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Abstract: This paper improves the accuracy of a mine robot’s positioning and mapping for rapid
rescue. Specifically, we improved the FastSLAM algorithm inspired by the lion swarm optimization
method. Through the division of labor between different individuals in the lion swarm optimization
algorithm, the optimized particle set distribution after importance sampling in the FastSLAM algo-
rithm is realized. The particles are distributed in a high likelihood area, thereby solving the problem
of particle weight degradation. Meanwhile, the diversity of particles is increased since the foraging
methods between individuals in the lion swarm algorithm are different so that improving the accu-
racy of the robot’s positioning and mapping. The experimental results confirmed the improvement of
the algorithm and the accuracy of the robot.

Keywords: mine robot; simultaneous localization and mapping; FastSLAM; lion swarm optimization
algorithm; particle weight; particle diversity

1. Introduction

Mine rescue robot plays a critical role in mine rescues [1–3]. When a mine accident
occurs, it can replace the rescue workers to search and rescue so as to protect rescuers
from the great amount of combustible gas and dust in the mine. In particular, due to
the complex environment after the disaster, rescuers cannot enter the narrow space, so
they need to use robots to search and rescue. Moreover, the robot can determine its own
position through the map established by itself and guide the trapped people to leave the
site after the disaster. Hence, an accurate map under the mine has great significance for
fast rescue. However, when the mine accident occurs, the underground environment of
the mine changes greatly, and the original underground map is not suitable for the current
rescue environment. Although the related positioning system is equipped under the mine,
the positioning equipment is damaged, and the precise positioning function cannot be
realized when the mine accident occurs. Therefore, simultaneous localization and mapping
(SLAM) of robots play a significant role in mine rescue.

The concept of SLAM is proposed to deal with the problem of simultaneous posi-
tioning and mapping of robots [4–6]. In an unknown environment, the robot combines
its own sensors such as lidar and vision cameras to estimate its own pose and build an
environment map [7,8]. The classical SLAM algorithm research is based on filtering theory,
which includes Kalman filter-based EKF-SLAM [9] and particle filter-based FastSLAM
algorithm [10].

Among them, EKF-SLAM can only handle Gaussian noise, and its processing speed is
slow for non-Gaussian noise environment. Moreover, in the same scenario, its processing
speed is slower than the FastSLAM algorithm.
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However, there are some potential defects in the FastSLAM algorithm. One of the
problems is particle weight degradation and particle diversity loss. This problem is caused
by the adoption of Rao-Blackwellized filter in the FastSLAM algorithm, which will decrease
the accuracy of the FastSLAM algorithm [11–15]. Another problem of the FastSLAM
algorithm is that it requires a large number of particles to maintain the accuracy of the
algorithm in a complex environment, which will increase the running time of the algorithm
and reduce the efficiency of the robot. In addition, the accurancy of algorithm decreased
once the number of particles is insufficient [16].

In order to overcome the drawbacks of the FastSLAM algorithm, researchers put
forward different ideas for algorithm improvement. Kim, together with his coworkers,
proposed the unscented FastSLAM (UFastSLAM) algorithm. Based on the FastSLAM
algorithm, they used an unscented Kalman filter (UKF) instead of an extended Kalman
filter (EKF) for robot pose estimation, which improved the filtering accuracy of the robot [17].
However, they did not solve the particle degradation problem. HeBo et al. solved the
problem of particle weight degradation in the UFastSLAM algorithm through particle
swarm optimization (PSO) algorithm, and tested it on their autonomous underwater vehicle
(AUV), which verified the effectiveness and feasibility of the improved algorithm [18].
Different from the above methods, with the deepening of the research on the meta-heuristic
algorithm [19–23], more and more researchers use the meta-heuristic algorithm to improve
the FastSLAM algorithm [24–28].

