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Abstract: Early-stage disease diagnosis is of particular importance for effective patient identification
as well as their treatment. Lack of patient compliance for the existing diagnostic methods, however,
limits prompt diagnosis, rendering the development of non-invasive diagnostic tools mandatory. One
of the most promising non-invasive diagnostic methods that has also attracted great research interest
during the last years is breath analysis; the method detects gas-analytes such as exhaled volatile
organic compounds (VOCs) and inorganic gases that are considered to be important biomarkers for
various disease-types. The diagnostic ability of gas-pattern detection using analytical techniques
and especially sensors has been widely discussed in the literature; however, the incorporation of
novel nanomaterials in sensor-development has also proved to enhance sensor performance, for both
selective and cross-reactive applications. The aim of the first part of this review is to provide an
up-to-date overview of the main categories of sensors studied for disease diagnosis applications via
the detection of exhaled gas-analytes and to highlight the role of nanomaterials. The second and most
novel part of this review concentrates on the remarkable applicability of breath analysis in differential
diagnosis, phenotyping, and the staging of several disease-types, which are currently amongst the
most pressing challenges in the field.
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1. Introduction

Disease diagnosis is conventionally conducted using expensive, time-consuming, in-
vasive techniques, applied by appropriately trained health care professionals. For instance,
gastroscopy, laryngoscopy, and coronary angiography are used for gastric cancer (GCa),
lung cancer (LC), and myocardial infraction diagnosis, respectively [1]. Other commonly
used methods, such as computed tomography [2] or mammography, used for breast cancer
(BC) [3], may also be harmful due to radiation exposure. As a result, patient compliance
and utilization of such diagnostic methods are remarkably reduced for a significant part of
the population. However, disease and especially cancer early-stage diagnosis via effective
high-risk population screening, renders treatment easier [4]. For this reason, ameliorated
diagnostic methods are imperative.

Metabolomics, one of the ‘-omics’ disciplines that have progressively become a promis-
ing diagnostic tool in medical research, offer a comprehensive analysis of the metabolites
contained in biological samples by the combination of analytical techniques with bioinfor-
matics [5]. On the other hand, the term volatolomics is referred to the chemical processes
that correlate with volatile organic compounds (VOCs) emitted by body fluids [6], such
as peripheral blood, urine, and sweat as well as feces, nasal mucous, gaseous skin ex-
cretions, and exhaled breath [6–8]. Apart from VOCs (e.g., acetone, isoprene, ethane,
pentane), inorganic gases (e.g., CO2, CO and NO) and non-volatile compounds/exhaled
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breath condensates (e.g., peroxynitrite, cytokines, and isoprostanes) constitute the human
breath [1,9,10]. Decreased sample complexity, the highly developed appropriate analytical
techniques, and the ability of direct or continuous breath analysis using gas sensors render
exhaled breath as an exceptional source of gas-biomarkers (VOCs predominantly but also
inorganic gases) [8,11]. More than 2000 VOCs have been detected in the exhaled breath [12]
and appertain to hydrocarbons, alcohols, aldehydes, ketones, esters [12,13], ethers, car-
boxylic acids, heterocyclic hydrocarbons [12], aromatic compounds, nitriles [12,13], sulfides,
and terpenoids [12] and may be endogenous or exogenous.

Exogenously originated VOCs are correlated with the environment and the habits of
the person [14]. VOCs related with cleaning fluids, personal care products, plastic-related
VOCs [14], blazes, or air pollution due to industrial/transport gas emissions [12] enter
human organism through extended inhalation and are excreted via exhaled breath. Smok-
ing [15], food habits and food supplements, drinks, or medication also consist important
sources of VOCs [14,15]. Other important confounding factors affecting the profile of
exhaled VOCs are age, gender, ethnicity, living place, and lifestyle [15,16]. Consequently,
immediate and recent environmental exposure should be taken into consideration during
breath analysis [14].

Endogenously created VOCs comprise high vapor pressure (body and room tem-
perature (RT)) (fragments of [14]) byproducts of normal or pathophysiological metabolic
pathways [7,14,17], as well as of microbiome metabolism [14]. They are produced either
in the airway region or in other parts of human body, representing the metabolism of
the whole organism. In the first case, VOCs are released in the exhaled breath in a direct
way [17]. In the second case, produced VOCs enter and circulate in the bloodstream,
and, during gas exchange in the alveoli or the airways, excretion to the exhaled breath
occurs [15,17] via the alveolar pulmonary membrane [9,10]. Depending on blood solu-
bility, VOCs are exchanged in different sites of the respiratory tract. Nonpolar VOCs
with poor blood solubility (blood–air partition coefficient (λb:a) < 10) are exchanged in the
alveoli, in contrast to blood soluble VOCs (λb:a > 100) that are exchanged in lung airways.
VOCs of intermediate solubility (10 < λb:a < 100) undergo pulmonary gas exchange in both
sites [12,15]. Oxidative stress, lipid peroxidation, and reactions catalyzed by cytochrome
p450 (CYP450), and liver enzymes are the main biochemical processes correlated with
endogenous VOCs [15,18,19]. The correlation of oxidative stress and airway inflammation
with exhaled VOCs is summarized in Figure 1. Different VOC classes are potentially
correlated with different biochemical reactions and exogenous sources.

