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Abstract: As a kind of information-intensive 3D representation, point cloud rapidly develops in
immersive applications, which has also sparked new attention in point cloud compression. The
most popular dynamic methods ignore the characteristics of point clouds and use an exhaustive
neighborhood search, which seriously impacts the encoder’s runtime. Therefore, we propose an
improved compression means for dynamic point cloud based on curvature estimation and hierarchical
strategy to meet the demands in real-world scenarios. This method includes initial segmentation
derived from the similarity between normals, curvature-based hierarchical refining process for
iterating, and image generation and video compression technology based on de-redundancy without
performance loss. The curvature-based hierarchical refining module divides the voxel point cloud
into high-curvature points and low-curvature points and optimizes the initial clusters hierarchically.
The experimental results show that our method achieved improved compression performance and
faster runtime than traditional video-based dynamic point cloud compression.

Keywords: dynamic point cloud; curvature-based; hierarchical refine; video-based compression

1. Introduction

Since the twenty-first century, the development of three-dimensional (3D) sensing
technology has set off a wave of innovation in Augmented and Virtual Reality Production
(AR/VR). In 2007, Google introduced the Street View, which allowed users to view and
navigate the virtual world, and now there is a complete version that is commercially
available [1]. In 2014, Samsung released the Samsung Gear VR for Galaxy smartphones
to gain a completely untethered, easy-to-use experience [2]. In 2020, Coronavirus Disease
catalyzed AR retail and VR conferences. Meanwhile, the use of 3D point clouds to represent
real-world scenarios in an immersible fashion for AR/VR system has become increasingly
popular in recent decades. Apple brought point cloud to mobile devices in 2020 and
successfully created a more realistic augmented reality experience [3]. In 2021, Zhongxing
Telecom Equipment built the AR Point Cloud Digital Twin Platform and said that the
platform had formed a scaled deployment and demonstration effect [4]. Moreover, point
clouds have achieved significant success in many areas, e.g., visual communication [5],
auto-navigation [6], and immersive systems [7]. Usually, a point cloud comprises its
geometric coordinates and various attributes such as color, normal, temperature, and
depth. It always comes with a large amount of data, which leads to the heavy transmission
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overload of today’s networks. Unlike the 3D mesh models, point clouds do not contain any
edges and facets. More challenging tasks (high-density, high-complexity, and high-resource
requirements) have increased downstream processing. In short, before employing the point
cloud to AR/VR, it is important to compress it first.

Recently, various families of 3D Point Cloud Compression (PCC) methods have been
proposed [8–13]. The first step is to set up a regular structure for point clouds to deal
with the massive discrete points. Garcia et al. [12] presented a lossless static PCC project
based on octree structure. In addition, the value and position of the parent node was
used to generate a set of contexts for entropy coding. Besides, clustering is also a superior
technology used in PCC because it can take full advantage of point cloud characteristics.
Sun et al. [14] divided a lidar point cloud into the ground and main objects. They saved the
shape of each divided region as a contour image and the corresponding value as a predicted
value. Yuan et al. [15] discarded the unimportant points to reduce the amount of data
passed into the encoder and maintained the point cloud accuracy through upsampling.

The above methods only consider spatial redundancy and ignore the temporal do-
main. In actual situations, the change usually occurs in local areas for dynamic context,
so the temporal correlation within the adjacent point clouds can be expected [16–18].
Kammerl et al. [17] took advantage of a differential octree representation that saves com-
putation and reduces memory requirements. Moreover, Garcia et al. [18] applied an
incomplete low-resolution version of the current frame and a full-resolution version of the
previous frame to compress dynamic point clouds.

The Joint Photographic Experts Group (JPEG) divided the scene into foregrounds
and background, then used different coding formats to make them coexist in the same
setting [19]. However, the corresponding standard reference software, which was the
integration of the algorithms of each module, did not consider the calculation complexity,
so it was not suitable for application scenarios with high real-time requirements. Moreover,
the standardization of point cloud data compression, holographic data compression, and
quality test procedures is still in the exploratory stage [20]. It is noteworthy that, in 2018,
the Moving Picture Experts Group (MPEG) announced a standard for PCC [21] which
divided point cloud models into three categories: static; dynamic, time varying point
clouds used for immersive video and AR video; and dynamically acquired, used in mobile
mapping. Later, the Geometry-Based PCC method (G-PCC) for static and dynamically
acquired situations and the Video-Based PCC method (V-PCC) for dynamic conditions
were grown. The V-PCC, which makes the best of the mature High Efficiency Video Coding
(HEVC) 2D video coder practically, is favored by immersive applications.