Tian and his coworkers optimized the FastSLAM through the improved firefly algo-
rithm to improve the robot positioning with the accuracy of mapping. Meanwhile, this
method effectively solved the problem of particle degradation [29]. Tian et al. used the
meta-priming algorithm to optimise the importance sampling of the FastSLAM algorithm,
thus effectively solving the degradation of particle weights and loss of particle diversity,
and improved the robot localization mapping accuracy. In contrast, some literature [25]
focused on the optimization of the resampling process in the FastSLAM algorithm, and
optimized the resampling process of the FastSLAM algorithm by the particle swarm al-
gorithm to achieve the increased localization mapping accuracy of the robot. Although
the metaheuristic algorithm has achieved impressive results in optimising the FastSLAM
algorithm, the algorithm is prone to fall into local optimality due to the strong optimisation
capability of the metaheuristic algorithm; in addition, using the metaheuristic algorithm
to optimise the FastSLAM algorithm, the fusion of multiple algorithms will lead to a
significant increase in the algorithm time complexity.

In order to solve the problem of low accuracy of mine rescue robot positioning and
mapping, this paper uses the FastSLAM2.0 algorithm to decompose the robot positioning
and mapping into a moving part and a conditional map part to reduce the sampling space.
However, due to the degradation of particle weights and the loss of particle diversity in the
FastSLAM2.0 algorithm, the accuracy of robot positioning and mapping is reduced. Based
on reading a large number of the FastSLAM algorithm improvement documents, this article
adopts a new meta-heuristic algorithm lion swarm optimization (LSO) algorithm [30], to
optimize the FastSLAM2.0 algorithm. In our work, we optimized the particle distribution
after importance sampling through the LSO algorithm and regarded the sample particle set
as a lion group, and optimized the individuals’ movement law between the populations
in the lion group algorithm. The sample particle distribution solves particle degradation.
At the same time, in order to keep particle diversity, we uses genetic algorithm to replace
the lioness movement process to increase the particle diversity, and finally achieve the
degradation of the particle weight of the FastSLAM2.0 algorithm. This solution to the loss
of particle diversity can improve the accuracy of robot positioning and mapping.

The specific contributions of this paper are as follows:

• This paper designs and implements a new scheme to optimise the FastSLAM algorithm
by means of the Lion Swarm algorithm.

• In the process of optimizing the FastSLAM algorithm through the lion swarm algo-
rithm, the distribution of the particle set after important sampling in the FastSLAM



Sensors 2022, 22, 1297 3 of 15

algorithm is achieved through the division of labour between different individuals in
the lion swarm optimisation algorithm, so that the particles are distributed in the high
likelihood region, and solving the particle weight degradation problem. In addition, to
ensure particle diversity, a genetic algorithm is used instead of the lioness movement
process in the lion swarm to further increase the particle diversity.

• In this paper, the innovative FastSLAM algorithm is applied to a rescue robot by opti-
mizing the Lion Swarm algorithm, aiming to improve the localization and mapping
accuracy of the rescue robot.

The rest of the paper is organized as follows. Section 2 introduces the FastSLAM
briefly. Section 3 Introduces the principle of lion swarm optimization algorithm. Section 4
discusses the proposed LS0-FastSLAM in detail. Section 5 gives the simulation results and
analyzes the performance of the LSO-FastSLAM in detail. Finally, Section 6 concludes the
paper and provides some suggestions for future work.

2. Background of the FastSLAM

Before introducing the FastSLAM algorithm, we will briefly describe the SLAM prob-
lem. SLAM means that the robot determines its trajectory through its own sensors in a
location environment and at the same time constructs an environmental map. The robot
SLAM problem can be regarded as a kind of probability problem. The robot can achieve the
best estimation of pose state and environment map by observing and controlling quantity.
Its expression is as follows:

p(xt, m, zt, ut, nt) (1)

where xt represents the robot’s position at time t, m represents the map, zt and ut are
the measured quantity and the controlled quantity, and nt represents the data associa-
tion. Meanwhile, the SLAM problem can be represented by a dynamic Bayesian network
in Figure 1.
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Figure 1. Dynamic Bayesian networks for SLAM.

