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Abstract: Identifying structural damage is an essential task for ensuring the safety and functionality
of civil, mechanical, and aerospace structures. In this study, the structural damage identification
scheme is formulated as an optimization problem, and a new meta-heuristic optimization algorithm,
called visible particle series search (VPSS), is proposed to tackle that. The proposed VPSS algorithm
is inspired by the visibility graph technique, which is a technique used basically to convert a time
series into a graph network. In the proposed VPSS algorithm, the population of candidate solutions
is regarded as a particle series and is further mapped into a visibility graph network to obtain visible
particles. The information captured from the visible particles is then utilized by the algorithm to
seek the optimum solution over the search space. The general performance of the proposed VPSS
algorithm is first verified on a set of mathematical benchmark functions, and, afterward, its ability
to identify structural damage is assessed by conducting various numerical simulations. The results
demonstrate the high accuracy, reliability, and computational efficiency of the VPSS algorithm for
identifying the location and the extent of damage in structures.

Keywords: structural damage identification; health monitoring; optimization method; meta-heuristic
algorithm; visible particle series search

1. Introduction

Civil, aerospace, and mechanical structural systems may accumulate some local dam-
age during their operational life as a consequence of different unfavorable conditions,
such as excess loads, fatigue, corrosion, high intensity loads, or earthquake. When such
damages remain undetected and unrepaired, they can negatively impact the functionality
and integrity of the structure and may even lead to structural failure. Accordingly, struc-
tural damage identification plays a crucial role in achieving the maintainability, safety, and
reliability of structures [1–16].

Over the past few decades, vibration-based methods have been developed for struc-
tural damage identification [17–23]. The underlying idea behind these methods comes from
the fact that modal parameters are linked to physical parameters of the structure. Hence,
any modifications in the physical properties due to damage can be detected by evaluating
variations in the modal properties [21–26].

Mathematically, vibration-based damage identification can be formulated within the
framework of an optimization problem. In this manner, the locations and extents of damage
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are taken as variables of the optimization problem, and the objective function is specified
in terms of differences between the measured vibration data and those computed from the
finite element model of the structure. An optimization algorithm is then utilized to deal
with the problem by minimizing the objective function [27–32].

Traditional optimization algorithms require complex gradient calculations and usually
get trapped in local optima [33]. Therefore, in recent years, meta-heuristic algorithms
have received considerable attention in the field of structural damage identification ow-
ing to their simplicity, versatility, and robustness. For instance, Hao and Xia [33] em-
ployed the genetic algorithm (GA) to cope with the structural damage detection problem.
Mohan et al. [34] adopted the particle swarm optimization (PSO) algorithm for identi-
fying damage in beam and frame structures. Majumdar et al. [35] performed damage
identification in truss structures by employing the ant colony optimization (ACO) algo-
rithm. Torkzadeh, Ghiasi, and Noori [36] utilized a particle swarm harmony search (PSH)
combined with artificial neural networks and the least-squares support-vector machine
to detect damage in truss and frame structures. Ding et al. [37] proposed an artificial
bee colony (ABC) algorithm with a hybrid search strategy to address the structural dam-
age identification problem. Seyedpoor et al. [38] applied the differential evolution (DE)
algorithm for structural damage identification. Wang, Noori, Altabey, et al. [39] used
the particle swarm optimization (PSO) in conjunction with the least-mean-square algo-
rithm for system identification of a hysteretic system. Xu et al. [27] utilized the cuckoo
search (CS) algorithm for identifying damage in beam and truss structures. Kaveh and
Zolghadr [40] proposed an improved charged system search (CSS) algorithm for damage
identification of truss structures. Zhu et al. [41] employed the bird mating optimizer (BMO)
for assessing structural damage. Ghannadi, Kourehli, Noori, et al. [42] employed a gray
wolf optimizer (GWO) combined with a mode shape expansion scheme to study structural
damage detection. Nobahari et al. [43] developed a new optimization algorithm called
echolocation search algorithm (ESA) to identify the location and the extent of damage in
structures. Fallah et al. [44] applied the crow search algorithm (CSA) for damage severity
assessment of large-scale truss structures. Fathi et al. [45] carried out crack detection in
plate structures by the extended finite element method and an enhanced vibrating par-
ticles system (EVPS). Du et al. [46] adopted the Jaya algorithm to deal with the damage
detection problem of truss and frame structures. Dinh-Cong et al. [28] proposed a method
for structural damage assessment by using lightning attachment procedure optimization
(LAPO). Dinh-Cong et al. [47] presented an optimization-based technique for damage iden-
tification in full-scale structures with the aid of an enhanced symbiotic organisms search
(ESOS) algorithm and the commercial software SAP2000-OAPI. Mishra et al. [48] examined
the effectiveness of the ant lion optimizer (ALO) for solving different damage detection
problems. Mishra et al. [49] conducted damage identification of large-scale spatial truss
structures by employing teaching–learning-based optimization (TLBO). Beheshti Aval and
Mohebian [50] proposed an improved biology migration algorithm (IBMA) to conduct the
combined joint and member damage identification of skeletal structures. Chen and Yu [51]
proposed a hybrid algorithm combining ALO with an improved Nelder-Mead algorithm
for structural damage detection. Ding et al. [52] presented a hybrid optimization algo-
rithm based on the Jaya and tree seeds algorithm (TSA) to accomplish structural damage
identification. Beheshti Aval and Mohebian [53] proposed a method for the joint damage
identification of frame structures by employing the equilibrium optimizer (EO) algorithm.
Tiachacht et al. [54] utilized the slime mold algorithm (SMA) to identify damage in struc-
tures. Huang et al. [55] introduced a new damage detection method by using an enhanced
moth-flame optimization (EMFO). Ghannadi and Kourehli [56] investigated the application
of the multiverse optimizer (MVO) for dealing with the damage identification problem.