Due to the functionalities and optimizations accumulated in video codecs, there are
many improvements in the literature for video-based PCC [22–29]. Sevom et al. [24] re-
duced the encoding and decoding complexity by dropping secondary texture and geometry
content from the processing chain and introducing the geometry-guided 3D data inter-
polation. Li et al. [25] used reconstructed geometric information to improve the coding
efficiency of attribute videos in the dynamic PCC. In the field of geometric compression,
Xu et al. [26] conducted the geometry PCC via patch-wise polynomial fitting. However,
this method was not satisfactory at high bit rates. Costa et al. [27] proposed several patch
packing methods, including packing algorithms and associated sorting and positioning
metrics, without compromising in any way the V-PCC stream. Moreover, Lopes et al. [28]
used projection planes adapted to point cloud characteristics for patch generation. How-
ever, this method did not use the correlation between adjacent frames. Instead, Junsik
et al. [29] estimated the motion vector of the dynamic condition using temporal correlation,
yielding greater benefits than conventional video encoders, but its focus is not on the patch
generation phase.

Most improvements still use a limited refining process with a fixed search radius
independent of point cloud characteristics and carry out neighborhood searches for all
points, seriously impacting the encoder’s runtime. To tackle this, we propose an improved
PCC method based on curvature estimation and hierarchical operation. The core idea is
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to use curvature-based hierarchical refinement and segmentation technology before the
point cloud enters the 2D space to reduce the algorithm’s complexity while continuing the
superior performance of the video encoder. The main contributions of this manuscript are
as follows:

1. An innovative curvature-based hierarchical dynamic PCC method is proposed to re-
duce the time complexity of the refinement operation and even the overall framework;

2. The decision-making methods of voxel size and the number of iterations are proposed
to obtain a good trade-off between compression quality and compression time.

The remainder of this paper is organized as follows.
Following this introduction, we describe the curvature-based hierarchical dynamic

PCC method in detail in Section 2. In Section 3, we selected Redandblack, Soldier, Long-
dress, Loot, Basketball_player, Dancer, Ricardo and Phil eight sequences, presenting the
comparison results between the proposed techniques and the classic video-based algorithm.
The experiments showed that the proposed scheme can reduce the overall runtime by
33.63% on average, with clear Rate-Distortion (R.D.) performance benefit and subjective
effect improvement. Finally, we conclude the entire paper in Section 4.

2. The Curvature-Based Hierarchical Dynamic Point Cloud Compression Method

In the past decades, the video-based theory has been proven to be a low-cost solution
for promoting point cloud applications. This paper first utilizes normal similarity between
real point and pre-orientated elemental planes to segment the point cloud frame. Next,
curvature characteristic is used to hierarchically optimize the clusters of the first step.
Then, these refined clusters are packaged into images, such as a geometric image and
a color image. Finally, all images can be compressed with the existing versatile video
codec. On account of the realization that the latter two steps can refer to the current
literature, the proposed method can be summarized as the following three main steps: initial
segmentation, curvature-based hierarchical refinement, and post-processing (including
image generation and video-based coding).

2.1. Initial Segmentation

The premise of using 2D video coders is that the point cloud model is mapped to a 2D
plane in a simple but efficient way. Projecting the model onto the six planes of its bounding
box is given priority.

More precisely, we first calculate the normal vectors of all points in the point cloud.
Then, the point cloud is divided into six basic categories using the six planes of the pre-
defined unit cube, which can be represented by normal vectors as: (1, 0, 0), (0, 1, 0), (0, 0, 1),
(−1, 0, 0), (0, −1, 0), (0, 0, −1), as shown in Figure 1. The segmentation basis is the similarity
of the normal vectors between the real point and the orientation plane, maximizing the dot
product of the point’s normal vector and the plane’s normal vector. The corresponding
pseudo-code is Algorithm 1:

Segmentation aims to find some patches that satisfy time-coherent, low-distortion, and
are convenient for dimensionality reduction. Maximizing time-coherent and minimizing
distance and angle distortion is beneficial to the video encoder to fully use the spatio-
temporal correlation of point cloud geometry and attribute information. However, the
previous work does not guarantee a good reconstruction effect due to auto-occlusions. To
avoid it, we then refine the clustering results.