VOCs of exhaled breath are regarded as normal [12]. However, concentration differ-
ences for some exhaled VOCs could potentially be associated with an abnormal condition
of the body [12], as the metabolic processes producing the VOCs are altered in a distinctive
way by different diseases [1,10]. Disease-related concentration alternations conventionally
concern a group of VOCs rather than a single compound [17]. Apart from this, the concen-
tration of a single compound may vary due to more than one pathophysiological processes,
thus being non-specific [20]. Consequently, diagnosis of complex, heterogeneous diseases
is scarcely achieved by the recognition of one characteristic stand-alone VOC [7,20]. A
mixture of exhaled VOCs, called VOC pattern or ‘breathprint’, consists the signature of
a specific disease, correlating with the underlying pathophysiology; this pattern should
therefore be recognized so as to achieve disease diagnosis [7,17,20].

Thus, the analysis of the exhaled breath holds a great promise for non-invasive early
disease diagnosis [1,21]. Several diseases are investigated via breath analysis [7] for poten-
tial diagnosis, the main types of which are presented on Table 1. Specifically in the case
of infections by specific species or strains of bacteria, the combination of bacteria-derived
VOCs [22] and VOCs produced by the host due to immune response to bacterial antigens as
well as VOCs formed due to the host response to bacterial products/metabolites (and vice
versa) is detected. Differentiation of the origin of those VOCs is not clinically important [23].
Recently, research interest focused on the diagnosis of SARS-CoV-2 viral infection via breath
analysis with remarkable results [24–26], employing a diagnostic test, i.e., “BreFence Go
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COVID-19 Breath Test System” developed by Breathonix [27] and “TracieX Breathalyser”
developed by Silver Factory Technology, which have been already provisionally approved
by the HSA [28,29]. Apart from early diagnosis, screening of high-risk populations and
assessment of therapy efficiency can be permitted using breath analysis, due to being an
inexpensive [6] and rapid method, characterized by increased patient compliance [30].
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Figure 1. Diagram summarizing the correlation of VOCs present in the exhaled breath, with oxidative
stress and inflammatory conditions; metabolic breakdown of larger molecules leads to the formation
of exhaled VOCs. Reprinted with permission from ref. [17]. Copyright © 2012 John Wiley & Sons Ltd.

Table 1. Diseases investigated for diagnosis using breath analysis.

Disease Type Diseases Ref.

Respiratory Asthma, COPD, obstructive sleep apnea syndrome,
pulmonary arterial hypertension, cystic fibrosis [19]

Malignant Lung, gastric, head and neck, breast, colon, prostate cancer [15]

Neurodegenerative Alzheimer’s disease, Parkinson’s diseases, multiple sclerosis [15]

Metabolic Diabetes, hyperglycemia [12,31]

Bacterial infections Upper respiratory tract infection, Mycobacterium tuberculosis,
Pseudomonas, Helicobacter pylori infection [22,32]

Viral infections SARS-CoV-2 [24–26]
COPD: Chronic obstructive pulmonary disease.

For the analysis of exhaled VOCs and disease diagnosis, two different methods can be
used; analytical techniques and sensors. Gas chromatography combined with mass spec-
trometry (GC-MS) comprises the gold-standard method for the analysis of VOCs patterns
in exhaled breath [1,17,33]. Both quantitative analysis (characterized by high sensitivity
in the ppb to ppt range [1]) and qualitative analysis (providing information concerning
the potential metabolic disease pathways [33]) can be achieved [4,17]. For the detection of
very low concentrations of VOCs, the pre-concentration of the breath sample is imperative.
Pre-concentration techniques commonly combined with GC-MS include thermal desorp-
tion [31,33] (using sampling bags/sorbent tubes [33], mainly Tenax tubes [31]), headspace
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solid-phase microextraction (HS-SPME) [10,31] (using silica fibers, coated with polymeric
nanofilm, mainly Carboxen (CAR)/Polydimethylsiloxane (PDMS) [31]) and the needle trap
device [31,34] (sorbent polymer—CAR, PDMS, and/or divinylbenzene (DVB)—packed in a
needle [31]). Apart from GC-MS, selected ion flow tube-mass spectrometry (SIFT-MS), ion
mobility spectrometry (IMS), proton transfer reaction-mass spectrometry (PTR-MS) [17,35],
proton reaction transfer time-of-flight mass spectrometry (PRT-TOF-MS) [1], GC coupled
with ion mobility spectrometry (GC-IMS), and flame ionization detector (GC-FID) [31] are
also common techniques for breath analysis. However, spectrometry and spectroscopic
methods exhibit important limitations [15], such as the use of bulky and expensive equip-
ment by appropriately trained personnel, while the analysis is also time-consuming [15,36],
providing no real-time results [33]. In addition, pre-concentration methods, required before
the analysis, could potentially lead to sample loss/contamination [34,36]. Thus, despite the
advantages of those analytical techniques, their use in clinical practice for point-of-care [37]
or screening [33] is limited.