Despite an extensive list of meta-heuristic algorithms, some of which were mentioned
above, none of them have been specifically developed for structural damage identification,
and only an application of those algorithms in this field has been investigated. Furthermore,
according to the no free lunch (NFL) theorem [57], there is no optimization algorithm that is
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superior to other optimization algorithms and capable of solving all optimization problems.
In other words, there is always a need to devise new optimization algorithms. With these
points in mind, the present study proposes a novel optimization algorithm called visible
particle series search (VPSS) to address the structural damage identification problem. The
main inspiration for VPSS is based on the visibility graph technique [58], which is adopted
from the context of time series analysis. According to the visibility graph technique, a
time series is mapped into a graph network from which the inherent characteristics of
the time series can be derived and analyzed. In a similar fashion, in the VPSS algorithm,
the population of candidate solutions is considered as a particle series and is further
converted into a visibility graph network to obtain visible particles associated with each
individual. The algorithm then makes use of information provided from the visible particles
to effectively update the position of each particle in the search space. In order to examine
the general performance of the VPSS algorithm in terms of exploration and exploitation
capabilities, it is first applied on a set of 12 mathematical benchmark functions, including
unimodal and multi-modal functions. Next, the effectiveness of the proposed method for
identifying structural damage is evaluated by using four numerical examples, comprising
a 47-bar planar truss, a 54-bar space truss, a two-bay three-story frame, and a television
(TV) tower under both noise-free and noisy conditions. For each optimization problem,
the results attained by the VPSS algorithm are also compared with those achieved by four
other well-known meta-heuristic algorithms, namely PSO [59], DE [60], GWO [61], and
LAPO [62].

The rest of this paper is organized as follows. In Section 2, the problem formulation
of optimization-based structural damage identification is described. Section 3 introduces
the VPSS algorithm and its background inspiration. In Section 4, the general applicability
of the proposed algorithm is validated through a set of mathematical benchmark func-
tions. Section 5 investigates the application of the VPSS algorithm in structural damage
identification. Finally, the conclusions are presented in Section 6.

2. Problem Formulation

Evaluating dynamic characteristics of a structure is an essential part of the struc-
tural damage identification process. For the finite element model of the structure, the
modal parameters can be determined by addressing the eigenvalue problem specified as
follows [37,63]: (

K−ω2
j M
)
·Φj = 0, j = 1, 2, . . . , Nd f , (1)

where K and M represent the global stiffness and mass matrices, respectively; ωj is the jth
natural frequency; Φj refers to the jth mode shape vector; and Ndf is the number of degrees
of freedom (NDOFs).

As a consequence of damage, the stiffness capability of the structure decreases, but its
mass characteristic is assumed to remain unchanged. In order to incorporate damage into
the finite element formulation of the structure, a damage parameter, αi, is considered and is
applied to each elemental stiffness matrix. Accordingly, the global stiffness matrix of the
structure in the damaged state can be obtained as follows [63]:

Kd =
Ne

∑
i=1

(1− αi)ki, (2)

where ki stands for the stiffness matrix of the ith element in the healthy state; Ne denotes the
total number of structural elements; and αi implies the damage severity of the ith element.
The value of αi belongs to the interval [0, 1], where αi = 0 reflects a perfectly intact state,
while αi = 1 represents a fully damaged state for the ith element.

In the context of optimization-based structural damage identification, the aim is to
search for a set of damage parameters in such a way that an objective function defined as the
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differences between the actual and computed vibration data of the structure is minimized.
Mathematically, the optimization problem formulation can be stated as follows [3]:

Find X= {α1, α2, . . . , αNe}
To minimize f (X)

Subject to Xl ≤ X ≤ Xu
, (3)

where X is the damage variable vector; f (X) is the objective function to be minimized; and
Xl and Xu are the vectors of lower and upper bounds, respectively.

In the present study, the objective function is described according to the natural
frequencies and modal assurance criteria (MAC) as follows [63]:

f (X) =
N f

∑
j=1

Wωj

(
ωc

j −ωa
j

ωa
j

)2

+
Nm

∑
j=1

WΦj
(
1−MACj

)
, (4)

in which

MACj =

(
ΦcT

j ·Φa
j

)2

‖Φc
j‖

2‖Φa
j ‖

2 , (5)

where Wωj and WΦj are the weight coefficients related to the jth natural frequency and
jth MAC, respectively, which are considered herein to be unity; ωc

j and ωa
j denote the jth

computed and actual natural frequencies, respectively; Φc
j and Φa

j signify the jth computed
and actual mode shape vectors, respectively; and Nf and Nm refer to the number of natural
frequencies and mode shapes, respectively.

3. Visible Particle Series Search Algorithm

This section intends to introduce a new meta-heuristic optimization algorithm called
visible particle series search (VPSS). In the following, first, a background on the visibility
graph technique is provided, and then the VPSS algorithm is described in detail.

3.1. Background of the Visibility Graph Technique

A time series consists of a set of observational data gathered sequentially in time [64].
In many different areas, such as economics, natural sciences, engineering, etc., data emerge
as a time series. For instance, the daily market price of a stock, the hourly air temperature,
and the ground motion during an earthquake can be expressed as a time series. One of
the inherent aspects of the time series is that adjacent data points are generally related
to each other. In order to investigate this relationship and other statistical features of
data, time series analysis methods are basically employed [64]. In recent years, graph
network approaches have been proposed as efficient tools to analyze time series data. In
this fashion, a time series is transformed into an equivalent graph network, which further
allows information embedded in the time series to be extracted and characterized [65–67].
The visibility graph technique proposed by Lacasa et al. [58] is one of the most widely
utilized approaches to map a time series into a graph network. The fundamental concept
of this algorithm is presented below.