FastSLAM is an excellent algorithm for solving SLAM problems. In FastSLAM, based
on the Rao-Blackwellized particle filter, Equation (1) is decomposed into robot path estima-
tion and independent feature estimation. Therefore, the decomposition of Equation (1) can
be expressed as:

p(xt, m|zt, ut, nt) = p(xt|zt, ut, nt)∏M
k=1 p(mk|xt, zt, ut, nt) (2)

where p(xt|zt, ut, nt) represents the estimation of the pose of the robot, and p(mt|xt, zt, ut, nt)
represents the estimation of the environmental features. In the FastSLAM algorithm, the
robot pose is estimated by PF, and the environment features are estimated by the extended
Kalman filter (EKF). In this process, each particle corresponds to a robot path estimation
and environmental features. The particles in FastSLAM can be expressed as:

Xi
k =

{
xi

k, ui
1,k, ∑ i

1,k · · · u
i
N,k, ∑ i

N,k

}
(3)
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where i is the particle index, xi
k is the robot path estimation, ui

n,k and ∑ i
N,k is the mean

value and covariance of the nth feature of the kth particle.
The equations above are the key mathematical point of view of the FastSLAM al-

gorithm, for the detailed proof of the FastSLAM algorithm, according to previous liter-
ature [31]. Since the proposed distribution function selection method is different, the
FastSLAM algorithm is divided into the FastSLAM1.0 algorithm and FastSLAM2.0 algo-
rithm. The FastSLAM1.0 algorithm uses the robot motion model as the particle sampling
function, so when the motion control input error is large, the estimated state of the system
will be inaccurate. In contrast, in the FastSLAM2.0 algorithm, a complete EKF iterative
process is first adopted, in which the latest moment of control input and landmark charac-
teristics measurement values are integrated, and then the posterior estimates of robot pose
state are used as the particle sampling function, thus improving the estimation accuracy of
the robot.

Although the FastSLAM2.0 algorithm adopted a new importance density function,
but it still exists particle degradation problems. Aiming to solve this problem, we introduce
the resampling strategy. Although this method can solve the problem of particle weight
degradation, it also can cause particle diversity loss problems. Therefore, the key issue to
improve the accuracy of robot positioning and mapping is the drop in particle weight and
the loss of particle diversity. This article improves on the FastSLAM2.0 algorithm.

For the derivation of the FastSLAM2.0, readers can refer to the literature [16,31]. The
main steps and formulas of the FastSLAM2.0 are as follows.

(1) Sampling the pose
xi

t ∼ p(xt |xt−1,i, zt, ut, nt ) (4)

(2) EKF updates the observed landmark estimates.
(3) Importance weight calculation:

wi
t =

target distribition
propsal distribition

=
p
(
xt,i |zt, ut, nt )

p
(
xt−1,i |zt−1, ut−1, nt−1 )p

(
xi

t |xt−1,i, zt, ut, nt )
(5)

(4) Re-sampling.
(5) Unknown data associations.
(6) Feature management.

3. Lion Swarm Optimization Algorithm

Lion Swarm Optimization Algorithm (LSO) is a new method to solve the global
optimization problem of the objective function. This method completely simulates the
lion’s foraging behavior, migration, and population change to solve the problem [30].

In the LSO algorithm, the pride population is divided into the Lion King, the Lioness,
and the Cub. The lion is responsible for guarding the territory and protecting the cubs as
well as distributing food. The Lioness hunted and raised the cubs. The cubs, also known
as follow lions, feed near the lion when they are hungry. After feeding, they learn to hunt
from the Lioness. When he grows up, he will be driven out of his territory and becomes
a stray lion. After training, the male lion in the stray lion will challenge the status of the
original lion. The LSO algorithm is given in the following steps:

Initialization: Like other intelligent group algorithms, the LSO algorithms realize the
initialization of the population number N, dimensional space D, individual position xt,
and the distribution probability of different individuals within the lion group.

In the literature [30], the different types of individuals in a lion group are set as follows.
In a lion group, the number of adult lion individuals affects the effect of the algorithm—the
greater the number of young lion individuals, the greater the difference in population
numbers. The algorithm detects strong ability. Moreover, the convergence speed of the
algorithm is related to the adult lion. In order to maintain the convergence of the algorithm,
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the proportion of adult lions β is a random number between 0 and 0.5. Similarly, the
proportion of cubs is listed as 1− β.