During recent years, however, sensors and e-Noses, have exhibited the prospect of
becoming strong diagnostic tools via breath analysis and are rising up to the existing clinical
challenges [34,35,37]. Gas sensors comprise inexpensive and simple [12,34,37] easy-to-use
devices that are small in size and thus portable [12,34]. In addition, short response time
and direct acquisition of results, as well as short sensor recovery time [12], render gas
sensors attractive for point-of-care and personalized screening, diagnosis, and disease
follow-up [34]. Exhaled gas-target analysis using sensors can be achieved by two different
approaches (Figure 2). In the first case, a targeted approach is applied, using a selective
mechanism [7,14]. The target is recognized by a selective chemical sensor, designed to
measure this single compound in a complex mixture, based on lock-key mechanism [7].
Such selective sensors have been developed for NO, NH3, acetone, H2O2 [6,15], H2S, and
CH3SH [15]. On the other hand, the detection of a unique gas-target pattern, rather than
a single exhaled compound, is also possible. Semi-selective/ cross-reactive sensors are
artificially intelligent nano-arrays [15] mimicking natural sensing systems [38,39] and are
also called “electronic noses” (e-Noses), “artificial olfactory systems” (gas analytes), or
“electronic tongues” (liquid analytes). The array consists of distinctive sensors that respond
to all/large part of the components of a complex mixture [38], at the same time, in a com-
plementary way [39]. Due to their diversity each individual sensor of the array responds
differently (yet not chemically selectively) to a given mixture. Statistical pattern-recognition
algorithms and classification techniques are used for the establishment of analyte-specific
response patterns, combining the responses of the sensor array elements [38]. It is worth
noting that even analytical techniques, e.g., GC-MS, are progressively used for the analysis
of total patterns of VOCs, instead of targeting a stand-alone biomarker [17].

Multivariate data analysis, a fundamental tool in breath analysis, improves the human
perception of experimental data [16]. Response data obtained after sensor array expo-
sure to a complex chemical mixture are processed by multivariate data analysis [40] in
order to assess the discriminating ability of the sensor array [16,41], as well as for the
elimination of potential confounding variables (i.e., environmental temperature and hu-
midity) [40]. Multivariate data analysis is also useful for breath analysis using analytical
techniques, permitting the identification of the most discriminant VOCs between the dif-
ferent groups studied [32]. Numerous multivariate analysis methods are used in e-Nose
systems, including canonical discriminate analysis (CDA), partial least squares regression
(PLS regression), discriminant function analysis (DFA), and principal component anal-
ysis (PCA) (Figure 3) [40]. PCA comprises the most commonly used method in e-Nose
systems [40], while DFA is also frequently used.
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Figure 2. Schematic representation of the working principle of selective sensors and artificially
intelligent cross-reactive sensor arrays. Selective sensors contain highly selective elements in order
to detect a specific gas-analyte in the presence of a composite gas-mixture. Cross-reactive arrays
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detecting analyte concentration above a critical value leads to the differentiation between sick and
healthy subjects. The response of gas-sensing arrays can be then processed by employing artificial
intelligence, machine-learning, and pattern recognition techniques. Reprinted with permission from
Ref. [6] Copyright © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 64 
 

 

  

Figure 3. Statistical analysis of the response of a nanomaterial-based, cross-reactive chemiresistor 
for real-world samples of sick and healthy subjects. The use of PCA permits the differentiation of 
the groups. Notably, relative humidity compensation reduces the dispersion of different clusters 
thereby improving the discrimination between healthy and sick subjects. Representative 2D breath-
analysis PCA plots for prostate cancer diagnosis: (a) without relative humidity compensation; (b) 
with relative humidity compensation. PCA plots for breast cancer diagnosis: (c) without relative 
humidity compensation; (d) with relative humidity compensation. Adapted with permission from 
Ref. [42] Copyright © 2012, American Chemical Society. 

2. The Role of Nanomaterials 
More recently, research interest has notably focused on the development of chemical 

sensors incorporating nanomaterials [6,46–48]. Despite their inability for qualitative anal-
ysis in complex samples and poor quantitative performance as well as humidity sensitiv-
ity and relatively short life, nanomaterial-based gas sensors possess major advantages that 
render them exceptionally promising [12]. The small dimensions of nanomaterials (typi-
cally 1–100 nm) increase their surface-to-volume ratio and the interaction sites [6,15]; those 
novel interfaces [38,49] lead to high sensor sensitivity as well as small response/recovery 
times [6,15]. Higher specificity for a desired analyte is also achieved, by sensibly selecting 
the physical/chemical properties of the nanomaterials [6,15]. Those properties are at-
tributed to the size, shape, and composition of nanomaterials [38] and can therefore be 
easily modified [6,15]. On the other hand, similar dimensions between nanomaterials and 
biomolecules render the former attractive for application in medical diagnostic devices 
[38]. Last but not least, the combination of nanomaterials with different properties (easily 
accomplished by large-scale manufacturing methods) permits a synergistic sensing ability 
for the device [6,15], along with simple, portable and energy-efficient operation [6]. As it 
will be discussed below, different nanomaterials have been used in several gas sensors for 
gas-analyte detection, as transduction elements [6]. 

