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Abstract: Owing to imperfect scans, occlusions, low reflectance of the scanned surface, and packet
loss, there may be several incomplete regions in the 3D point cloud dataset. These missing regions can
degrade the performance of recognition, classification, segmentation, or upsampling methods in point
cloud datasets. In this study, we propose a new approach to estimate the incomplete regions of 3D
point cloud human face datasets using the masking method. First, we perform some preprocessing on
the input point cloud, such as rotation in the left and right angles. Then, we project the preprocessed
point cloud onto a 2D surface and generate masks. Finally, we interpolate the 2D projection and the
mask to produce the estimated point cloud. We also designed a deep learning model to restore the
estimated point cloud to improve its quality. We use chamfer distance (CD) and hausdorff distance
(HD) to evaluate the proposed method on our own human face and large-scale facial model (LSFM)
datasets. The proposed method achieves an average CD and HD results of 1.30 and 21.46 for our own
and 1.35 and 9.08 for the LSFM datasets, respectively. The proposed method shows better results
than the existing methods.

Keywords: 3D point cloud; incomplete region; deep learning; estimation; and restoration

1. Introduction

The massive advancement in modern technology, especially in 3D scanners such as
LiDAR (light detection and ranging), allows us to capture datasets in a more convenient
format (3D point cloud) to represent 3D objects. The 3D point cloud dataset contains
geometric information of objects along the x, y and z-axes. Sometimes, it may also contain
normal and color information of the objects. Presently, the use of 3D point cloud datasets is
increasing significantly owing to the multitude of applications, such as recognition [1–4],
classification, segmentation [5–9], and upsampling [10–13]. The recognition, classification,
segmentation, and upsampling performance depend significantly on the quality of the 3D
point cloud datasets.

However, an incomplete dataset degrades the performance of the detection, classifica-
tion, segmentation, and upsampling methods mentioned above. There are several reasons
for incomplete regions in the acquisition of 3D point cloud datasets, such as scanner place-
ment, occlusions, low reflectance of the scanned surface, viewing directions, and packet
loss [14].

An example of incomplete regions in the 3D point cloud human face data is shown in
Figure 1, where the red regions indicate the incomplete regions. For applications ranging
from recognition to upsampling, estimating incomplete regions in the point cloud is vastly
an important task to provide a high-quality 3D model. Recently, several studies were
conducted to fill in missing points in the 3D point clouds. Most of the methods focus on
the information about the distribution and curvature of the neighboring points as well
as the mesh information. However, when the incomplete regions are large and have a
complex surface structure, such as the human face, it becomes difficult to estimate the
missing points.
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regions have a different distribution from the complete regions. Therefore, we restored 
the estimated point cloud to improve its quality. The main contributions of this study can 
be summarized as follows. 
1. First, we perform preprocessing, such as rotation along the left and right angles of 

the input point cloud. From the rotated view, we generate a mask and project it onto 
the 2D surface. The generated mask and the 2D projection are interpolated to propa-
gate the interpolated output. Then, we perform reconstruction to generate the esti-
mated point cloud. 

2. To improve the quality of the estimated regions, we apply a deep learning model to 
restore the point cloud. We consider a dynamic graph convolutional neural network 
(DGCNN) that introduces edge convolution to accomplish the restoration. 

3. We evaluated the proposed method on our own and LSFM datasets to show the ro-
bustness of the proposed system. The proposed method can considerably improve 
the quality of the estimated point cloud. 

4. We also compared the proposed method with state-of-the-art point cloud processing 
systems to show the effectiveness and robustness. The proposed method achieved 
better results than previous methods. 
The rest of this paper is stated as follows. We demonstrate the related works in Sec-
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In this study, we propose a new method to estimate the incomplete regions of the
3D point cloud human face datasets. The proposed method can estimate any kind of
incomplete regions in the 3D human face point cloud datasets, particularly those caused
by scanner placement, viewing direction, and packet loss. The estimated points of the
incomplete regions have a different distribution from the complete regions. Therefore, we
restored the estimated point cloud to improve its quality. The main contributions of this
study can be summarized as follows.