Consider a time series denoted by {(ti, s(ti)), i = 1, . . . , Ns}, containing Ns measured
data at successive times. According to the visibility graph method, two arbitrary data
points (ti, s(ti)) and (tj, s(tj)) from the time series are taken to be visible to each other
provided that any other data point (tk, s(tk)) that lies between them satisfies the following
equation [58,68]:

s(tk) < s(tj) +
(
s(ti)− s(tj)

) tj − tk

tj − ti
. (6)

Figure 1 depicts an example of the visibility graph for a time series. In this figure,
each data point of the time series is plotted by a vertical bar, whose height represents its
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amplitude value. As can be observed, any two visible bars are connected by a straight line
that is not intersected by any intermediate bars between them.
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Figure 1. The visibility graph of a time-series.

3.2. The VPSS Algorithm

The VPSS algorithm is a novel population-based meta-heuristic algorithm inspired
by the visibility graph theory, described in the previous subsection. In the framework of
this algorithm, the population of candidate solutions is first converted into a particle series
representation. Each individual in the particle series is analogous to a data point in a time
series. Then, the visibility graph network for the particle series is constructed according
to the visibility graph theory, and the visible particles associated with each individual are
determined and utilized to evolve the population towards the optimum solution. This
algorithm needs only the common controlling parameters, including population size and
the number of iterations, and does not rely on any algorithm-specific parameter. The basic
steps for implementing the VPSS algorithm are outlined as follows.

3.2.1. Step 1: Initialization

The VPSS algorithm starts by randomly generating a population of Np candidate
solutions within the search space as follows:

Xi = Xl + rand · (Xu − Xl), i = 1, . . . , Np, (7)

where Xi is the initial position vector of the ith candidate solution; Xl and Xu denote
the lower and upper bound vectors of the variables, respectively; and rand is a random
vector whose components are uniformly distributed within the range of [0, 1]. After
initializing the candidate solutions, their fitness function values are also evaluated. For
a minimization problem, the fitness function is defined as the inverse of the objective
function, i.e., f it(Xi) = 1/ f (Xi), where f it(Xi) and f (Xi) represent the fitness function
value and the objective function value of the ith candidate solution, respectively.

3.2.2. Step 2: Particle Series Construction

In this stage, the population of the VPSS algorithm is mapped into a particle series
representation, denoted by {(i, fit(Xi)), i = 1, . . . , Np}. The sequence of individuals in
the particle series is arranged randomly at each iteration of the algorithm. In addition,
particle series amplitude values are considered to be equivalent to the fitness function
values of the candidate solutions. As an example, Figure 2a illustrates a population of
candidate solutions distributed over the search space. The contour lines provided in this
figure indicate the fitness function values for the particles such that C1 < C2 <, . . . , C6.
Figure 2b presents the particle series representation of the population by considering a
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random arrangement for the individuals. Obviously, particles with better fitness function
values possess a higher height in the graph and vice versa.
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Figure 2. A simple example of the visibility criterion assessment in the VPSS algorithm: (a) the
population of candidate solutions in the search space; (b) converting the population into a particle
series representation; (c) the corresponding visibility graph for the particle series; (d) visible particles
associated with each reference particle.

3.2.3. Step 3: Visibility Criterion Assessment

In this step, a visibility assessment is carried out to determine the visible particles
associated with each individual in the particle series constructed in the previous stage.
Two arbitrary individuals (i, f it(Xi)) and (j, f it(Xj)) from the particle series are consid-
ered to be visible to each other if any other particle (k, f it(Xk)) between them meets the
following criterion:

f it(Xk) < f it(Xj) +
(

f it(Xi)− f it(Xj)
) j− k

j− i
, (8)

where f it(Xi), f it(Xj), and f it(Xk) are the fitness function values of the ith, jth, and kth
particles, respectively.

The corresponding visibility graph of the particle series shown in Figure 2b is indicated
in Figure 2c. According to this figure, the visible particles associated with each individual
can be recognized. Furthermore, the visible particles associated with each reference particle
are shown in Figure 2d.
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3.2.4. Step 4: Generation of New Solutions

In this stage, the information captured from the visible particles is utilized to update
the position of their corresponding reference particle. Within this context, two updating
operators are applied to seek the optimum solution. These updating operators rely on three
kinds of visible particles, including the best visible particle, the worst visible particle, and
the average of the visible particles.

The first updating operator of the VPSS algorithm consists of two main parts. In the
first part, each particle tends to move towards its best visible particle, and, in the second
part, attempts to move towards the vector defined by the differences between its best
visible particle and the mean position of all its visible particles. This search strategy can be
implemented as follows:

Xnew
i (t) = Xi(t) + rand1 · (XBV,i(t)− Xi(t)) + β · rand2 · (XBV,i(t)− λ · XMV,i(t)), (9)

where Xnew
i (t) and Xi(t) represent the new and current position vectors of the ith particle at

the iteration t; XBV,i is the best visible particle vector corresponding to the particle i at the
iteration t; XMV,i(t) stands for the mean position vector of all the visible particles associated
with the ith particle at the iteration t; rand1 and rand2 are random vectors within the range
[0, 1]; β is a random number in the interval [0, 1]; and λ is a number that randomly takes
the value of either 1 or 2.

The second updating operator of the VPSS algorithm also contains two main parts.
The first part of this operator tries to update the position of each particle with respect
to the differences between its best and worst visible particles. Meanwhile, in the second
part, the particle’s position is updated based on the differences between the mean of the
visible particles and the worst visible particle. The second updating operator is described
as follows:

Xnew
i (t) = Xi(t) + rand1 · (XBV,i(t)− η · XWV,i(t)) + β · rand2 · (XMV,i(t)− λ · XWV,i(t)), (10)

where XWV,i denotes the worst visible particle vector corresponding to the particle i at
the iteration t; η is a number that randomly takes the value of either 1 or 2; and other
parameters are the same as those in the previous operator.