2.1. Metallic Nanoparticles (MNPs) 
Noble metals (Au, Ag, Pt, Pd) possess exceptional chemical, physical and electronic 

properties [50]. They exhibit increased conductivity [13], mechanical robustness [50], oxi-
dation resistance and, thus, chemical stability [13,50]. In the form of nanoparticles (NPs), 
additional novel properties—attributed to the increased surface area and the domination 
of quantum-mechanical properties [51]—are exhibited; optical (localized surface plasmon 
resonance (LSPR) phenomenon) [36] and electrical [51] are amongst the more interesting. 
The mechanical, optical, and electrical properties of MNPs are composition, size, perio-
dicity and inter-particle distance dependent [51]. Notably, chemical environment-depend-
ence of those properties renders MNPs promising for gas-sensing [36,50]. 

MNPs are extensively investigated in gas sensors for breath analysis applications and 
are usually combined with other nanomaterials (e.g., carbon nanotubes (CNTs), graphene, 
metal oxide semiconductors (MOS)), to form more effective sensing materials, with in-
creased sensitivity and selectivity [13,36]. In addition, gas-sensor sensitivity is overall 

Figure 3. Statistical analysis of the response of a nanomaterial-based, cross-reactive chemiresistor for
real-world samples of sick and healthy subjects. The use of PCA permits the differentiation of the
groups. Notably, relative humidity compensation reduces the dispersion of different clusters thereby
improving the discrimination between healthy and sick subjects. Representative 2D breath-analysis
PCA plots for prostate cancer diagnosis: (a) without relative humidity compensation; (b) with
relative humidity compensation. PCA plots for breast cancer diagnosis: (c) without relative humidity
compensation; (d) with relative humidity compensation. Adapted with permission from Ref. [42]
Copyright © 2012, American Chemical Society.

PCA is an unsupervised learning technique in which the multidimensional data space
is reduced to its main components [16]. Linear combinations of original data (i.e., sen-
sor values) capturing the maximum variance between all data points are acquired [16,42],
leading to a reduced set of variables [41], called principal components (PCs). The differ-
entiation of the PCs maintaining most of the original data information from the PCs with
the minimum effects, which are excluded, is achieved by employing an appropriate algo-
rithm [41]. PCs define new orthogonal axes for the representation of multidimensional data
only in two or three dimensions [16,42]. Thus, a visualized statistical analysis is obtained,
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permitting discrimination of otherwise entangled data [41]. PC1 is characterized by the
greatest response variance, while the magnitudes of variance are diminished from PC2 to
PC3 and so on [16,42]. DFA is a linear supervised pattern recognition method, also used
for multidimensional experimental data reduction [43]. DFA aims to separate known data
groups to the best possible extent [44]. The determination of the discrimination classes is
conducted prior to the analysis [43]. Input variables are linearly combined to achieve the
maximum variance between classes and the minimum variance for each class [43,44]. DFA
output is a set of canonical variables (CVs) that fulfill the above two requirements. The first
CV is the most powerful discriminating dimension [43].

In order to evaluate sensor array suitability for disease diagnosis and to assess the
ability to correlate VOCs with the appropriate disease, machine learning techniques [43]
such as support vector machines (SVM), k-nearest neighbor (k-NN), and artificial neural
networks (ANN) [40] are also needed. Machine learning techniques and artificial intel-
ligence in general aim at enabling machines to mimic a specific behavior by designing
and developing algorithms based on empirical data that are representative of the relation
between the observed attributes [45]. The automated “learning” of complex patterns and
intelligent decision-making based on current data comprise one of the principal research
fields in machine learning [45] and are especially useful in the development of e-Noses
for disease diagnosis. ANN is a commonly used machine learning technique, inspired by
the human nervous system. The most discriminant sensing features are firstly determined
and comprise the input data of the ANN. The input data are connected with the output
(i.e., the classification of samples to specific disease) by the ANN, using a set of appropriate
functions. The classification from the available inputs is improved by optimizing specific
parameters, such as the number of neurons (calculation centers) that are responsible for the
system calculations [43].

A number of requirements have to be fulfilled for the use of a sensor in breath analysis
and therefore disease diagnosis. Reproducibility [6], high sensitivity, and good resolu-
tion [15], are three fundamental parameters. Low limit of detection (LOD) [13,15] (ppb [38]),
wide range of response [38], and increased selectivity are also of great importance, in order
to detect the exhaled VOCs in the presence of water vapor found in the humidified clinical
samples [15]. The stable baseline in the absence of gas-target biomarkers [6], short response,
and recovery times are imperative [13,15], while full recovery of the sensor after analyte
removal is also essential. Alternatively, disposable sensors that are simple, cost-effective,
and therefore suitable for mass-production can be used [15]. Last but not least, operation at
RT is important [38].