1. First, we perform preprocessing, such as rotation along the left and right angles of the
input point cloud. From the rotated view, we generate a mask and project it onto the
2D surface. The generated mask and the 2D projection are interpolated to propagate
the interpolated output. Then, we perform reconstruction to generate the estimated
point cloud.

2. To improve the quality of the estimated regions, we apply a deep learning model to
restore the point cloud. We consider a dynamic graph convolutional neural network
(DGCNN) that introduces edge convolution to accomplish the restoration.

3. We evaluated the proposed method on our own and LSFM datasets to show the
robustness of the proposed system. The proposed method can considerably improve
the quality of the estimated point cloud.

4. We also compared the proposed method with state-of-the-art point cloud processing
systems to show the effectiveness and robustness. The proposed method achieved
better results than previous methods.

The rest of this paper is stated as follows. We demonstrate the related works in
Section 2. In Section 3, we concentrate on the illustration of the proposed method including
architectural overviews, incomplete region estimation and deep learning-based restoration.
We describe the environmental conditions, performance evaluations and comparisons in
Section 4. Finally, in Section 5, we consolidate the discussion and present conclusions.

2. Related Works

The estimation of missing points in the 3D point cloud is of great significance for the
development of point cloud-based applications, especially for human face datasets. In
recent years, many methods were suggested filling the incomplete regions ranging from
polygon mesh [15–21] to the 3D point cloud. Filling holes in polygon mesh have been widely
conducted for geometric modeling, computer graphics and image processing considering
various deficiencies such as local connectivity, global topology and geometry. Li et al. [16]
searched the feature points from the neighboring points of the hole and built a polynomial
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blending curve to fill the missing parts. In [17–19], the hole parts of the triangular mesh
were filled based on surface fitting using the neighboring points. Enkhbayar et al. [20]
proposed filling complex holes in the 3D mesh by inserting locally uniform points into the
hole created by contour curves. Many methods have been proposed to fill the holes in the
3D point cloud, which are constrained by various factors such as geometric structure and
size of incomplete regions.

The concepts used to fill the polygon mesh are accelerated to fill missing points in
the 3D point cloud [21–32]. Several methods introduced the estimation of incomplete
regions in the point cloud, which can be divided into mesh-based [21–25] and direct point
cloud-based estimation [26–32].

The mesh-based hole-filling methods conduct two steps: triangulation and surface
reconstruction. Wang et al. [21] created a triangular mesh and identified the points adjacent
to the holes. Then, the moving least squares method was used to estimate the missing
points. In [18,22], the incomplete regions were filled using triangulation methods in which
the surface was constructed by a surface fitting function. Nguyen et al. [23] proposed
a triangular mesh-based method to fill concave regions. First, they triangulated the 3D
point cloud into a 3D grid and separated the incomplete regions. Then, the boundaries
of the holes were determined and new points were inserted into the holes. Furthermore,
triangulation was done to generate the final point cloud. Nguyen et al. [24] introduced the
method for incomplete regions filling based on the computation of tangent plane for the
boundary point of holes. First, they extracted the exterior boundary of a point cloud on a
projected 2D grid. Then, they identified the hole boundary and filled the holes based on the
tangent plane for each boundary point. Quinsat et al. [25] described a mesh deformation
method for completing digitized holes in the 3D point cloud. They accomplished the
nominal mesh deformation by determining the difference between the nominal mesh and
the point cloud.

The efficiency of mesh-based methods for filling holes in the 3D point clouds strongly
depends on the mesh structure. The better the quality of the mesh, the better the perfor-
mance. In addition, it becomes very difficult to fill the holes correctly if the number of
points is too large and the structure is complicated. Considering the above drawbacks,
there are very few methods that have illustrated to fill the missing points directly from
the 3D point cloud. Chalmoviansk et al. [26] used adjacent points around the hole bound-
ary and constructed a surface to fill the incomplete regions. Qiu et al. [27] presented a
3D point cloud hole-filling approach by describing a certain relationship between the
incomplete parts and the surface surrounding them. They determined the local patches of
points with neighboring points of holes and filled the holes with the points on the patches.
Chen et al. [28] introduced a radial basis function to interpolate the boundary points and
then filled the hole regions uniformly. In [29], Wu et al. proposed a hole-filling method
based on the boundary extension and convergence. First, boundary points were moved
to the hole regions and the correlation between the neighboring points were increased
by applying a smoothing operation. Lin et al. [30] developed a featured curves-based to
fill the hole regions directly from the point cloud. They identified the boundary points
and the feature points of the hole to categorize the feature and the non-feature points.
Finally, the hole regions were subdivided into sub-holes and filled with tensor voting.
Dinesh et al. [31] provided an exemplar-based framework for filling holes by exploiting
non-local self-similarity. Wang et al. [32] used feature lines such as hole boundary lines,
ridge lines and valley lines to generate curves and fitted them to fill the holes.