Overall, for each particle at each iteration of the VPSS algorithm, a role switching
mechanism is performed to randomly apply one of the two updating operators mentioned
above. For this purpose, a random number r within the interval [0, 1] is selected. If r ≤ 0.5,
the updating operator provided by Equation (9) is adopted, and, if r > 0.5, the updating
operator offered by Equation (10) is employed.

After the generation of each new solution, its feasibility is evaluated. This implies that,
if the solution goes beyond the predefined bounds, it is replaced by the nearest upper or
lower bound.

3.2.5. Step 5: Fitness Function Evaluation

In this step, the fitness function value of all the newly generated solutions f it(Xnew
i ),

i = 1, . . . , Np, is evaluated.

3.2.6. Step 6: Selection

In this step, the newly generated solution Xnew
i (t) is compared with the current solu-

tion Xi(t). If the new solution Xnew
i (t) results in a better fitness function value, it substitutes

the current solution Xi(t) in the next iteration of the algorithm. Otherwise, Xi(t) is main-
tained without any change in the population. This procedure can be outlined by the
following formula:

Xi(t + 1) =
{

Xnew
i (t), if f it(Xnew

i (t)) ≥ f it(Xi(t))
Xi(t), if f it(Xnew

i (t)) < f it(Xi(t))
, (11)
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where f it(Xi(t)) and f it(Xnew
i (t)) represent the fitness function values of the current solu-

tion vector Xi(t) and the newly generated solution vector Xnew
i (t), respectively.

3.2.7. Step 7: Termination

The optimization procedure terminates if a stopping criterion is satisfied; otherwise,
steps two to six are iteratively carried out. A predefined value for the maximum number of
function evaluations can be adopted as the termination criterion. The pseudo-code of the
proposed VPSS algorithm is given in Algorithm 1.

Algorithm 1. Visible particle series search algorithm

Begin
1. Set the population size Np and maximum number of iterations Itmax.
2. Initialize a random population Xi, i = 1, . . . , Np, using Equation (7).
3. Evaluate the fitness function value of each solution f it(Xi).
4. Set the current iteration number t = 1.
5. while (t ≤ Itmax) do
6. Consider the population as a particle series with random arrangement;
7. Obtain the visible particles associated with each particle using Equation (8);
8. for i = 1 to Np do
9. Select a random number r from [0, 1];
10. if r ≤ 0.5 then
11. Generate a new solution Xnew

i (t) using Equation (9);
12. else
13. Generate a new solution Xnew

i (t) using Equation (10);
14. end if
15. Evaluate the fitness value of the new solution f it(Xnew

i (t));
16. if f it(Xnew

i (t)) ≥ f it(Xi(t)) then
17. Xi(t + 1) = Xnew

i (t);
18. else
19. Xi(t + 1) = Xi(t);
20. end if
21. end for
22. t = t + 1;
23. end while
24. Return the best solution achieved;

End

4. Validation of VPSS on Mathematical Benchmark Functions

In this section, the general performance of the proposed VPSS algorithm is verified
through a set of mathematical benchmark functions taken from the literature [61,69–71].
The utilized test functions are summarized in Table 1, where Dim represents the dimension
of the function, and Range denotes the search space boundaries. The perspective plots of
the test functions considering two variables are also illustrated in Figure 3. The presented
benchmark functions can be generally classified into two groups: unimodal functions
(F1–F6) and multi-modal functions (F7–F12). Unimodal functions contain only one global
optimum without any local optima. In view of this, these functions are principally applied
to evaluate the exploitation capability of optimization algorithms. By contrast, multi-modal
functions have several local optima and, hence, are basically employed to examine the
exploration capability of optimization algorithms. In addition, both kinds of unimodal
and multi-modal functions can be utilized to investigate the convergence behavior of
optimization algorithms.
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Table 1. Mathematical benchmark functions.

No. Name Formula Dim Range

F1 Sphere F1(x) = ∑D
i=1 x2

i 30 [−100, 100]
F2 Schwefel 2.22 F2(x) = ∑D

i=1|xi|+ ∏n
i=1|xi| 30 [−10, 10]

F3 Schwefel 1.2 F3(x) = ∑D
i=1

(
∑i

j=1 xi

)2 30 [−100, 100]

F4 Schwefel 2.21 F4(x) = maxi{|xi|, 1 ≤ i ≤ D} 30 [−100, 100]
F5 Step 2 F5(x) = ∑D

i=1(bxi + 0.5c)2 30 [−100, 100]

F6 Brown F6(x) = ∑D−1
i=1 (xi)

(x2
i+1+1)

+ (x2
i+1)

(x2
i +1) 30 [−1, 4]

F7 Schwefel 2.26 F7(x) = ∑D
i=1−xi sin(

√
|xi|) 30 [−500, 500]

F8 Ackley F8(x) = −20e−0.02
√

D−1∑D
i=1 x2

i − eD−1∑D
i=1 cos(2πxi) + 20 + e 30 [−32, 32]

F9 Griewank F9(x) = 1
400 ∑D

i=1 (x2
i )−

(
∏D

i=1 cos
(

xi√
i

))
+ 1 30 [−600, 600]

F10 Penalized

F10(x) = π
D

{
10 sin2(πyi) + ∑D−1

i=1 (yi − 1)2 [1 + 10 sin2(πyi+1)
]

+(yD − 1)2
}
+ ∑D

i=1 u(xi, 10, 100, 4),

yi = 1 + 1
4 (xi + 1),

u(xi, a, k, m) =


k(xi − a)m, xi > a,

0, −a ≤ xi ≤ a,
k(−xi − a)m, xi < −a.