The lion guardians: When the LSO algorithm is used to solve the optimization problem,
the location of each food source represents a feasible solution to the optimization problem,
and the size of the adaptive value represents the quality of the solution. The maximum
moderate value represents the Lion King. The lion retains his privileges in the best food
range. Its motion formula is as follows:

xk+1
i = gk(1 + γ||Pk

i − gk||) (6)

where xk+1
i represents the new position of the Lion King after the movement, gk represents

the optimal position in the kth generation group, and γ is a random number generated
according to a normal distribution N(0, 1); Pk

i is the most historical record of the ith lion in
the kth generation.

Lioness Hunt: In the process of the Lioness, the two Lioness cooperate to complete the
hunt, then the position of the Lioness after cooperative hunting:

xk+1
i =

Pk
i + Pk

c
2

(1 + α f γ) (7)

where Pk
i is the historical optimal position of the kth lion in the i generation. Pk

c is the
historical best position of a hunting partner randomly selected from the k generation
lioness group and γ is the random number generated according to the normal distribution
N(0, 1).

The α f in the above formula represents the disturbance factor of the Lioness’s moving
range. The reason for setting the disturbance factor is described in detail in reference [29],
and the setting formula is as follows:

α f = step · exp (−30t
T

)
10

(8)

where gk = low + high− gk represents the maximum moving step length in the range of
activity, high and low represents the minimum and maximum lion’s moving values in the
range of activity. T is the maximum number of iterations of the population, and t is the
number of iterations of the current population.

Lion Cubs Follow: There are three main activities for kindergarten teachers in the
lion group. (1) When they are hungry, they will turn to the Lion King; (2) When they are
full, they will hunt with the Lioness; (3) When they grow up, they will be driven out of
the territory by the Lion King and become A stray lion. The male lion among the lions
will challenge the status of the original Lion King. Therefore, the position of the Cub after
moving can be represented as:

xk+1
i =


gk+Pk

i
2 (1 + αcγ), q ≤ 1

3
Pi

m+Pk
i

2 (1 + αcγ), 1
3 ≤ q ≤ 2

3
gk+Pk

i
2 (1 + αcγ), 2

3 ≤ q ≤ 1

(9)

where γ, Pk, gk represent the same meaning as Equations (4) and (5), Pi
m represents the

best position, in the history of the i generation of cubs following lionesses, αc = step( T−t
T )

represents the movement disturbance factor of the Cub, and gk = low+ high− gk represents
the lion cub being driven away from the Lion King.

Location update: The greedy rule is used to select the individual positions of the lions
before and after the update, and the global optimal is updated.

The above description is the main steps of the lion group algorithm. The lion group
algorithm sets the Lion King, Lioness, cubs, and simulates the life tyle of the lion group by
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appropriate values to complete the optimal solution of the problem. Its global convergence
and robustness can effectively avoid the premature problem, especially for multi-peak and
high-dimensional complex functions.

4. Lion Swarm Optimization Algorithm Improves FastSLAM

In the first section, particle mass degradation and particle diversity loss exist in
FastSlam2.0 algorithm, where the mobile robot positioning map accuracy caused serious
impact. In the literature [17–29], researchers proposed different improvement strategies.
One was to apply the global optimal value algorithm to change the particle set to avoid
falling into the local optimal. The common improved method is the combination of
intelligent swarm algorithm and the particle filter, which attracts and repels particles
through the global optimal value so that particles are concentrated and distributed in the
high likelihood region, improving the filtering accuracy, particle degradation and dilution of
the algorithm as results. However, this kind of algorithm has the risk of prematurity during
algorithm iteration. The other is to improve the particle weight degradation and diversity
loss by optimizing or replacing the particle resampling strategy, thereby improving the
filtering performance of the algorithm. However, in complex environments and scenes with
strong noise, a large number of particles are required to achieve state estimation, which
may lead to long running time and low operating efficiency. Inspired by the work in the
literature [29], this paper realized the optimization of the FastSLAM algorithm through
the improved lion swarm optimization algorithm. The key idea is to optimize the particle
distribution after important sampling by the FastSLAM algorithm through LSO, to make
the particle distribution after important sampling into a high likelihood region, thus solving
the particle weight reduction and improving the positioning accuracy of the robot.