Completing holes directly from the point cloud does not require transforming the point
cloud to the mesh. Therefore, this method is much faster than the mesh-based estimation.
The performance of these methods depends on the data size and the structure of the 3D
object. When the data size and structure of the objects become large and complicated, the
above method cannot fill the incomplete regions effectively and efficiently.

To address the above drawbacks of the mesh-based and direct point cloud-based
hole-filling methods, we perform the estimation of points for incomplete regions using the
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masking method and the restoration of the estimated points using deep learning to make
them resemble the complete regions.

To restore the estimated point cloud, we conduct the DGCNN model which is ex-
plained in Section 3. We also use the point cloud upsampling network (PU-Net) [10] and
point cloud upsampling generative adversarial network (PU-GAN) [11] for comparison
with the proposed method. PUNet and PU-GAN had been used for upsampling the point
cloud. However, we use these models for restoration purposes. To compare the proposed
method with a more recent point cloud processing technique, we use a point cloud de-
noizing method called differential manifold reconstruction for denoizing (DRMD) [33]
which is more appropriate for the restoration of the estimated point cloud. In this method,
Luo et al. tried to remove the noise to improve the quality of the noisy point cloud. They
applied differential pooling, manifold reconstruction and resampling to generate denoized
point clouds.

3. Proposed Methodology

This section covers the major contents of the proposed method, including an architec-
tural overview, point cloud estimation, and restoration of incomplete regions.

3.1. Architectural Overview of the Proposed Method

A block diagram of the proposed system is depicted in Figure 2. The overall architec-
ture consists of two major parts: (1) point cloud estimation and (2) point cloud restoration.
The input point cloud (front view) is passed through the estimation module, which per-
forms several operations to fill out the incomplete regions. The estimated points (front
view with left and right estimation) were then restored using a deep learning model. The
details of point cloud estimation and restoration are illustrated below.
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Figure 2. Block diagram of the proposed method including point cloud estimation and restoration modules.

3.2. Point Cloud Estimation of Incomplete Regions

The configurations of the device, environmental factors and other settings can cause
incomplete regions in the point cloud dataset. These missing regions can degrade the
quality of the 3D point cloud dataset, which can affect the performance of the point cloud
processing system. The input point cloud (front view) has a very small number of points
than the ground truth point cloud due to incomplete regions. Therefore, we cannot directly
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apply point cloud processing to the front view point cloud using deep learning. As a
result, it is very important to fill the incomplete regions in an effective and efficient way
for further processing, for example, point cloud restoration. In this section, we present a
simple model-based approach to estimate the missing points for incomplete regions so that
we can employ the proposed deep learning model for restoration.

Let us consider Pf as the input point (front view) cloud of size N × 3. Then, Pf is
rotated along the x-axis in the right and left sides, defined as follows:

Pθ = ϕ
(

Pf ; θ
)

(1)

where ϕ(.) represents the rotation function with angle θ and Pθ is the rotated point cloud.
From the rotated point cloud, we first generate mask Mθ to separate the foreground

and background regions and then obtain its projected 2D image, IP = fP( Pθ). From
multiple 2D projected images, we apply conventional interpolation method such as bicubic
interpolation to estimate the fully complete point cloud Pe, which can be mathematically
written as follows:

Pe = f I(Pθ ; {IP}, {Mθ}) (2)

where f I(.) indicates an image-based interpolation scheme. We have used the bicubic
method in this study [34]. The esimated points are not sufficiently accurate, which is
further restored by the subsequent restoration model.