30 [−50, 50]

F11 Qing F11(x) = ∑D
i=1 (x2

i − i)2 30 [−500, 500]
F12 Alpine 1 F12(x) = ∑D

i=1|xi sin(xi) + 0.1xi| 30 [−100, 100]
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In the case of each mathematical benchmark function, the results attained by VPSS
are also compared with those of four well-established optimization algorithms, namely
PSO [59], DE [60], GWO [61], and LAPO [62]. For the sake of fairness, the common
control parameters are taken the same for all the algorithms. In this regard, the population
size is set to 30, and the maximum number of function evaluations is considered to be
15,000. Besides, the values for the specific control parameters of DE and PSO are taken
as in [63]. Furthermore, owing to the stochastic nature of the meta-heuristic algorithms,
20 independent runs of all the algorithms are executed for each test function.
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Table 2 reports the statistical results obtained by VPSS and the other four algorithms
on all the mathematical benchmark functions in terms of the average objective function
value (FAvg) and the corresponding standard deviation value (FStd). These results reveal
that VPSS can achieve the most accurate objective function values among all the compared
algorithms in solving all the mathematical benchmark functions. By contrast, LAPO yields
the worst results for function F7, GWO gives the worst results for functions F5, F10, and F11,
DE leads to the worst results for functions F1, F2, F3, F4, F6, F9, and F12, and PSO provides
the worst results for function F8.

According to the results listed in Table 2, the standard deviation values of VPSS are
also superior against those of the other optimization algorithms for all the test functions
except only function F7. These results indicate the high-ranking robustness and reliability
of the proposed VPSS algorithm.

For further investigation, Figure 4 compares the convergence histories of the average
objective function values acquired by VPSS, LAPO, GWO, DE, and PSO for the investigated
test functions. The high convergence rate and accuracy of the proposed VPSS algorithm
can be inferred from this figure.
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Figure 4. Convergence histories of average objective function values obtained by VPSS, LAPO,
GWO, DE, and PSO versus the number of function evaluations (NFEs) for the mathematical
benchmark functions.
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Table 2. Statistical results for the mathematical benchmark functions.

No.
VPSS LAPO GWO DE PSO

FAvg FStd FAvg FStd FAvg FStd FAvg FStd FAvg FStd

F1 1.1 × 10−60 2.1 × 10−60 8.3 × 10−7 8.1 × 10−7 3.7 × 10−28 5.2 × 10−28 2.6 × 10−4 9.8 × 10−5 7.1 × 10−5 6.8 × 10−5

F2 2.2 × 10−31 1.8 × 10−31 2.9 × 10−4 2.9 × 10−4 9.7 × 10−17 3.9 × 10−17 3.9 × 10−3 1.0 × 10−3 4.5 × 10−4 2.4 × 10−4

F3 8.1 × 10−24 1.9 × 10−23 2.9 × 10−2 4.2 × 10−2 3.9 × 10−6 7.2 × 10−6 37450 5799.2 427.34 191.25
F4 3.4 × 10−26 2.4 × 10−26 8.5 × 10−4 4.7 × 10−4 5.7 × 10−7 5.1 × 10−7 9.4889 2.0314 3.2985 7.6 × 10−1

F5 4.8 × 10−6 7.2 × 10−6 1.0 × 10−1 1.2 × 10−1 8.6 × 10−1 4.6 × 10−1 3.4 × 10−4 1.3 × 10−4 3.6 × 10−5 5.8 × 10−5

F6 1.6 × 10−62 3.2 × 10−62 3.1 × 10−8 4.0 × 10−8 1.3 × 10−30 1.5 × 10−30 5.6 × 10−7 2.5 × 10−7 3.2 × 10−7 6.0 × 10−7

F7 −7508.4 1262.5 −4639.1 312.88 −5822.0 995.73 −6706.5 420.66 −6272.1 543.41
F8 4.4 × 10−15 0.0000 1.4 × 10−4 1.4 × 10−4 1.0 × 10−13 9.5 × 10−15 5.1 × 10−3 2.2 × 10−3 1.3 × 10−1 4.2 × 10−1

F9 0.0000 0.0000 6.3 × 10−3 1.3 × 10−2 5.7 × 10−3 1.3 × 10−2 1.8 × 10−2 5.4 × 10−2 1.2 × 10−2 1.3 × 10−2

F10 1.9 × 10−7 1.8 × 10−7 1.1 × 10−2 3.2 × 10−2 4.1 × 10−2 2.1 × 10−2 5.9 × 10−4 6.2 × 10−4 1.0 × 10−2 3.2 × 10-02

F11 1.6 × 10−1 2.9 × 10−1 359.96 723.34 1.5 × 10+03 534.71 1320.8 222.23 2.6347 4.6566
F12 3.5 × 10−30 5.5 × 10−30 2.1 × 10−4 2.0 × 10−4 1.9 × 10−3 1.5 × 10−3 20.253 3.3790 3.4 × 10−1 4.1 × 10−1

Taken together, the optimization results related to the mathematical benchmark func-
tions highlight the promising exploitation and exploration capabilities of the proposed
VPSS algorithm.

5. Application of VPSS in Structural Damage Identification

In this section, the efficiency of the VPSS algorithm for structural damage identification
is assessed by using four numerical examples, comprising a 47-bar planar truss, a 54-bar
space truss, a two-bay three-story frame, and a TV tower. Similar to the previous section,
the results obtained by VPSS are also compared with those gained by PSO, DE, GWO, and
LAPO. In each example, the structural damage identification procedure is implemented
by considering both noise-free and noisy conditions. In the noisy condition, the natural
frequencies and mode shapes are contaminated by 1% and 10% noise levels, respectively,
as in [63]. For all the numerical examples, only the first five natural frequencies and mode
shapes are taken into account in formulating the objective function. With regard to the
optimization context, the population size is set to be 50, and the maximum number of
function evaluations is limited to 20,000 for all the meta-heuristic algorithms. Moreover,
ten independent runs of the algorithms are carried out, and the statistical information in
terms of the average and standard deviation values are presented.