2.2. Curvature-Based Hierarchical Refinement

The input of the refine module is the clustered geometric coordinates and attributes.
And we look forward to getting some clusters meeting the image or video compression
technology requirements, such as smooth borders and less occlusion. Patches with soft
edges are incredibly effective in succeeding geometric filling and attributing filling parts,
which inspired us to consider adjacent points in the later refining process. Less occlusion
means avoiding the projection of different points onto the same location as far as possible
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by controlling the projection direction. More collisions will cause more information loss, so
the normal vector of the projection plane is also deemed as a considerable factor.

Algorithm 1 The pseudo-code of initial segmentation

Input: the normal of each point N,
the normals of orientation planes Plane,
the number of orientation planes numPlanes,
the number of points numPoints

Output: initial clusters partition
For i = 0 to numPoints-1 do
bestScore = 0

For j = 0 to numPlanes-1 do
scoreNormal = N[i]·Plane[j]
If scoreNormal > bestScore do

bestScore = scoreNormal
clusterIndex = j

End If
End For

partition[i] = clusterIndex
End For
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document N18674.

Figure 2 provides an overview of the curvature-based hierarchical refinement, which
is a friendlier refining solution to reduce computational complexity and runtime and will
not alter the bitstream syntax and semantics or the decoder behavior.

The main steps cover partitions of geometric coordinate space, neighborhood infor-
mation search, and clustering based on scores. It should be noted that the neighborhood
information search comprises the calculation of curvature and the hierarchical search; the
final scores extrapolate from the normal vector score, voxel-smooth score, and smooth score.



Sensors 2022, 22, 1262 5 of 18

Sensors 2022, 21, x FOR PEER REVIEW 5 of 20 
 

 

The input of the refine module is the clustered geometric coordinates and attributes. 
And we look forward to getting some clusters meeting the image or video compression 
technology requirements, such as smooth borders and less occlusion. Patches with soft 
edges are incredibly effective in succeeding geometric filling and attributing filling parts, 
which inspired us to consider adjacent points in the later refining process. Less occlusion 
means avoiding the projection of different points onto the same location as far as possible 
by controlling the projection direction. More collisions will cause more information loss, 
so the normal vector of the projection plane is also deemed as a considerable factor. 

Figure 2 provides an overview of the curvature-based hierarchical refinement, which 
is a friendlier refining solution to reduce computational complexity and runtime and will 
not alter the bitstream syntax and semantics or the decoder behavior. 

 

Figure 2. Curvature-based hierarchical refinement architecture.

2.2.1. Partitions of Geometric Coordinate Space

Even if only ten neighbors are searched for each point, the clusters updating for
whole cloud containing hundreds of thousands of points is laborious. As a result, the
refining procedure was suggested to be simplified by adding a voxel-based constraint
to the neighborhood search [22]. Inspired by this, we first use uniform voxels to divide
geometric space, then perform a neighborhood search on the voxelized point cloud instead
of the entire model. The first traversed point in each voxel is selected to identify the voxel
instead of the geometric center point due to the following calculations being for integers.
Specifically, the coordinates of identifying individual and contained points for each voxel
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are stored. In the searched nearest-neighboring filled voxels, all interior points that meet
the distance limit are regarded as the neighborhood information of the current voxel.

The more extensive the voxel size, the fewer points need to be considered in each
neighborhood search and the fewer identification points are explored, which means the
difference between the searched neighbors and the actual situation is more significant, as
shown in Figure 3.
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Figure 3. Neighbors searched in different sizes of voxel (S refers to the voxel size): (a) search center
marked with red; (b) voxel division; (c) identification points; (d) the searched neighbors marked with
asterisks; (e) actual adjacent points marked with asterisks.

2.2.2. Neighborhood Search for Each Filled Voxel

The above partition ideal provides convenient conditions for neighborhood search.
However, redundant calculations may occur if all regions are considered equivalent and
use the fixed search radius, as shown in Figure 4. If different clusters are marked with
diverse colors, it can be found that there are plenty of points belonging to the same group
in the chest and abdomen of the Loot point cloud. Wherein the clustering index is updated
iteratively, the renewal results obtained by various search radii are consistent because all
neighbors have identical indexes. Accordingly, it is reasonable to use a smaller search
radius for some local regions.
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Figure 4. Local neighborhood information obtained by various radii. Note that the searched neighbors
are signaled with asterisks.