3.3. Deep Learning-Based Point Cloud Restoration

The significant improvements in machine learning, particularly deep learning, allows
us to easily perform the detection, recognition, classification and restoration or reconstruc-
tion of data for various purposes. Point cloud restoration is one of the most important tasks
for other applications such as object detection and face recognition.

Compared to traditional deep learning models, such as convolutional neural network,
recurrent neural network and long short-term memory, the DGCNN model works better in
point cloud processing [9]. Therefore, we design a DGCNN model to restore the estimated
point cloud, which was applied for point cloud classification and segmentation. Tradi-
tional point cloud processing models, such as PointNet [5] and PointNet++ [6] operate on
individual points independently to explore the local information and maintain permuta-
tion invariance. These models ignore the geometric relationship among the neighboring
points. However, DGCNN applies convolution-like operations to address the geometric
relationship among the edges of neighboring points called edge convolution (EdgeConv).
EdgeConv extracts edge features between a point and its adjacents. It is independent of
the ordering of points that makes it permutation invariant. The DGCNN is dynamically
updated after each layer, instead of being fixed in GCNN [13].

3.3.1. Architecture of the Proposed DGCNN Model

The architecture of the DGCNN model is shown in Figure 3. The proposed DGCNN
model consists of four EdgeConv layers. The first EdgeConv layer is composed of three
multilayer perceptron (MLP) networks (32, 64 and 64 output features) and the remaining
three EdgeConv have two MLP networks (64 and 64 output features).

The EdgeConv layer computes the edge features for each point, as shown in Figure 4,
where Vi and ej (i, j = 1, 2, 3, 4, 5) indicate the vertices and edges. The Vc and V ′c represent
the center vertex and output of the edge convolution, respectively.
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Let us consider a point cloud P = {P1, P2, . . . , PN}with N points along the three axes
x, y and z, respectively. We can represent the point cloud P as a graph, G = (V, e) where V
and e are the vertices and edges. We construct G as the k-nearest neighbor (k-NN) graph of
P for N points along the three axes. Then, the edge features are computed as follows:

eij = hΘ
(

Pi, Pj
)

(3)

where hΘ is a non-linear function with a set of learnable parameters Θ. Finally, the Edge-
Conv is accomplished by applying channel-wise symmetric aggregation on the edge fea-
tures defined as follows:

V′c = �
j:(i,j)∈ε

hΘ
(

Pi, Pj
)

(4)

where the choice of edge function, h and aggregation, � are described in detail [9].
Each MLP layer consists of one fully connected and one rectified linear unit (ReLU)

layer. The fully connected layer learns the non-linear combination of features. The ReLU
is used to consider only the positive response. After the MLP operations, we apply a
pooling layer among the adjacent features to generate an N × an dimensional feature from
an N × k × an dimensional feature as shown in Figure 3a. Here, N, k and an indicate
the number of input points, the number of neighboring points and the number of MLP
layers, respectively. We have fixed the value of k as described in [9]. Each EdgeConv
layer generates 512× 64 dimensional features which are then concatenated and passed
a 512× 256 features map through a MLP layer again. The MLP layer reduces the size
of features map from 512× 256 to 512× 128. We additionally integrate a reconstruction
layer that conducts convolution, ReLU and convolution operations to generate the final
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point clouds. The first convolution operation generates to 512× 64 dimensional features
and passes through a ReLU operation. Finally, the second convolution produces the final
outputs of shape 512× 3.

3.3.2. Loss Function for the Point Cloud Restoration

We design a loss function by assembling two types of losses: CD [11] and repulsion
loss (RL) to train the restoration network. Since the ground truth and predicted point
clouds are unordered, we use permutation invariant symmetric CD loss. The CD measures
the similarity between the ground truth point cloud (Pgt) and the predicted point cloud
(Ppd). For given Pgt and Ppd with N points, CD considers the distance of each point in Pgt
and finds nearest point in Ppd. Then, it calculates the sums of the square distance from Pgt
to Ppd and vice-versa which can be defined as follows:

LCD

(
Pgt, Ppd

)
=

1∣∣Pgt
∣∣ ∑

x∈Pgt

min
x′∈Ppd

∣∣∣∣x− x′
∣∣∣∣2 +

1∣∣∣Ppd

∣∣∣ ∑
x∈Ppd

min
x′∈Pgt

∣∣∣∣x− x′
∣∣∣∣2 (5)

where first and second parts ensure that Ppd accurately aligns to Pgt and Pgt is accurately
aligned to Ppd, respectively.