5.1. A 47-Bar Planar Truss

The first damage identification example deals with a 47-bar planar truss structure [43],
depicted in Figure 5. The cross-sectional area of elements, modulus of elasticity, and mass
density are 0.0025 m2, 207 GPa, and 8304 kg/m3, respectively. A multi-damage scenario
is taken into account by applying damage ratios of 0.30, 0.20, 0.35, and 0.15 to the 9th,
20th, 36th, and 44th members, respectively. The damaged elements are also highlighted in
Figure 5.

Figure 6 illustrates the average identification results found by VPSS, LAPO, GWO, DE,
and PSO in both the noise-free and noisy conditions. Furthermore, details about the average
values, standard deviations, and the maximum false alarm ratio for all the algorithms are
reported in Table 3. The identification results clearly indicate the superiority of the proposed
VPSS algorithm over the other compared meta-heuristic algorithms with regard to the
solution accuracy. Indeed, VPSS can successfully recognize the exact location and extent
of the damaged elements in the noise-free condition and further gives highly satisfactory
identification outcomes with negligible errors in the noisy condition. By contrast, LAPO,
GWO, and especially DE and PSO exhibit significant errors and several misidentifications
and fail to perfectly detect the actual damage scenario.
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Figure 5. A 47-bar planar truss.

Table 3. Statistical results of the damage identification for the 47-bar planar truss.

Condition Method

Damage Variables

xMFA Fminx9 x20 x36 x44

Avg. Sdt. Avg. Sdt. Avg. Sdt. Avg. Sdt.

Noise-free VPSS 0.300 3.7 × 10−4 0.200 5.1 × 10−4 0.350 2.7 × 10−4 0.150 8.7 × 10−5 0.000 1.0 × 10−8

LAPO 0.293 5.1 × 10−3 0.159 5.4 × 10−2 0.350 1.6 × 10−3 0.148 2.3 × 10−3 0.074 1.3 × 10−5

GWO 0.256 8.9 × 10−2 0.139 8.9 × 10−2 0.309 1.1 × 10−1 0.116 6.1 × 10−2 0.081 2.2 × 10−4

DE 0.260 2.7 × 10−2 0.142 8.5 × 10−2 0.332 3.2 × 10−2 0.106 2.8 × 10−2 0.301 4.2 × 10−4

PSO 0.216 5.3 × 10−2 0.181 6.0 × 10−2 0.315 2.4 × 10−2 0.127 1.4 × 10−2 0.420 3.1 × 10−4

Noisy VPSS 0.300 2.0 × 10−3 0.176 1.8 × 10−3 0.345 1.6 × 10−3 0.115 1.7 × 10−3 0.049 1.1 × 10−4

LAPO 0.294 5.9 × 10−3 0.141 7.1 × 10−2 0.345 3.6 × 10−3 0.114 1.9 × 10−3 0.112 1.7 × 10−4

GWO 0.295 9.4 × 10−3 0.158 6.2 × 10−2 0.310 1.1 × 10−1 0.083 5.5 × 10−2 0.101 2.9 × 10−4

DE 0.232 2.9 × 10−2 0.093 7.4 × 10−2 0.331 4.3 × 10−2 0.083 2.4 × 10−2 0.560 5.1 × 10−4

PSO 0.198 4.6 × 10−2 0.171 6.9 × 10−2 0.306 2.7 × 10−2 0.087 2.7 × 10−2 0.610 6.8 × 10−4

Note: Avg. = average; Std. = standard deviation; xMFA = maximum false alarm ratio; Fmin = minimum objective
function value achieved.
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Figure 6. Damage identification results for the 47-bar planar truss under the (a) noise-free condition
and (b) noisy condition.

Inspection of Table 3 further indicates that the standard deviations obtained using
VPSS are much lower than those of LAPO, GWO, DE, and PSO in both the noise-free and
noisy conditions. This signifies the higher reliability of the VPSS algorithm compared with
the other meta-heuristic algorithms in addressing the damage identification problem.

The average convergence histories attained by VPSS, LAPO, GWO, DE, and PSO are
compared in Figure 7. Moreover, details of the minimum objective function values achieved
by the algorithms are provided in Table 3. As can be observed, the VPSS algorithm signifi-
cantly outperforms the other compared meta-heuristic algorithms in terms of convergence
rate and convergence accuracy.

5.2. A 54-Bar Space Truss

A 54-bar space truss [72], as shown in Figure 8, is employed for the second damage
identification example. The cross-sectional area of elements, modulus of elasticity, and
mass density are 0.0025 m2, 68.9 GPa, and 2770 kg/m3, respectively. A multi-damage
scenario is taken into consideration in which damage ratios of 0.20, 0.15, 0.30, and 0.25 are
applied to the 6th, 24th, 40th, and 51st members, respectively. The damaged elements are
also indicated in Figure 8.
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The average identification results acquired by VPSS, LAPO, GWO, DE, and PSO in the
noise-free and noisy conditions are shown in Figure 9. In addition, Table 4 provides details
about the average values, standard deviations, and the maximum false alarm ratio for all
the algorithms. The results demonstrate that VPSS is capable of achieving the most precise
identification results among all the compared algorithms. The VPSS algorithm correctly
determines the actual damage ratios in the noise-free condition and leads to appropriate
estimations with minor errors in the noisy condition. On the other hand, LAPO, despite its
relatively acceptable estimations in the noisy condition, carries a number of false alarms
in the noise-free condition and, hence, ranks second. GWO, DE, and PSO also produce
noticeable errors and misidentifications and, consequently, rank behind VPSS and LAPO.
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Figure 9. Damage identification results for the 54-bar space truss under the (a) noise-free condition
and (b) noisy condition.

From the data in Table 4, it is also apparent that the VPSS algorithm is able to achieve
lower standard deviations and, hence, higher robustness compared to the other meta-
heuristic algorithms. The average convergence curves of VPSS are compared with those
of LAPO, GWO, DE, and PSO in Figure 10. Moreover, details of the minimum objective
function values obtained by the algorithms are given in Table 4. These results again
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confirm the superior convergence performance of the VPSS algorithm compared to the
other optimization algorithms.