Considering that the update of the clustering index is related to the neighbors and
inseparable from the normal vectors, the curvatures originating from normal vectors on
local surfaces are selected to study the search radius. The points of low curvature located
on a virtually flat surface need bits of neighbors to reflect the index-change trend. By
comparison, the points with high curvature, which have an apparent diversification in the
normals between them and adjacents, call for a more comprehensive neighborhood search
to prevent the normals from unduly influencing the final result, as shown in Figure 5. In the
intra-cluster, the small-scale neighborhood search increases the number of patches for high-
curvature regions but does not affect low-curvature parts. On the contrary, the small-scale
neighborhood search results in patches with sharp edges for high-curvature areas at cluster
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boundary but has little impact on low-curvature areas. Therefore, the search for nearest-
neighboring-filled voxels in this paper was completed based on curvature grading to reduce
the amount of calculation. Low-curvature zones implement a small-scale neighborhood
search, while high-curvature zones conduct a large-scale neighborhood search.
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Figure 5. The clustering results obtained by searching with various radii in a specific area (a1 is a
low-curvature area, while a2 is a high-curvature area).

We apply the local surface fitting method to calculate curvatures. Firstly, principal
component analysis is used to estimate normal vectors. Then, a minimum spanning tree
is used to orient the normal vectors. The normal vector of Pi is used as the vertical axis
to establish a new local coordinate system. Finally, a quadric surface fitting is performed
on the local coordinate system, and its fitted surface parameters are used to estimate the
curvature at Pi, as

K = (K1 + K2)/2, (1)

where K1 and K2 are the two principal curvatures of Pi, respectively.
The predictions of curvatures are based on the identification points instead of the entire

cloud model, as the number of voxels is far less than the number of actual points. In Figure 1,
the curvatures histogram of the identification points shows that only a few individuals
had a relatively high curvature as most areas had excellent flatness. Consequently, all
identification points are classified into low-curvature points and high-curvature points,
according to the low-curvature determination ratio, as shown in Figure 6. Then, we can
estimate the neighborhood information hierarchically to reduce complexity.
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2.2.3. Clustering Based on Final Score

For points with different curvature grades, various search radii are used. Traverse all
the identification points and the nearest-neighboring voxels for each identification point
are stored in a vector and used to compose the final score.

The normal vector score, which refers to the influence of the normal vectors on the
clustering index, must be considered first to get a patch with less occlusion. These six
projection planes, as mentioned above, are also used to estimate the normal vector score in
the refine segmentation process, according to

ScoreNormal[i][p] = normal[i]·orientation[p], (2)



Sensors 2022, 22, 1262 8 of 18

where normal[i] is the normal vector of the i-th point, and orientation[p] is the normal
vector of the p-th projection plane.

The projection results for different planes are shown in Figure 7. The greater the normal
vector score, the fewer points projected to the same position and the fewer collisions occur.
Therefore, the calculation of normal vector scores is necessary for each iteration.
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The neighbors of each point will also affect its corresponding clustering index to
avoid uneven boundaries, i.e., the smooth scores, which refers to the influence of adjacent
points on the final clustering index. If the number of neighbors corresponding to Pi is
numNeighborsi, the amount of computation for smooth scores is

AmountComputation =
N−1

∑
i=0

numNeighborsi, (3)

where N is the number of identification points.
The appraisal of the smooth scores is undoubtedly demanding but can be simplified by

the accumulation of the voxel-smooth score thanks to the partition of geometric coordinate
space. The voxel-smooth score for each filled voxel associated with each projection plane
needs to be computed first by counting the number of points in the voxel, which are
clustered to the projection plane during the refining process. Then, the smooth score can be
defined as

v = FilledVoxels[i], (4)

ScoreSmooth[v][p] =
size(nnFilledVoxels)

∑
j=1

voxScoreSmooth[nnFilledVoxels[vj]][p], (5)

where v is the index of the voxel containing the i-th point and p is the projection plane
index; nnFilledVoxels[vj] is the j-th neighboring voxel and voxScoreSmooth is the set of
voxel-smooth scores for all the adjacent voxels. Hence, the smooth score would be identical
for all points inside a voxel.