RL is used to make the distribution of the predicted points resemble to the original
points. RL can be defined as follows:

LRL =
N

∑
i=0

∑
i′∈K(i)

η
(∣∣∣∣p′i − pi

∣∣∣∣)w(∣∣∣∣p′i − pi
∣∣∣∣) (6)

where K(i) indicates the indices of the neighboring points of pi; η(.) and w(.) represents
the repulsion terms and the fast-decaying weight function, as described in [10].

Then the DGCNN is trained by minimizing the following joint loss of LCD and LRL.

Ltotal = αLCD + βLRL (7)

where α and β are the balancing parameters of LCD and LRL losses.

4. Experimental Results

In this section, we present the detailed experiments of the proposed method including
the environmental setups, evaluation metrics, performance evaluations and comparisons
and complexity analysis.

4.1. Environmental Setups

We ran the entire experiment on a Linux 20.04 (Ubuntu) operating system with a GPU
named GeForece GTX 1080. Python was used as the programming language. We mainly
used the PyTorch framework with torch geometric to design the DGCNN model for the
restoration of the estimated point cloud. We performed the experiments on our own 3D
point cloud human face and LSFM datasets [35].

Our own dataset contains ten samples collected by ten individuals. The dataset is
collected using the Onscans IU-50E device [36]. Each sample has an average of 100 K points.
Initially, we have ten ground truth samples that contain merge view point clouds including
front, left and right view point clouds. First, we project the merge view point cloud onto
the 2D space and generate the front view dataset. The front view dataset has missing
points on the left and right sides. We used the proposed estimation method to estimate
the missing regions on the left and right sides. The estimated and ground truth datasets
are different. As a result, we need to restore the estimated point cloud. We performed the
patch-based restoration owing to the limited amount of data and computational efficiency.
Therefore, we split the points into patches of size 512 × 3 for training the DGCNN model.



Sensors 2022, 22, 723 8 of 15

We randomly selected 1000 patches for each sample. We used the first four samples as test
samples and the remaining six samples were used for training.

The LSFM dataset contains 10 K individuals of human face 3D point cloud data in
which each class has 50 data. We took 1000 samples from separate individuals for our
experiments. Each sample contains 28,588 points. Since we performed the patch-based
restoration, we split the dataset into patches of size 512 × 3. We used the first four hundred
samples as a test set and the remaining six hundred samples as a training set.

To train the DGCNN, we set the batch size to 64 and the training process was continued
up to 500 epochs. We used the Adam optimizer with a learning rate of 0.001 and β1,
β2 = (0.9, 0.999) for optimization. Adam optimizer is used to update the weights iteratively
during the training. It combines the advantages of adaptive gradient descent (AdaGrad)
and root mean square propagation (RMSProp). It is also faster than AdaGrad, RMSProp
and stochastic gradient descent. The learning rate decayed after every 100 epochs with a
factor of 0.8.

4.2. Evaluation Metrics

We evaluated the proposed estimation and restoration methods by calculating CD and
HD [37]. We have already discussed about CD in Section 3.3.2. HD is used to determine
the similarity between two-point clouds. It overcomes the problems caused by different
grid sizes, highly overlapping and very large-scale point sets.

Let us consider Pe and Pr as the input (estimated) and restored point cloud, respectively.
Then, HD is obtained from the maximum one-sided HD (OHD) between Pe and Pr and
between Pr and Pe defined as follows:

HD(Pe, Pr) = max{OHD(Pe, Pr), OHD(Pr, Pe)} (8)

For Pe and Pr, the OHD(Pe, Pr) can be formulated as follows:

OHD(Pe, Pr) =
1
V

max
xi∈Pe

{
min
jj∈Pr
||xi − yj||2

}
(9)

where V is the volume of the parallelepiped for a given point cloud. A lower HD value
indicates a smaller gap between the input and restored point clouds.