At the same time, the survival strategies of all kinds of individuals in the lion swarm
algorithm were improved and optimized. After the improvement of the Lion King position
updating and the Cub following strategy, the optimization ability of particles was further
enhanced. The lioness hunting process was optimized by a genetic algorithm, so as to avoid
the local optimal situation of the improved algorithm. Furthermore, the degradation of
particle weight and loss of particle diversity are proved to improve the positioning accuracy
of the robot. The main improvement steps of the algorithm are as follows.

A. Improved Lion position update strategy

In the original LSO algorithm, the Lion King uses Equation (4) to update the position.
In this process, the Lion King moves at the optimal moderate value to maintain his priv-
ileges. If the original position update formula is directly introduced into the improved
algorithm, it will inevitably cause the appropriate value corresponding to the newly gener-
ated Lion King position to be lower than the original appropriate value. This will lead to a
waste of computing resources and affect the positioning accuracy of the robot. This paper
was inspired by literature [32] to reset the new strategy of lion position updating.

First, a set with the number N + 1 centered on the current position of the lion is
constructed, the set settings are as follows:

xi
k ∼ [xi

k, xi
k ± j∆](j = 1, 2 · · · N

2
, ∆ = high · 10−4) (10)

where N represents the number of particles, ∆ represents the move step, and high represents
the distance of the particle with the longest distance from the global optimal value.

Secondly, set the step size threshold ∆max, judge the moving step size ∆. When
∆ ≥ ∆max, take the moving step size as ∆ = ∆max, instead, take the current move step as
the Lion’s move step. Through this step, the automatic adaptation of the step length is
realized. In the early stage of the algorithm, the distance between each particle is relatively
large, and the movement step length obtained by calculation must be greater than the
threshold. The threshold is used as the current movement step to ensure that the Lion King
is performed at a small accurate update range, and when the algorithm enters the later
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stage, the particle spacing is reduced, and the moving step is smaller than the threshold,
and the current moving step is used as the Lion King’s moving step to ensure the Lion
King’s update.

Finally, the weight corresponding to each individual in the new particle set is calcu-
lated, and the individual with the largest weight is selected as the current new Lion King.
Through the new Lion King update strategy, it is ensured that every time the Lion King
forages, an individual better than the current Lion King will be generated, and then the
particle collection will be moved to the high-likelihood area, thereby improving the filtering
accuracy of the algorithm.

B. Reset the Lioness Hunting Method

In the original LSO algorithm, the lioness hunts by two lionesses hunt together, and
the two lionesses are in the same position after hunting. When this step is applied to the
improvement of the FastSLAM algorithm, in the late running stage of the algorithm, the
distance between the particles is relatively close, so adopting this step will further reduce
the diversity of particles. In this paper, the crossover step in the genetic algorithm is used
as an improved lioness hunting method. The equation is as follows:

x̃m
k = axm

k + (1− a)xn
k (11)

x̃n
k = axn

k + (1− a)xm
k (12)

In Equations (11) and (12), x̃m
k and x̃n

k respectively represent the positions of the two
lionesses participating in hunting, xm

k and xn
k represent the positions corresponding to the

two lionesses after hunting, and a represents the crossover probability, which is 0.7.

C. Cub Follow Formula Selection

In the Cub follow Equation (7), the cub position update has three different strategies,
which are moving to the Lion King, following the Lioness, and staying away from the lion
group. In order to improve the filtering accuracy of the robot, in this paper, the position
of the Cub is set to be updated as the Cub moves towards the Lion King, and its position
updating equation is shown below.

xk+1
i =

gk + pk
i

2
(1 + αcγ), q ≤ 1

3
(13)

The parameter setting of Equation (13) is the same as that of Equation (9). By improv-
ing following strategy, the particles represented by the young lion are concentrated and
distributed in the Gauss natural region in the FastSLAM algorithm after the important
sampling of particles is completed. Thus, the positioning and mapping accuracy of the
robot is improved.