Table 4. Statistical results of the damage identification for the 54-bar space truss.

Condition Method

Damage Variables

xMFA Fminx6 x24 x40 x51

Avg. Sdt. Avg. Sdt. Avg. Sdt. Avg. Sdt.

Noise-free VPSS 0.200 2.4 × 10−4 0.150 5.4 × 10−4 0.300 5.8 × 10−4 0.250 1.9 × 10−4 0.000 4.3 × 10−8

LAPO 0.197 5.5 × 10−3 0.134 1.7 × 10−2 0.287 1.0 × 10−2 0.246 4.0 × 10−3 0.035 2.9 × 10−5

GWO 0.193 6.9 × 10−3 0.078 6.4 × 10−2 0.221 1.2 × 10−1 0.240 5.4 × 10−3 0.041 1.5 × 10−4

DE 0.178 1.9 × 10−2 0.094 1.0 × 10−1 0.168 7.9 × 10−2 0.223 1.7 × 10−2 0.233 1.5 × 10−3

PSO 0.167 1.1 × 10−2 0.125 1.9 × 10−2 0.238 3.2 × 10−2 0.236 8.2 × 10−3 0.246 2.4 × 10−4

Noisy VPSS 0.200 1.1 × 10−3 0.158 9.6 × 10−3 0.277 1.8 × 10−3 0.256 4.0 × 10−3 0.035 2.9 × 10−4

LAPO 0.196 5.2 × 10−3 0.134 4.5 × 10−2 0.263 2.2 × 10−2 0.250 9.4 × 10−3 0.059 5.0 × 10−4

GWO 0.170 6.2 × 10−2 0.059 8.1 × 10−2 0.181 1.2 × 10−1 0.223 7.8 × 10−2 0.054 9.1 × 10−4

DE 0.189 2.8 × 10−2 0.204 9.9 × 10−2 0.208 8.1 × 10−2 0.264 3.1 × 10−2 0.200 1.9 × 10−3

PSO 0.181 1.2 × 10−2 0.160 1.9 × 10−2 0.226 3.5 × 10−2 0.240 1.2 × 10−2 0.320 8.6 × 10−4

Note: Avg. = average; Std. = standard deviation; xMFA = maximum false alarm ratio; Fmin = minimum objective
function value achieved.
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Figure 10. Convergence histories of mean objective function values of VPSS, LAPO, GWO, DE, and
PSO for the 54-bar space truss in the (a) noise-free condition and (b) noisy condition.

5.3. A Two-Bay Three-Story Frame

A two-bay three-story frame [73], as illustrated in Figure 11, is considered for the
third damage identification example. The cross-sectional areas of beams and columns are
0.0123 m2 and 0.0288 m2, respectively. The moments of inertia of the beams and columns
are 2.219 × 10−4 m4 and 5.744 × 10−4 m4, respectively. Moreover, the elasticity modulus
and the mass density of all the elements are 207 GPa and 7780 kg/m3, respectively. A
multi-damage scenario is considered by applying damage ratios of 0.25, 0.35, and 0.15 to
the 9th, 27th, and 31st members, respectively. The damaged elements are also highlighted
in Figure 11.

Figure 12 demonstrates the average identification results achieved by VPSS, LAPO,
GWO, DE, and PSO in both the noise-free and noisy conditions. Additionally, Table 5
summarizes details about the average values, standard deviations, and the maximum false
alarm ratio for all the algorithms. As can be observed, VPSS and LAPO possess approxi-
mately the same level of accuracy and outperform the other optimization algorithms.
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Figure 11. A two-bay three-story frame.
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Figure 12. Damage identification results for the two-bay three-story frame under the (a) noise-free
condition and (b) noisy condition.
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Table 5. Statistical results of the damage identification for the two-bay three-story frame.

Condition Method

Damage Variables

xMFA Fminx9 x27 x31

Avg Std Avg Std Avg Std

Noise-free VPSS 0.250 7.1 × 10−5 0.350 8.3 × 10−5 0.150 1.1 × 10−4 0.000 3.5 × 10−9

LAPO 0.249 7.0 × 10−4 0.349 1.6 × 10−3 0.151 1.4 × 10−3 0.000 1.5 × 10−6

GWO 0.247 6.2 × 10−3 0.312 1.4 × 10−1 0.121 9.0 × 10−2 0.033 1.9 × 10−4

DE 0.248 9.6 × 10−2 0.174 1.8 × 10−1 0.155 1.3 × 10−1 0.161 1.3 × 10−2

PSO 0.226 2.1 × 10−2 0.302 3.2 × 10−2 0.193 2.8 × 10−2 0.064 8.2 × 10−4

Noisy VPSS 0.253 1.2 × 10−3 0.327 3.9 × 10−3 0.168 1.6 × 10−3 0.012 6.8 × 10−5

LAPO 0.253 3.6 × 10−3 0.325 5.5 × 10−3 0.167 6.7 × 10−3 0.015 7.0 × 10−5

GWO 0.250 4.4 × 10−3 0.232 1.5 × 10−1 0.190 3.9 × 10−2 0.016 2.3 × 10−4

DE 0.184 1.2 × 10−1 0.170 1.2 × 10−1 0.145 1.1 × 10−1 0.180 1.7 × 10−2

PSO 0.236 8.9 × 10−3 0.227 5.9 × 10−2 0.224 3.0 × 10−2 0.100 1.8 × 10−3

Note: Avg. = average; Std. = standard deviation; xMFA = maximum false alarm ratio; Fmin = minimum objective
function value achieved.

It is further evident from Table 5 that VPSS can lead to lower standard deviations
compared with the other algorithms in both the noise-free and noisy conditions.