In the context of this fast-growing field, novel nanomaterials and sensing devices are
constantly being developed. The first part of this review aims to provide an up to date
overview of the main classes of sensors investigated for the analysis of exhaled gas-analytes
(i.e., VOCs, inorganic gases) for disease diagnosis. After highlighting the importance of
nanomaterials, examples of applications of either selective or cross-reactive self-developed
and commercial sensing devices are discussed. The second and final part of the paper
discusses and highlights the capacity of breath analysis towards differential diagnosis,
disease staging and phenotyping. There is currently a strong and urgent need for clinically
applicable, portable and non-invasive diagnostic tools that can lead to the distinction of
different diseases with similar symptoms; the current review paper evaluates the potential
of sensing devices of varying technology, as well as analytical techniques, to serve as
reliable breath analysis tools for differential diagnosis while it also discusses advantages
and weaknesses that need to be addressed.

2. The Role of Nanomaterials

More recently, research interest has notably focused on the development of chemical
sensors incorporating nanomaterials [6,46–48]. Despite their inability for qualitative analy-
sis in complex samples and poor quantitative performance as well as humidity sensitivity
and relatively short life, nanomaterial-based gas sensors possess major advantages that
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render them exceptionally promising [12]. The small dimensions of nanomaterials (typi-
cally 1–100 nm) increase their surface-to-volume ratio and the interaction sites [6,15]; those
novel interfaces [38,49] lead to high sensor sensitivity as well as small response/recovery
times [6,15]. Higher specificity for a desired analyte is also achieved, by sensibly select-
ing the physical/chemical properties of the nanomaterials [6,15]. Those properties are
attributed to the size, shape, and composition of nanomaterials [38] and can therefore be
easily modified [6,15]. On the other hand, similar dimensions between nanomaterials and
biomolecules render the former attractive for application in medical diagnostic devices [38].
Last but not least, the combination of nanomaterials with different properties (easily ac-
complished by large-scale manufacturing methods) permits a synergistic sensing ability
for the device [6,15], along with simple, portable and energy-efficient operation [6]. As it
will be discussed below, different nanomaterials have been used in several gas sensors for
gas-analyte detection, as transduction elements [6].

2.1. Metallic Nanoparticles (MNPs)

Noble metals (Au, Ag, Pt, Pd) possess exceptional chemical, physical and electronic
properties [50]. They exhibit increased conductivity [13], mechanical robustness [50],
oxidation resistance and, thus, chemical stability [13,50]. In the form of nanoparticles (NPs),
additional novel properties—attributed to the increased surface area and the domination
of quantum-mechanical properties [51]—are exhibited; optical (localized surface plasmon
resonance (LSPR) phenomenon) [36] and electrical [51] are amongst the more interesting.
The mechanical, optical, and electrical properties of MNPs are composition, size, periodicity
and inter-particle distance dependent [51]. Notably, chemical environment-dependence of
those properties renders MNPs promising for gas-sensing [36,50].

MNPs are extensively investigated in gas sensors for breath analysis applications and
are usually combined with other nanomaterials (e.g., carbon nanotubes (CNTs), graphene,
metal oxide semiconductors (MOS)), to form more effective sensing materials, with in-
creased sensitivity and selectivity [13,36]. In addition, gas-sensor sensitivity is overall
enhanced by the presence of NPs on the surface of other sensing nanomaterials, due to
defect formation on which gases can preferably adsorb. Smaller NPs lead to greater surface
area, increasing the number of defects and ultimately sensor sensitivity [52]. MNPs can
be also functionalized with a variety of organic ligands hence forming thin films with tun-
able chemical selectivity (molecularly-capped NPs, MCNPs), characterized by controllable
inter-particle distance and reproducible production [38].

2.2. Metal Oxide Semiconductors (MOS)

MOS are commonly used in different sensor types as sensing materials, for oxidizing
or reducing gas detection. Transition MOS (e.g., NiO, Cr2O3) are more efficient for gas
sensing applications than the non-transition MOS (ZnO, SnO2), due to more than one
preferred oxidation states [7]. Increased affinity of MOS for negatively charged oxygen
species (e.g., O2

−, O−), in contrast to compound semiconductors (e.g., GaAs) [53], leads to
the creation of surface-trapped charge density; in this way electron depletion layers are
formed in n-type semiconductors while hole accumulation layers are formed in p-type
semiconductors [7,53]. Gas interaction with the oxygen species alternates the surface charge
density, resulting in a resistance change [7]. Specifically, oxidation of reducing gases by the
adsorbed oxygen species leads to electron transfer towards the semiconductor surface. The
adsorption of oxidizing gases, on the other hand, leads to the removal of electrons from the
semiconductor surface [53].