The improved algorithm flow chart (Figure 2) is shown below:
The above diagram shows the flow chart of the improved algorithm proposed in

this paper, in which the blue part is the optimisation of the importance sampling process
through the Lioness algorithm, and its detailed process is as follows: firstly, the weights of
each particle are calculated, and the composition of the Lioness is designed according to the
size of the weights, where the Lioness represents the globally optimal particle, the Lioness
consists of particles with good fitness values, and the Cub represents the particle with poor
fitness values, and then the optimization of the Lioness is achieved through the three steps
above. A. Improved Lion position update strategy, B. Reset the Lioness Hunt-ing Method,
C. Cub Follow Formula Selection three steps to achieve the update of the lion population
and thus the optimization of the set of particles after importance sampling.
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5. Performance Analysis

This paper first verifies the feasibility of the algorithm through the MATLAB simu-
lation environment, and then verifies the feasibility of the LSOFastSLAM2.0 algorithm
proposed in this paper under the simulated mine environment.

Simulation

The hardware environment of the experiment is a desktop computer (IntelCorei5
processor, 4 GB memory), and the experiment environment is MATLAB2016b.

First, a mobile robot simulation model is established, in which the mobile robot motion
model can be represented as: xv

k
yv

k
Φv

k

 =

 xv
k−1 + ∆t · cos(Φv

k−1 + θk)

yv
k−1 + ∆t · sin(Φv

k−1 + θk)

Φv
k−1 +

(∆t·vk sin(θk))
D

+

 vx
vy
vΦ

 (14)

In the formula, (xv
k , yv

k) represents the position posture state of the robot in the two-
dimensional environment at the k moment; Φv

k represents the heading angle, and the value
range is [−180

◦
, 180

◦
]; vk represents the movement speed of the robot, αk represents its

steering angle, and θk is the robot odometer sampling time, vx, vy, vΦ is the noise during
the robot movement, D is the distance between the drive shafts.

Then the observation model of the robot is established, and its formula is as follows:

[
rk
θk

]
=

 √
(xi − xv

k )
2 + (yi − yv

k)
2

arctan yi−yv
k

xi−xv
k
−Φv

k

+ ωk (15)

In the formula, rk, θk respectively represents the distance between the detected envi-
ronmental feature and the mobile robot, and the angle of movement direction; ωk is the
observation noise.
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The motion parameters and noise parameters of the mobile robot are shown in Table 1
below. The control noise of the robot and the observation noise are three-dimensional. In
the following table, the speed noise of the robot represents the noise in the direction of the
robot’s movement process, which is composed of x-axis noise and y-axis noise.

Table 1. Motion parameters and noise parameters of mobile robots.

Parameter Numerical Value Noise Parameters Numerical Value

Robot speed 3 m/s
Motion noise 0.3 m/s

1.5◦Max steering angle 10◦

Maxi steering angular speed 15◦/s
Observation noise 0.1 m/s

1◦Wheel spacing 4 m

Sampling time interval 0.025 s

Secondly, simulate the robot localization and mapping, establish the working envi-
ronment, as shown in Figure 3, set the 17 heading points, 35 road marking points and the
mobile robot movement range is 100 m × 80 m. The mobile robot starts from the origin of
the coordinates (red point in Figure 3) and moves counterclockwise; the green ∗ represents
the road marking point, red ◦ represents the heading point, and cyan line represents the
specified robot path.
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Finally, in order to verify the effectiveness of the algorithm proposed in this paper,
comparative algorithms were also performance which includes: the classic FastSLAM2.0
algorithm, the improved FastSLAM2.0 algorithm based on the gravitational field algorithm
(GFA-FastSlAM2.0) [33], and the algorithm proposed in this paper (LSO-FastSLAM2.0).
GFA-FastSlAM2.0 has been described in detail in reference [33], but for the sake of com-
pleteness, we will introduce its main idea. This algorithm introduces the optimization
idea of gravitational field in particle resampling, and the sampled particles are regarded
as the cosmic dust system. Each dust receives the action of the movement factor and the
rotation factor of the central dust with the largest weight, so as to optimize the distribution
of the sampling particles of the mobile robot pose so that the particle set can move towards
the real particle more quickly. The pose state of the robot can be approximated to make
it converge faster, and the particle degradation and depletion problems that are prone to
occur in the FastSLAM2.0 algorithm are improved.