4.3. Performance Evaluations and State-of-the-Arts Comparsons

First, we evaluated the performance of the proposed method on our own dataset. We
estimated the missing points in the incomplete regions by performing preprocessing as
described in Section 3.2. For better understanding, we provided two samples of the front
view and the estimated point cloud, as visualized in Figure 5. As shown in Figure 5b,d,
the empty space of the front view point cloud is effectively filled by the proposed method,
which is much better than the incomplete front views, as given in Figure 5a,c.

The estimated point cloud is not sufficient compared to the ground truth point cloud.
To improve the quality of the estimated point cloud, we integrated the restoration process
after the estimation. We used four test samples to show the experimental results of the
proposed restoration method. We have separately reported the results of CD and HD for
each test sample for ground truth versus estimation, ground truth versus restoration and
estimation versus restoration.

Table 1 shows CD and HD results of four test samples for the ground truth versus
estimated and ground truth versus restoration. Initially, we reported the results between
the ground truth and the proposed estimated data as given at first row in Table 1. The
average results of CD and HD are 2.37 and 22.82, approximately. After obtaining the
estimated point cloud, we applied the proposed DGCNN model to restore them. The
proposed method secures average CD and HD results of about 1.30 and 21.46, which are
much better than the estimated results. We compared the restoration results of the DGCNN
with PU-Net, PU-GAN and DRMD methods. It is evident that the restoration with PU-Net
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degrades the quality of the estimated point cloud and obtains CD and HD results of 9.65
and 25.52, respectively. PU-GAN and DRMD can effectively decrease CD (2.17 and 2.52)
and HD (21.64 and 22.20) results, which is better than both proposed estimation and PU-
Net. However, the proposed DGCNN model outperforms not only the estimation but also
restoration using PU-Net, PU-GAN and DRMD, respectively.
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Figure 5. Point cloud estimation of incomplete regions from front view in our own dataset. (a) Sample-
1 (front view). (b) Sample-1 (estimation). (c) Sample-2 (front view). (d) Sample-2 (estimation).

Table 1. Performance evaluation on our own dataset between ground truth and restoration.

Methods
Sample-1 Sample-2 Sample-3 Sample-4 Average

CD HD CD HD CD HD CD HD CD HD

Proposed
[Estimation] 2.38 20.52 2.22 20.83 2.31 13.19 2.55 36.73 2.37 22.82

PU-Net [10] 9.12 25.30 8.96 27.66 10.49 20.32 10.01 28.80 9.65 25.52
PU-GAN [11] 2.11 19.81 2.02 23.00 2.10 14.42 2.43 29.32 2.17 21.64
DRMD [33] 2.48 22.37 2.40 23.34 2.38 14.43 2.82 28.66 2.52 22.20
Proposed

[Restoration] 1.37 19.82 1.22 21.97 1.11 14.58 1.51 29.47 1.30 21.46

An example of the overall process is shown in Figure 6, in which the front view input
point cloud is passed through the left and right estimation modules to fill the incomplete
regions on the left and right sides indicated by purple and red colors. The front view,
left estimation and right estimation are then combined to generate an estimated point
cloud with filled incomplete regions. A restoration model is then integrated to restore the
estimated point cloud to make them resemble the ground truth point cloud. To compare
the visual results, we added two patches from the estimated and restored point clouds, as
given in Figure 6a,b.

We provided the visual comparisons among the points clouds, as shown in Figure 7.
Figure 7a–d present the ground truth, front view, estimation and restoration point clouds.
It can be observed that the estimated point cloud is filled correctly and denser than the
front view and ground truth point cloud. Therefore, we apply restoration to generate the
points that are much closer to the ground truth compared with estimation.
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For better understanding and comparison, we also applied the restoration with our pro-
posed DGCNN and compared it with PU-Net, PU-GAN and DRMD methods. Figure 8a–f
depict the estimated, restored with PU-Net, PU-GAN, DRMD, DGCNN and ground truth
point clouds, respectively. From Figure 8, it can be noticed that the visual result of the pro-
posed DGCNN is much better than the results obtained by estimation, PU-Net, PU-GAN
and DRMD, respectively. In Figure 8b, we can also notice that the restored points obtained
by PU-Net and DRMD are too noisy and completely misaligned compared to estimated
and ground truth point clouds. PU-GAN can restore the estimated point which is better
than PU-Net and DRMD but less than the proposed DGCNN model. Therefore, we can
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emphasize that the proposed DGCNN can effectively restore the estimated point cloud of
our own dataset than the prior point cloud processing techniques.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 16 
 