The average convergence histories attained by VPSS, LAPO, GWO, DE, and PSO are
illustrated in Figure 13. Moreover, details of the minimum objective function values gained
by the algorithms are presented in Table 5. As shown, all the compared algorithms in
both the noise-free and noisy conditions are inferior to the VPSS algorithm with regard
to convergence speed and convergence accuracy except for LAPO in the noisy condition,
which can approximately reach the same level of accuracy as the VPSS algorithm.
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Figure 13. Convergence histories of mean objective function values of VPSS, LAPO, GWO, DE, and
PSO for the two-bay three-story frame in the (a) noise-free condition and (b) noisy condition.

5.4. The Canton Tower

For the last damage identification example, the Canton Tower shown in Figure 14a is
considered. This structure has a total height of 610 m, which makes it the second tallest
TV tower in the world. The full-order finite element model of Canton Tower comprises
122,476 elements, 84,370 nodes, and 505,164 degrees-of-freedom (DOFs) [74]. Due to the
high complexity of this model, an equivalent reduced-order finite element model is gen-
erated in accordance with [74,75] to achieve the damage identification task. As shown in
Figure 14b, the reduced model represents a three-dimensional cantilever beam containing
37 elements and 38 nodes. At each node, five DOFs, including two translational displace-
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ments in the x and y directions and three rotational displacements about the x, y, and z
directions, are defined. Therefore, there are 10 DOFs per element, and the whole structural
model possesses a total of 185 DOFs. For this example, a single damage scenario is simu-
lated by considering the damage ratio of 0.20 to the 18th member, which is highlighted in
Figure 14b. It is also assumed that the limited mode shape data obtained from nodes 2, 7,
12, 17, 22, 27, 32, and 37 are utilized for damage identification.
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Figure 14. The Canton Tower: (a) overview (b) reduced-order finite element model.

Figure 15 illustrates the average identification results found by VPSS, LAPO, GWO,
DE, and PSO in both the noise-free and noisy conditions. Furthermore, details about
the average values, standard deviations, and the maximum false alarm ratio for all the



Sensors 2022, 22, 1275 20 of 24

algorithms are reported in Table 6. It is evident from the results that the VPSS algorithm
yields the most promising identification results among all the comparative algorithms. In
fact, the VPSS algorithm can precisely assess the actual damage state of the structure in
the noise-free condition and still provide acceptable identification outcomes with marginal
errors in the noisy condition. Meanwhile, the LAPO algorithm gives approximate results
with overall accuracy lower than VPSS and occupies the second rank. However, GWO, DE,
and PSO carry several misidentifications and cannot identify the damage scenario at all.
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Figure 15. Damage identification results for the Canton Tower under the (a) noise-free condition and
(b) noisy condition.

According to Table 6, it is also observed that the standard deviations gained by the
VPSS algorithm are much lower than those reported for the other algorithms in both the
noise-free and noisy conditions.

The average convergence histories achieved by VPSS, LAPO, GWO, DE, and PSO are
illustrated in Figure 16. Moreover, details about the average values, standard deviations,
and the maximum false alarm ratio for all the algorithms are given in Table 6. As can
be observed, the VPSS algorithm performs considerably better than the other compared
meta-heuristic algorithms with respect to the convergence rate and convergence precision.
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Table 6. Statistical results of the damage identification for the Canton Tower.

Condition Method

Damage Variables
xMFA Fminx18

Avg. Sdt.

Noise-free VPSS 0.200 8.1 × 10−4 0.000 1.7 × 10−8

LAPO 0.190 5.3 × 10−3 0.047 7.2 × 10−6

GWO 0.362 5.8 × 10−2 0.372 4.3 × 10−3

DE 0.406 2.0 × 10−2 0425 1.1 × 10−2

PSO 0.378 9.7 × 10−3 0.410 5.4 × 10−4

Noisy VPSS 0.207 7.3 × 10−3 0.024 4.1 × 10−5

LAPO 0.178 9.9 × 10−3 0.082 8.7 × 10−5

GWO 0.332 7.9 × 10−2 0.300 1.6 × 10−3

DE 0.421 4.9 × 10−2 0.430 9.8 × 10−3

PSO 0.315 3.7 × 10−2 0.362 5.7 × 10−4

Note: Avg. = average; Std. = standard deviation; xMFA = maximum false alarm ratio; Fmin = minimum objective
function value achieved.
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Figure 16. Convergence histories of mean objective function values of VPSS, LAPO, GWO, DE, and
PSO for the Canton Tower in the (a) noise-free condition and (b) noisy condition.

6. Conclusions

This paper proposed a new meta-heuristic optimization algorithm named visible
particle series search (VPSS) for structural damage identification. The VPSS algorithm was
inspired by the visibility graph technique, which is mainly applied in the area of time-series
analysis to characterize the intrinsic features of a time-series by mapping it into a graph
network. In the VPSS algorithm, the population of candidate solutions is viewed as a
particle series and then is transformed into a visibility graph representation. Any two
particles are visible to each other in the graph if there is a straight line connecting them
without intersecting any intermediate particles. The VPSS algorithm updates the position
of the particles in the search space by taking advantage of information derived from the
visible particles. This algorithm requires only the common controlling parameters and is
free from any algorithm-specific parameter.

In order to verify the exploitation and exploration capabilities of VPSS, a general test
was first carried out on 12 mathematical benchmark functions, comprising unimodal and
multi-modal functions. Next, the efficiency of this algorithm for identifying structural
damage was investigated by using four numerical examples, including a 47-bar planar truss,
a 54-bar space truss, a two-bay three-story frame, and a TV tower, under both noise-free
and noisy conditions. For each optimization problem, comparisons were also performed
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between the results of VPSS and those gained by four other well-known meta-heuristic
algorithms, namely particle swarm optimization (PSO), differential evolution (DE), grey
wolf optimization (GWO), and lightning attachment procedure optimization (LAPO). The
results of the mathematical functions and damage identification problems reveal that VPSS
outperforms the other meta-heuristic algorithms in terms of accuracy, robustness, and
convergence speed.
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