N-type MOS, e.g., SnO2, ZnO, WO3, TiO2, MoO3, In2O3, and Fe2O3, as well as p-type
MOS, such as Co3O4, CuO, NiO, Cr2O3, and Mn3O4, have been used in gas sensors for dis-
ease diagnosis [53]. MOS sensitivity is affected by numerous parameters, such as morphol-
ogy, porosity, particle size, film thickness and doping of MOS, decoration with noble metals,
as well as operation temperature [54]. Consequently, various MOS based gas-sensors
of different structures (villi-like [55], nanotubes (NTs) [56], Hemi tubes [57], hierarchical
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fibers [58], nano-sheets [59], or NWs [60]), usually combined with noble MNPs [56–59],
2D-materials [57], or MOS nanoparticles [59,60] have been investigated as diagnostic tools
for a variety of diseases. Notably, in the case of semiconducting nanomaterials, CNTs,
graphene-based nanomaterials, and MOS have exhibited the highest response towards
acetone, thus holding great promise for diabetes diagnosis [53]. However, despite their
enticing applications MOS possess important limitations including high temperature oper-
ation [13] (150–500 ◦C) and confinement to single gas detection, due to lack of selectivity
towards polar-nonpolar compounds [7].

2.3. Carbon Nanotubes (CNTs)

CNTs are investigated as gas sensing materials for their interesting electrical, mechan-
ical, optical and thermal properties [13,61], as well as for their compatibility with other
nanomaterials for enhanced performance [7]. CNTs are divided into single wall CNTs
(SWCNTs) with a diameter in the range of 1–5 nm [50] and multi-wall CNTs (MWCNTs)
with a diameter in the range of 5–100 nm [7] and an interlayer spacing of 3.4 Å [50]. Con-
cerning their electrical properties, which are most commonly exploited, SWCNTs act as
metallic conductors or semiconductors (depending on the chiral angle between hexagons
and tube axis), while MWCNTs behave as metallic conductors, with current density up to
109 A/cm2 [7].

CNTs–analyte interaction may include Van der Waals or donor–acceptor interactions.
However, gas adsorption-provoked charge-transfer is the main sensing mechanism since
SWCNTs specifically can function as p-type semiconductors [7,13,50]. Oxidizing gas-
adsorption, such as NO2, decreases sensing-layer resistance, due to electron withdrawing
by the gas. In contrast, reducing analyte-adsorption, such as NH3, increases resistance [13].
Remarkably, in those cases SWCNTs act as both the sensing element and the transducer [50].

Both categories of CNTs, however, are characterized by lack of chemical selectivity,
high H2O affinity, low sensitivity for nonpolar compounds [38], and slow recovery [7]. For
this reason, functionalization is imperative. Decoration with MNPs for enhanced selectivity
is discussed in the literature [38]. More importantly, CNTs are commonly functionalized
with analyte specific entities, covalently (esterification, amidation of carboxyl groups added
to CNTs) or non-covalently (supramolecularly, via Van der Waals, and π–π interactions) [50].
Modification of CNTs with non-polymeric organic layers [38] (e.g., polycyclic aromatic
hydrocarbons [62]) or polymers [50] have been used for the development of effective
cross-reactive gas sensors as diagnostic tools via breath analysis.

2.4. Nanowires

NWs have also been investigated for gas sensing systems with SiNWs being the most
common while MOS-NWs are also used. SiNWs possess interesting optical and electrical
properties and compatibility with the technologies currently used in microelectronics [38],
acting as n-type or p-type semiconductors and with a maximum operation temperature
of 150 ◦C. Conductivity is modified depending on the nature of the gaseous analyte
(oxidizing/reducing) and the type of SiNWs (n-/p-type), while the adsorption of charged
oxygen species (O2

− at 150 ◦C) determines the NWs conductance properties [63]. VOC
polarity is of great importance while the physical adsorption of polar molecules via Van
der Waals/electrostatic interactions affects the surface potential [7,63].

Modification of SiNWs properties is feasible [7]; SiNWs doping determines sensor
sensitivity by affecting the number of charge carriers of the NWs, similarly to MOS [63].
Chemical functionalization with appropriate molecular ligands [43,64] on the other hand
enhances sensor selectivity since non-polar vapor detection by pristine SiNWs is inefficient
in contrast to polar VOCs [7]. Molecular modification also serves in the fabrication of
cross-reactive arrays for the detection of potential VOC biomarkers [38,43,65,66].
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2.5. D-Materials

2D-materials (e.g., graphene, MoS2, MoSe2, WSe2, and NbSe2) have been investigated
for gas sensor development. Their main advantage is low-power sensor operation at
RT, while they are characterized by unique electrical properties [13] and large surface-to-
volume ratio [13,67]. The latter renders 2D materials excellent candidates for gas sensing
applications [67]. Gas analyte adsorption at multiple active sites, on the edge and surface
defects of the material, changes its electronic properties. Similarly to CNTs charge-transfer
interactions comprise the basis of the gas sensing mechanism [13]. Gas adsorption changes
the resistivity of the sensor, depending on the type of gas (reducing/oxidizing) and semi-
conducting 2D-material (p-/n-type) [67].