 

For better understanding and comparison, we also applied the restoration with our 
proposed DGCNN and compared it with PU-Net, PU-GAN and DRMD methods. Figure 
8a–f depict the estimated, restored with PU-Net, PU-GAN, DRMD, DGCNN and ground 
truth point clouds, respectively. From Figure 8, it can be noticed that the visual result of 
the proposed DGCNN is much better than the results obtained by estimation, PU-Net, 
PU-GAN and DRMD, respectively. In Figure 8b, we can also notice that the restored 
points obtained by PU-Net and DRMD are too noisy and completely misaligned com-
pared to estimated and ground truth point clouds. PU-GAN can restore the estimated 
point which is better than PU-Net and DRMD but less than the proposed DGCNN model. 
Therefore, we can emphasize that the proposed DGCNN can effectively restore the esti-
mated point cloud of our own dataset than the prior point cloud processing techniques. 

(a)  (b)  (c)  

(d)  (e)  (f)  

Figure 8. Visual comparisons of restoration of our own 3D point cloud dataset. (a) Estimation. (b) 
PU-Net [10]. (c) PU-GAN [11]. (d) DRMD [34]. (e) Proposed. (f) Ground Truth. 

We also evaluated the performance on LSFM dataset for showing the generalization 
ability and robustness of the proposed method. Table 2 list the average CD and HD results 
for test set in LSFM dataset. Similar to our own 3D point cloud human face dataset, the 
proposed DGCNN model shows better CD and HD results for ground truth versus resto-
ration than the prior works. The proposed method assures an average CD result of 1.35 
for ground truth versus restoration which is better than the proposed estimation (2.59), 
PU-Net (8.81), PU-GAN (1.53) and DRMD (2.32), respectively. The average HD result of 
9.08 obtained by the proposed restoration model is also better than the proposed estima-
tion (14.41), PU-Net (16.68) and DRMD (11.39), but less than PU-GAN (8.38) in the LSFM 
dataset. 

  

Figure 8. Visual comparisons of restoration of our own 3D point cloud dataset. (a) Estimation.
(b) PU-Net [10]. (c) PU-GAN [11]. (d) DRMD [34]. (e) Proposed. (f) Ground Truth.

We also evaluated the performance on LSFM dataset for showing the generalization
ability and robustness of the proposed method. Table 2 list the average CD and HD results
for test set in LSFM dataset. Similar to our own 3D point cloud human face dataset,
the proposed DGCNN model shows better CD and HD results for ground truth versus
restoration than the prior works. The proposed method assures an average CD result
of 1.35 for ground truth versus restoration which is better than the proposed estimation
(2.59), PU-Net (8.81), PU-GAN (1.53) and DRMD (2.32), respectively. The average HD
result of 9.08 obtained by the proposed restoration model is also better than the proposed
estimation (14.41), PU-Net (16.68) and DRMD (11.39), but less than PU-GAN (8.38) in the
LSFM dataset.

Table 2. Performance evaluation on LSFM dataset between ground truth and restoration.

Methods
Proposed

[Estimation] PU-Net [10] PU-GAN [11] DRMD [33] Proposed
[Restoration]

CD HD CD HD CD HD CD HD CD HD

Ground Truth
versus

Restoration
2.59 14.41 8.81 16.68 1.53 8.38 2.32 11.39 1.35 9.08

Figure 9 visualizes two samples of the ground truth, front view, estimation and
restored data in LSFM dataset. The front view data as shown in Figure 9b contains large
incomplete regions which is estimated by the proposed method as shown in Figure 9c. The
points in estimated regions are different from the complete regions. To make them resemble
to ground truth, we applied restoration as shown in Figure 9d.
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Figure 9. Comparison of point cloud among (a) ground truth, (b) front view, (c) estimation and
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To provide better comparisons, we visualized the restored point clouds obtained by
PU-Net, PU-GAN, DRMD and DGCNN in the LSFM dataset as shown in Figure 10. The
restored point cloud using PU-Net and DRMD are much worse as shown in Figure 10b,d.
However, PU-GAN and proposed DGCNN can effectively restored the estimated points as
shown in Figure 10c,e.
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Figure 10. Visual comparisons of restoration of our own 3D point cloud dataset. (a) Estimation.
(b) PU-Net [10]. (c) PU-GAN [11]. (d) DRMD [34]. (e) Proposed. (f) Ground Truth.