The normal vector score and the smooth score, as mentioned above, are combined to
determine the final clustering index through a weighted linear combination, as

score[i][p] = ScoreNormal[i][p] +
λ

size(nnFilledVoxels[v])
ScoreSmooth[i][p], (6)

where λ is the influence coefficient of the smooth score on the final score, and its value is
specified by [30]. After clustering each point to the projection plane having the highest
final score as calculated at Equation (6), the cluster update is completed once.

In the refining process, the total number of loops would be

totalLoop = numPoints × numPlanes+

maxNumIters ×
N−1
∑

i=0
(numPoints + numPoints × numPlanes × numNeighborsi),

(7)
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where maxNumIters is the maximum number of iterations and numPlanes is the number
of projection planes in the refinement. A small-scale neighborhood search is used for
most points in the proposed method, so the numNeighborsi for most points is lower than
that of the video-based method. Therefore, the total number of loops diminishes, which
successfully reduces the computational complexity.

In summary, the pseudo-code for refinement is Algorithm 2:

Algorithm 2 The pseudo-code of refinement

Input: initial clusters partition
the normal of each point N,
the normals of orientation planes Plane,
the number of orientation planes numPlanes,
the number of points numPoints
the maximum number of iterations maxNumIters
the impact factor λ

the number of neighbor voxels used for the search nnFilledVoxels
voxel list V

Output: updated clusters partition
ω = λ/numNeighbors
For i = 0 to numPoints-1 do

For j = 0 to numPlanes-1 do
scoreNormal[i][j] = N[i]·Plane[j]

End For
End For
For k = 0 to maxNumIters -1 do

For i = 0 to V.size-1 do
voxScoreSmooth[Vi][ ] = 0
For j = 0 to Vi.size-1 do

voxScoreSmooth[Vi][partition[Vi[j]]]++//calculate the voxel smooth score
End For

End For
For i = 0 to numPoints-1 do

For j = 0 to numPlanes-1 do
v = f illedVoxels[i]//the voxel at which the i-point is located
Find the neighboring voxels and store them in nnFilledVoxels
scoreSmooth[i][j] = 0
For n = 0 to nnFilledVoxels.size-1 do

scoreSmooth[i][j] += voxScoreSmooth[nnFilledVoxels[n]][j]
End For

score[j]= scoreNormal[i][j] + ω•scoreSmooth[i][j]
End For

Cluster the point to j which related score is the highest
tmpPartition[i] = clusterIndex
End For
partition[i] = clusterIndex

End For

2.3. Post-Processing: Image Generation and Video-Based Coding

Consistent with classical video-based methods, the connected component extraction
algorithm is applied to extract the patches obtained by curvature-based hierarchical refine-
ment, and then we map the connected components to a 2D grid. The mapping process
needs to minimize the 2D unused area, and each grid belongs to only one patch. The geo-
metric information of the point cloud is stored in the grid to generate the corresponding 2D
geometric image. Similarly, the attribute image can also be easily obtained. To better handle
the case of multiple points being projected to the same pixel, the connected component can
be projected onto more than one image.
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Finally, the generated images are stored as video frames and compressed using the
video codec according to the configurations provided as parameters. Details are available
in [21,30].

3. Performance Assessments
3.1. Test Materials and Conditions

We carried out many tests using dynamic point clouds captured by RGBD cameras.
The Redandblack, Soldier, Longdress, and Loot four sequences in MPEG 8i Dataset [31] are
complete point clouds with a voxel size close to 1.75 mm and a resolution of 1024 × 1024
for texture maps; the basketball_player and dancer two sequences in Owlii Dataset [32]
are complete point clouds with a resolution of 2048 × 2048 for texture maps; the Ricardo
and Phil are two other sequences in Microsoft Voxelized Upper Bodie’s Dataset [33] and
are frontal upper body point clouds with a voxel size compact to 0.75 mm and a resolution
of 1024 × 1024 for texture maps, as shown in Figure 8. The point cloud is a set of points
(x, y, z) constrained to lie on a regular 3D grid. In other words, it can be assumed to be an
integer lattice. The geometric coordinates may be interpreted as the address of a volumetric
element or voxel. The attributes of a voxel are the red, green, and blue components of the
surface color. Note that each series takes 32 frames for experimentation and comparison.
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Select the most popular V-PCC as the comparison item to analyze the advantages
and disadvantages of the proposed method. For better evaluation of the R.D. quality, the
Bjontegaard Delta-Rate (BD-rate) and Bjontegaard Delta Peak Signal-to-Noise Ratio (BD-
PSNR) metrics [34] are calculated, which makes the comparison of different compression
solutions possible when considering several rate-distortion points. The PSNR, which aims
to report the distortion values, is calculated as