Transition metal dichalcogenides and graphene in particular are extensively used in
gas sensing systems, facilitating disease diagnosis via breath analysis [7,53,67]. Transition
metal dichalcogenides (TMDs) (MX2, M: transition metal, X: S, Se, or Te) such as MoS2,
MoSe2, Wse2, NbSe2, [13] WS2, SnS2, and SnSe2 [68], possess great structural and optical
features [69] and tunable semiconducting properties [68] that render them promising
materials for e-Noses. TMDs are able to create flexible structures and to operate at low
temperatures; however, the increased response/recovery times and the inability to fully
recover after analyte exposure are important limitations [68]. To cope with these issues,
catalytic MNPs which also improve selectivity can be employed [68,69].

Graphene is characterized by exceptional electrical, thermal and mechanical properties,
with low resistivity of 10−6 Ω·cm at RT and large surface-area of 2630 m2/g (higher than
CNTs, 1000 m2/g [53]) being the most promising 2D material for gas sensing. Graphene
can also behave as a p-type semiconductor while chemical functionalization can be easily
achieved [7,68]. Remarkably, graphene has been used for selective rather than cross-reactive
applications. Graphene derivatives have also been used for gas sensing applications.
Graphene oxide (GO) is characterized by a lower cost of production, however its application
in electronic devices is hindered by reduced conductivity. Reduced graphene oxide (RGO)
on the other hand exhibits tunable conductivity along with greater gas responses than
graphene since the presence of oxygen functional groups enhances gas adsorption [67,68].
It is noteworthy that the use of RGO-based gas sensors needs further investigation as the
underlying gas-oxygen groups interactions are yet to be explained [53].

2D materials are usually combined with various nanomaterials, for enhanced sens-
ing [7]. The poor sensing performance of pristine 2D materials is primarily attributed to the
weak interactions between the adsorbed molecules and the sensing layer [13]. Graphene
and RGO combined with MOS [57,70] and MNPs [59] may serve in the development of gas
sensing diagnostic tools.

2.6. Hybrid Materials

The combination of distinctive nanomaterials so as to form hybrid materials is exten-
sively investigated for disease diagnosis via gas-sensing, as previously discussed. The
combination of different nanomaterials improves sensing selectivity and sensitivity [7,13,38]
due to their synergic action, rendering hybrid materials particularly promising [49]. Com-
binations of CNTs with MNPs, 2D materials with MOS or MNPs as well as MNPs [41,71],
MOS NPs, or CNTs with polymers are only some of the reported combinations [7]. Par-
ticularly polymers are commonly used for achieving chemical selectivity. Concerning
(semi-)conducting polymers (e.g., polyaniline, polypyrrole, polythiophene), conductivity
changes can be attributed to electrically-active analyte adsorption, due to redox interactions
with either the backbone or the incorporated particles in the case of composites [50]. Non-
conducting polymers are also used as sensing films, incorporating conductive NPs such as
CNTs [50] or carbon black particles [72] for semi-selective analyte absorption; this leads
to mass/conductivity changes of the polymeric nano-composites. Finally, molecularly im-
printed polymers (MIPs) are a new class of sensing films in which artificial analyte-specific
cavities have been created, for specific molecular recognition [73,74].



Sensors 2022, 22, 1238 10 of 57

3. Types of Nanomaterial-Based Sensors in Breath Analysis

Different sensor types have exhibited promising diagnostic ability via breath analy-
sis [7]. In the following part nanomaterial-based gas sensors are categorized depending on
the transduction method. Examples of both selective and cross-reactive applications are
presented, in an attempt to provide an up-to-date overview.

3.1. Chemiresistors

Chemiresistors are one of the most promising types of gas-sensors. They are character-
ized by simple configuration and working principle [13], increased reliability, decreased
size and weight, while they are suitable for automatic packaging in wafer level thus permit-
ting the mass-production of portable, on-chip sensor arrays [51]. Two pairs of electrodes
are connected with an overlying sensing layer that is either semiconducting or metallic.
Interdigitated electrodes (IDEs) are commonly used for enhanced sensing response [13].
Sensor-resistance changes upon gas exposure, while constant current/potential is applied
between the two electrodes [13,51]. Quantitative analysis of the analytes is possible by
measuring the change of resistance/current [13]. A schematic representation of typical
chemiresistors is presented in Figure 4.
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Figure 4. Schematic representation of (A) a chemiresistor under a constant bias and with an overlying
metallic or semiconducting sensing layer which acts as the sensitive gas-sensing layer; (B) a field-
effect transistor where the conductivity of the channel is sensitive to gas-analytes exposure; (C) an
electrochemical sensor (potentiometric, amperometric, or conductometric) composed of a working
(sensing) electrode on which the analyte reacts (redox reaction), a counter electrode (with respect to
which electrical signal is measured) and a reference electrode of “reference” potential. Reprinted with
permission from Ref. [13] Copyright © 2021 Wiley-VCH GmbH.

