
can execute for a long time on mobiles.

In summary, this study developed an entire system for joggers, solving the problem of
playback sequence, which has not considered the present physiological and music emotion
during exercise in the previous studies. The entire playback sequence consists of the
classifier and music selection module developed based on previous research on music
interventions. The classifier can be used as part of the music playback sequence. The
system will change music sequence immediately to make users exercise more efficiently,
according to the present situation of physiological data.
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