PSNRcolor = 10 log10(
(pcolor)

2

MSE ), PSNRgeometry = 10 log10(
3p2

MSE )
, (8)

where p and pcolor are the peak constant value for geometric distortions and color distortions
of each reference point cloud, respectively, and MSE is the mean squared error. Based on
this, BD-rate is defined as the average difference between the area integral of the lower curve
divided by integral interval and that of the upper curve separated by the integral interval:

BD − rate =
1

DH−DL

∫ DH

DL

(r2 − r1)dD, (9)

where r = a + bD + cD2 + dD3, r = log(R), R is the bitrate; a, b, c, and d are fitting
parameters; D is the PSNR; DH and DL are the high and low end, respectively; r2 and r1 are
the curves. A negative BD-rate indicates that the encoding performance of the optimized
algorithm has been improved. On the other hand, BD-PSNR expresses the promotion in
the objective quality at the same rate, which is given as

BD − PSNR =
1

rH−rL

∫ rH

rL

(D2(r)− D1(r))dr, (10)
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where D = a + br + cr2 + dr3, rH , rL, D2(r) and D1(r) are the highest logarithm of bitrate,
the lowest one, the original curve, and the compared curve, respectively. The larger
the BD-PSNR, the better the proposed algorithm. Furthermore, without losing fairness,
experiments strictly implement the common test condition for dynamic PCC provided by
MPEG [24].

3.2. Voxel Size and the Number of Iterations

Table 1 provides the BD-rate, BD-PSNR, and runtime savings for V-PCC with a voxel
size of four compared to a voxel size of two. As the voxel size increases, the encoder’s
runtime is reduced by 53.73% on average, but the related geometric and color quality
suffers a severe loss. In detail, the D1 bitrate increases by an average of 2.78%, while the
Y bitrate rises by an average of 3.32%. MPEG explains that the large voxel size is more
suitable for real-time applications because high-precision reconstruction is not required
in this case. However, we are inclined to promote the real-time capability of compression
schemes while ensuring high quality. Therefore, we focus on weakening complexity that
retains a great deal of quality based on the voxel size equal to two.

Table 1. The BD-rate, BD-PSNR, and runtime for V-PCC with voxel size of 4 in comparison with
V-PCC with voxel size of 2.

Sequences D1 Y
Time-Reduction (%)BD-Rate (%) BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB)

Red 2.0689 −0.0868 1.3450 −0.0590 55.84
Soldier 4.9579 −0.1087 3.0096 −0.1402 52.34
Long 9.2006 −0.1443 2.0689 −0.0868 54.12
Loot 0.6707 −0.0183 11.7859 −1.9272 54.56

Ricardo 3.1759 −0.0592 2.2672 −0.2622 58.32
Phil 1.2486 −0.0488 6.0124 −0.1591 57.02

Basketball_player 0.8839 −0.0261 0.0016 −0.1750 50.71
dancer 0.0483 −1.2106 0.0651 −1.2304 46.90

Average 2.7819 −0.2129 3.3195 −0.5050 53.73

Figure 9 describes the impact of the maximum number of iterations on the geometric
performance, color performance, and runtime. Results display that although the number
of iterations increased eight times, D1-PSNR only increased by less than 0.1%. In terms
of color, the compression result after ten iterations was not the worst, and the outcome of
90 iterations was not the best. Meanwhile, the cost of time steadily increased. In summary,
the rise in the number of iterations has little impact on geometric performance, unstable
attribute optimization, and time. Consequently, we directly suggest lessening the value
in [24], which is 10.
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3.3. The Low-Curvature Ratio and Search Radius

According to the common test condition, the search radius for high-curvature points
is set to 96. The other radius suitable for low-curvature points needs to be further analyzed,
as shown in Figures 10 and 11. We used two types of point clouds for experiments.
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Figure 11. The influence of low-curvature determination ratio on (a) geometry performance; (b) time.

The R.D. performance is built up when the radius decreases slightly but declines
sharply with further decrease. Even when the radius is less than 25, both the geometry and
the color information show a huge loss. Regarding time consumption, when the radius
is greater than 36, the saving rate of encoder’s runtime is not more than 30%. Hence, the
radii equal to 25 or 36 are substituted into the analysis of low-curvature ratio, as shown in
Figure 10. The radius of 25 is outstanding on time but poor on quality. On the contrary,
no matter what the low-curvature ratio is, the compression result of the encoder with a
radius of 36 is satisfactory. Considering that the ultimate goal is to reduce the runtime, the
low-curvature ratio is set as 0.92 and the search radius of low curvature is set as 36.