Since the motion noise and observation noise are random, in order to verify the
feasibility of the improved algorithm proposed, this paper uses the root mean square error
(RMSE) as the criterion. When the number of particles is 20, 50, 80, 100, The FastSLAM2.0
algorithm, GFA-FastSLAM2.0 algorithm, and LSO-FastSLAM2.0 algorithm were performed
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20 experiments to obtain the RMSE of the robot position estimation and the road sign
estimation, and further, take the average value. The experimental results are shown in
Table 2 below.

Table 2. Improved algorithm validity proof.

Number of Particles Algorithm Mean Localization
Accuracy Error/M

RMSE of Road Sign
Estimation (m)

20
FastSLAM2.0 3.0535 4.1399

GFA-FastSLAM2.0 2.9060 3.3545
LSO-FastSLAM2.0 2.3025 2.2837

50
FastSLAM2.0 2.7718 3.2106

GFA-FastSLAM2.0 2.3629 2.5990
LSO-FastSLAM2.0 2.0470 2.2837

80
FastSLAM2.0 2.6843 2.9199

GFA-FastSLAM2.0 1.7504 1.9072
LSO-FastSLAM2.0 1.2745 1.3762

100
FastSLAM2.0 2.5907 2.8538

GFA-FastSLAM2.0 1.3693 1.6422
LSO-FastSLAM2.0 1.1745 1.3279

It can be seen from the above table, the improved algorithm proposed in this paper
gradually decreases with the increase of the number of particles, and the positioning
accuracy of the algorithm and the accuracy of the road signs gradually decrease. And
with the increase of the number of particles, the filtering accuracy of the algorithm tends
to stabilize, which is consistent with the convergence characteristics of the FastSLAM
algorithm, proving the feasibility of an improved algorithm.

When the number of particles is 20, we verify the improvement degree of the algorithm
proposed in this paper about the problem of particle degradation and compares the effective
number of particles Neff in the three algorithms. As shown in Figure 4, the effective
particle number of the algorithm proposed in this paper is higher than that of the other
two algorithms. After calculation, in the process of positioning the three algorithms, the
average number of effective particles is 13.8256, 16.3859, and 17.1674, respectively. This
phenomenon may owe to the fact that the algorithm proposed in this paper effectively
solves the problem of particle weight degradation, and GFA-FastSLAM2.0 algorithm. This
phenomenon shows that the algorithm proposed in this paper efficiently optimizes the
particle set and solve the problem of particle weight degradation.

In Figure 5, the green and red triangles represent the real and predicted positions of
the robot, and the yellow lines represent the observation of the robot on the road markings.
It can be seen from Figure 5 that the improved algorithm proposed in this paper has
the highest degree of coincidence with the real trajectory, followed by GFA-FastSlam2.0
algorithm, and the FastSlam2.0 algorithm has the worst effect. This indicates that the
algorithm proposed in this paper has the highest positioning accuracy among several
algorithms. The reason for this phenomenon is that the FastSLAM2.0 algorithm has serious
particle degradation and loss of particle diversity in the later stage of the algorithm. The
GFA-FastSLAM2.0 algorithm has a higher filtering accuracy, because it acts on the particles
through the gravitational field to distribute the particles in the high-likelihood area, which
effectively alleviates the problem of particle degradation, and therefore improves the
filtering accuracy of the robot. The LSO-FastSLAM2.0 algorithm has the highest positioning
accuracy, compared with the optimization of the gravity field algorithm, the Lion algorithm
is more effective in particle optimization, so it can effectively solve the problem of particle
weight degradation and improve the filtering accuracy of the robot.
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In order to further verify the optimization effect of PCSA-FastSlam2.0 on robot po-
sitioning and mapping, the predicted and estimated Euclidean distances of the three
algorithms were compared at 8000 sampling points. The formula is:

ρ =

√
(x1 − x2)

2 + (y1 − y2)
2 (16)

In the formula, (x1, y1), (x2, y2) represents the coordinates of predicted position and
actual position.

The comparison of the robot localization accuracy errors of the three algorithms are
shown in Figure 6.