From the experimental results and above discussions, we can say that the proposed
method including incomplete regions estimation and restoration of 3D human face point
cloud datasets, provides better performance than the prior point cloud processing tech-
niques. We evaluated the proposed method on two different datasets and compared the
results with three-point cloud processing techniques. The proposed method always shows
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better performance and can significantly improve the quality of the incomplete point cloud
than the prior works. Therefore, we can assure that the proposed method is much robust
than the prior works.

4.4. Complexity Analysis

We determined the complexity of the model in terms of parameters, floating-point
operations per second (FLOPs) and runtime. For better understanding and explanation, we
reported the details about the network complexity. Table 3 lists the number of parameters
in each layer with the corresponding layer type and output shape. Table 4 provides the
total number of parameters in millions, FLOPs in giga and time in seconds. We computed
the number of parameters and FLOPs for a patch. The proposed DGCNN model has
very less parameters and performed smaller number floating-point operations than the
state-of-the-art methods.)

Table 3. Layers, output shape and parameters configuration in DGCNN model.

SL. No Layer (Type) Output Shape Parameters

1

Linear, ReLU
Linear, ReLU
Linear, ReLU

DynamEdgeConv

(32)
(64)
(64)
(64)

224
2112
4160

-

2
Linear, ReLU
Linear, ReLU

DynamEdgeConv

(64)
(64)
(64)

8256
4160

-

3
Linear, ReLU
Linear, ReLU

DynamEdgeConv

(64)
(64)
(64)

8256
4160

-

4
Linear, ReLU
Linear, ReLU

DynamEdgeConv

(64)
(64)
(64)

8256
4160

-
5 Linear, ReLU (128) 32,896

6 Conv1d, ReLU
Conv1d

(64,512)
(3512)

8256
195

Table 4. Model complexity.

Method Parameters (M) FLOPs
(G)

Time (S)
Our LSFM

PUNet [10] 0.814 1.48 15.50 8.46
PU-GAN [11] 0.516 0.80 24.16 10.68
DRMD [33] 0.225 0.62 57.61 20.13
Proposed 0.085 0.22 39.38 13.91

We calculated the average time required to restore the test samples. The average test
time for each sample in our own dataset is four times larger than the LSFM dataset. It is
because each sample in our own dataset contains about 100 K points which is approximately
four times larger than the number of points in LSFM dataset about 28 K. We compared the
run time of the proposed method with the state-of-the-art methods as given in Table 4. The
proposed method can restored the estimated points faster than DRMD but slower than
PU-Net and PU-GAN, respectively.

5. Discussion and Conclusions

The major concern of the proposed method is to estimate the incomplete region by
generating a mask and projecting onto the 2D surface of the input point cloud. The final
estimation was performed by interpolating the mask and the 2D projection. The estimated
points can fill in missing regions effectively. However, the distribution of the estimated
point cloud is different from that of the ground truth point cloud. Sometimes, the estimated
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points of the incomplete regions can be denser than the points of the complete regions. This
limits the proposed method and may decrease the performance of point cloud processing.
Therefore, we conducted a deep learning model to restore the estimated points to the same
extent as the ground truth points. We designed a DGCNN model that integrates multiple
edge convolution blocks and a reconstruction block to restore the estimated points. We
evaluated the performance of the proposed method on two datasets (our own and LSFM
3D point cloud human face datasets) to show the effectiveness. We also compared the
results with PU-Net, PU-GAN and DRMD applied for restoring the estimated points. The
proposed method improved the quality of the point cloud dataset of human faces with
estimation and restoration.
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