3.4. R.D. Performance Evaluation

All point clouds have a similar change trend on their R.D. curves. Figure 12 provides
a detailed performance description of Redandblack on geometry and color. The curvature-
based hierarchical method has a performance like V-PCC at a low bpp, but less costly and
with better quality at a high bpp. It is undeniable that the proposed method is valid for the
dynamic condition.

Sensors 2022, 21, x FOR PEER REVIEW 14 of 20 
 

 

 
(a) (b) 

Figure 11. The influence of low-curvature determination ratio on (a) geometry performance; (b) 
time. 

The R.D. performance is built up when the radius decreases slightly but declines 
sharply with further decrease. Even when the radius is less than 25, both the geometry 
and the color information show a huge loss. Regarding time consumption, when the ra-
dius is greater than 36, the saving rate of encoder’s runtime is not more than 30%. Hence, 
the radii equal to 25 or 36 are substituted into the analysis of low-curvature ratio, as shown 
in Figure 10. The radius of 25 is outstanding on time but poor on quality. On the contrary, 
no matter what the low-curvature ratio is, the compression result of the encoder with a 
radius of 36 is satisfactory. Considering that the ultimate goal is to reduce the runtime, the 
low-curvature ratio is set as 0.92 and the search radius of low curvature is set as 36. 

3.4. R.D. Performance Evaluation 
All point clouds have a similar change trend on their R.D. curves. Figure 12 provides 

a detailed performance description of Redandblack on geometry and color. The curvature-
based hierarchical method has a performance like V-PCC at a low bpp, but less costly and 
with better quality at a high bpp. It is undeniable that the proposed method is valid for 
the dynamic condition. 

 
(a) (b) 

Figure 12. R.D. curves for Redandblack: (a) geometry performance; (b) color performance. 

From Tables 2 and 3, our method is much better than V-PCC, with a voxel size of four 
in geometry and color performance. However, there is also an average 50.52% increase in 
runtime due to the reduction of voxel size which enhances the complexity of the neigh-
borhood search and the determination of final score. This is negligible in most applications 

Figure 12. R.D. curves for Redandblack: (a) geometry performance; (b) color performance.

From Tables 2 and 3, our method is much better than V-PCC, with a voxel size of four
in geometry and color performance. However, there is also an average 50.52% increase in
runtime due to the reduction of voxel size which enhances the complexity of the neighbor-
hood search and the determination of final score. This is negligible in most applications
that do not have extreme real-time constraints. At the same time, data compared with a
voxel size of two shows that the proposed approach improves performance and efficiency
obviously, saving an average of 33.63% of the total time. After the tradeoff between real-



Sensors 2022, 22, 1262 14 of 18

time performance and accuracy, our method can achieve clear quality improvement and, in
most cases, shorten the encoder’s runtime.

Table 2. The BD-rate, BD-PSNR in geometric component, and runtime for our method compared
with V-PCC.

Sequences
voxelSize = 2 voxelSize = 4

BD-Rate (%) BD-PSNR (dB) Time-Reduction (%) BD-Rate (%) BD-PSNR (dB) Time-Reduction (%)

Red −1.7074 0.0269 34.50 −1.8712 0.1275 −47.18
Soldier −1.0711 0.0421 31.93 −9.7654 0.4410 −57.97
Long −0.3460 0.0250 33.62 −1.1740 0.0520 −54.12
Loot −0.8159 0.0507 33.46 −5.5974 0.2262 −52.4

Ricardo −1.4667 0.0559 36.62 −4.4987 0.1152 −49.35
Phil −3.5791 0.1685 34.40 −6.7303 0.2155 −52.46

Basketball_player −2.7974 0.2752 31.44 −2.3516 0.0471 −44.83
Dancer −2.3710 0.0568 33.09 −2.9765 0.0616 −45.81
Average −3.1455 0.0876 33.63 −4.3706 0.1608 −50.52

Table 3. The BD-rate and BD-PSNR in Y color component for our method in comparison with V-PCC.