It can be seen from Figure 6 that the algorithm proposed in this paper has the smallest
error and is relatively stable, while the positioning accuracy error of the classic FastSLAM2.0
algorithm gradually increases as the positioning accuracy error of the algorithm increases
as the running time increases. The reason for this problem is that in the later period of the
iterative algorithm, the particles are severely degraded and the diversity of the particles is
lost, resulting in lower robot positioning accuracy. The improvement ideas proposed in this
article effectively solve this problem and increase the positioning accuracy of the robot. The
positioning accuracy of the GFA-FastSLAM2.0 algorithm is lower than that of the improved
algorithm proposed in this paper, but it is better than the classic FastSLAM2.0 algorithm.
This may be because of the improved particle filter by the gravity field algorithm. The
gravity field algorithm has a certain degree of optimization for the particles after importance
sampling, and a certain extent to improves the diversity of the particles.

After comparing the average error and variance of the positioning accuracy of the three
algorithms, it is obvious that the improved algorithm has improved the robot positioning
effect, as shown in Table 3 below.
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Table 3. Comparison of mean error and variance of localization accuracy of three algorithms.

Algorithm Mean Localization Accuracy Error/m Variance of Localization
Accuracy Error

FastSLAM2.0 2.7718 1.6403

GFA-FastSLAM2.0 1.4036 0.9059

LSO-FastSLAM2.0 1.1867 0.2519
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In the above table, the LSO-FastSLAM2.0 algorithm has the smallest average error
and the smallest positioning accuracy variance, indicating that the positioning accuracy
and stability of the LSO-FastSLAM2.0 algorithm have been significantly improved. In the
GFA-FastSLAM 2.0 algorithm, the strategy for sampling particles is adjusted so that the
centers of the sampled particles are distributed near the global optimal value. Due to the
unique strategy of simulating gravitational fields, the central dust attracts and repels the
surrounding dust and adjusts the distribution of particles. Compared with the FastSLAM
algorithm proposed in this paper, GFA-FastSLAM only attracts and repels particles, while
LSO-FastSLAM divides particles into three different sets of the Lion King, Lioness, and
young lion, and then through different formulas, the optimization of particle sets is realized,
and the optimization process is more refined, so the accuracy and stability of the algorithm
are improved.

In order to verify the degree of improvement in the accuracy of robot localization and
mapping, we compared the RMSE of the x-axis, y-axis, and road signs, respectively, as
shown in Table 4.

Table 4. Comparison of RMSE of three algorithms: x-axis, y-axis and road sign estimation.

Algorithm RMSE of x-Axis (m) RMSE of y-Axis (m) RMSE of Road Sign
Estimation (m)

FastSLAM2.0 2.0447 2.2676 2.9871

GFA-FastSLAM2.0 1.6015 1.1018 1.5841

LSO-FastSLAM2.0 0.6932 1.0518 1.3383

It can be seen from Table 4 that the improved algorithm proposed in this paper is
better than FastSLAM2.0 and GFA-FastSLAM2.0 algorithms in the x-axis, y-axis, and
road sign estimation. Compared to the FastSLAM2.0 algorithm, the LSO-FastSLAM2.0
algorithm significantly improves the robot positioning and mapping. Compared with
GFA-FastSLAM2.0, LSO-FastSLAM2.0 also has a significant improvement, which shows
that the algorithm proposed in this paper more effectively optimizes the importance
sampling process so as to achieve a significant improvement of the robot positioning map
building accuracy.
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6. Conclusions

In order to improve the accuracy of mine rescue robot positioning and mapping, this
paper proposes an improved FastSLAM algorithm based on the lion swarm optimization
algorithm. The lion swarm optimization algorithm optimizes the particle distribution after
sampling so that the particle set is distributed in the high-likelihood area, thus solving
the particle weight degradation and loss of particle diversity in the FastSLAM algorithm
thereby improving the accuracy of robot positioning and mapping. The robot simultaneous
positioning and mapping experiments show that the improved algorithm not only improves
the positioning accuracy of the robot but also improves the algorithm stability. In future
work, the improved algorithm will be applied to mine rescue robots to further verify the
feasibility of the algorithm.
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