Sequences
voxelSize = 2 voxelSize = 4

BD-Rate (%) BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB)

Red −3.8787 0.0974 −4.9378 0.3130
Soldier −4.5162 0.1814 −13.045 0.4375
Long −0.0822 0.0354 −5.2017 0.2171
Loot −0.3806 0.0632 −10.0006 0.4215

Ricardo −6.7822 0.0407 −12.9192 0.2941
Phil −4.4651 0.1443 −9.7481 0.3052

Basketball_player −1.6300 0.2258 −1.5219 0.0577
Dancer −2.4382 0.0878 −3.8152 0.1341
Average −3.0217 0.1095 −7.6487 0.2725

Besides, the visual effects of our method, as compared with V-PCC, are demonstrated
in Figures 13–15. Clearly, the point clouds compressed by a voxel size of four are generally
unsmooth and have apparent cracks. The point clouds condensed by a voxel size of two
outperform voxel size of four, but there are also some cracks. The point clouds conducted
by our approach are closest to the original point clouds. Therefore, the method proposed in
this paper can achieve better visual effects than V-PCC, consistent with the results obtained
from the analysis of R.D. performance, as described earlier.



Sensors 2022, 22, 1262 15 of 18Sensors 2022, 21, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 13. Results for subjective inspection in MPEG 8i dataset: (a) V-PCC with voxDim of 2; (b) V-
PCC with voxDim of 4; (c) compressed by the curvature-grading-based refining method; (d) the 
original point clouds. 

Figure 13. Results for subjective inspection in MPEG 8i dataset: (a) V-PCC with voxDim of 2;
(b) V-PCC with voxDim of 4; (c) compressed by the curvature-grading-based refining method; (d) the
original point clouds.



Sensors 2022, 22, 1262 16 of 18Sensors 2022, 21, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 14. Results for subjective inspection in Owlii dataset: (a) V-PCC with voxDim of 2; (b) V-PCC 
with voxDim of 4; (c) compressed by the curvature-grading-based refining method; (d) the original 
point clouds. 

 
Figure 15. Results for subjective inspection in Microsoft Voxelized Upper Bodie’s dataset: (a) V-PCC 
with voxDim of 2; (b) V-PCC with voxDim of 4; (c) compressed by the curvature-grading-based 
refining method; (d) the original point clouds. 

Figure 14. Results for subjective inspection in Owlii dataset: (a) V-PCC with voxDim of 2; (b) V-PCC
with voxDim of 4; (c) compressed by the curvature-grading-based refining method; (d) the original
point clouds.

Sensors 2022, 21, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 14. Results for subjective inspection in Owlii dataset: (a) V-PCC with voxDim of 2; (b) V-PCC 
with voxDim of 4; (c) compressed by the curvature-grading-based refining method; (d) the original 
point clouds. 

 
Figure 15. Results for subjective inspection in Microsoft Voxelized Upper Bodie’s dataset: (a) V-PCC 
with voxDim of 2; (b) V-PCC with voxDim of 4; (c) compressed by the curvature-grading-based 
refining method; (d) the original point clouds. 

Figure 15. Results for subjective inspection in Microsoft Voxelized Upper Bodie’s dataset: (a) V-PCC
with voxDim of 2; (b) V-PCC with voxDim of 4; (c) compressed by the curvature-grading-based
refining method; (d) the original point clouds.
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4. Conclusions

In this paper, we proposed an improved dynamic PCC method based on curvature
estimation and hierarchical strategy to reduce the runtime of the video-based compres-
sion scheme and obtain an apparent quality gain. Firstly, the proposed method segments
original data into six primary clusters utilizing normal similarity. Secondly, we suggested a
curvature-based hierarchical refining approach to optimize clusters. Finally, image generation
technology and video codec were used to map point cloud to 2D image and compression.

The curvature-based hierarchical method’s specific flow can begin with generating
voxelized identification points by the partition of geometric coordinate space. Next, classify
identification points into low-curvature points and high-curvature points. Then, estimate
the neighboring voxels and final scores hierarchically. Last, converge each point to the
cluster associated with the highest score to obtain patches with smoother boundaries and
fewer repeated points.

The experimental results show that the proposed scheme can save 33.63% compression
time on average, with clear R.D. performance benefits and subjective effect boost, and is
suitable for most AR/VR applications. However, the curvature-based hierarchical method
requires only the characteristics of geometric space. In future work, we will consider using
the properties of the attribute space to improve compression quality.
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