3.1.1. Selective Applications

Concerning single analyte detection, nanomaterial-based sensing films such as MOS,
CNTs and hybrid materials are commonly used. MOS-based chemiresistors, in particular,
(e.g., WO3 [55], SnO2, or Cu2O [36]) are common in the detection of oxidizing/reducing
gases [75]. Moon et al. [55] used a chemiresistive porous thin film composed of villi-like
WO3 structures and achieved selective and sensitive detection of the asthma biomarker NO
in presence of ethanol, acetone, NH3 and CO (80% relative humidity (RH)) at 150–250 ◦C,
with a LOD of 88 ppt which is far lower than exhaled NO. Selective arrays of MOS sensors
have been also used; highly porous Pt, Si, Pd, or Ti doped SnO2 NPs have selectively
detected low levels of formaldehyde (3 ppb) in 90% RH, as well as in synthetic breath
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samples containing acetone, ethanol and NH3, aiming at LC diagnosis [76]. Concerning
CNT-based chemiresistors, NO2 selective detection has been reported, using a random or
an aligned network of SWCNT, with the former achieving a lower LOD in the range of
ppt [77]. Ethanol detection by vertically-aligned CNTs has also been achieved [78].

Among hybrid materials, MNPs-functionalized nanomaterials are commonly inves-
tigated. Highly porous thin-wall SnO2 fibers of hierarchical structure composed of Pt
NPs-decorated SnO2 NTs, have been investigated for acetone and toluene detection as
diabetes and LC biomarkers respectively; increased sensor responses for both analytes
were permitted, due to MNPs-functionalization [58]. More recently, Pt-decorated Zn2SnO4
hollow octahedra were used for enhanced selective detection of acetone, in ppb levels, ade-
quate for breath analysis applications and diabetes diagnosis [79]. In another application,
Au NPs-decorated SWCNTs were used for selective detection of H2S (halitosis biomarker)
in the presence of NH3 and NO, with a LOD of 3 ppb [80]. Au NPs functionalization
permitted increased sensitivity for the desired analyte [80].

Other types of combinations of nanomaterials, including MOS, CNTs, or 2D mate-
rials, have been also studied. The respective halitosis and diabetes biomarkers H2S and
acetone for example, have been detected using rGO nanosheets-functionalized SnO2 NFs
with increased selectivity and sensitivity [81] as well as using GO-WO3 and thin-layer
graphite-WO3 Hemi tubes in the presence of CO, NH3, NO, ethanol, and pentane; high re-
sponsiveness and sensitivity and a lower LOD for H2S were achieved in the latter study [57].
The combination of graphene derivatives with conducting polymers was also reported;
porous and mechanically improved films composed of GO and polypyrene for instance,
have been used for rapid toluene detection [82]. In the field of CNTs-based hybrid materials,
SWCNTs were recently combined with porphyrin-based NFs to form a nano-composite
of 1D nano-architecture that permitted the selective detection of H2O2, in the simultane-
ous presence of various gases and VOCs. The enhanced sensitivity, reproducibility, and
responsiveness, rendered the sensing film promising for cancer, traumatic brain injury,
chronic obstructive pulmonary disease (COPD), and asthma diagnosis [83]. The combina-
tion of CNTs with conducting polymers has been reported as well, especially for selective
detection of ammonia. Such sensors employ carboxylated-MWCNTs-polypyrrole [84] or
polyaniline-MWCNTs nano-composites featuring increased sensitivity in the presence of
H2S, NO2 acetone, ethanol, and isoprene [85].

3.1.2. Cross-Reactive Applications

Apart from selective applications, chemiresistors have also been extensively investi-
gated for the development of sensor arrays and cross-reactive devices. MOS have been
used as components of such sensing systems. Arrays of commercial MOS sensors (TGS),
have been used by Binson et al. [86,87] and Marzorati et al. [88] for the differentiation of
LC [86–88] and COPD patients from HC, with high accuracies (Table 2). Interestingly, LC
diagnosis using an array of TGS sensors has been reported in the literature; notably, 85 real-
world breath samples of LC patients have been used, aiming not only at the discrimination
between LC and HC but also at before- and after-surgery patients [89]. The aforementioned
system could potentially comprise a promising diagnostic and prognostic tool after LC
resection surgery, since it was shown that HC and operated patients’ breath-prints con-
verged over time Table 2 [89]. It is noteworthy that commercial MOS-based chemiresistive
e-Noses have been developed and studied for breath analysis and diagnosis. “Common
Invent e-Nose”, for instance, has been used for asthma phenotyping and exacerbation
prediction [90], while “SpiroNose” [91] and “AeoNose®” [92] have been used for asthma,
COPD and LC patients and COPD, LC patients and HC differentiation, respectively. “Di-
agNose”, composed of 12 different doped MOS-sensors, comprises another promising
example since it managed to differentiate 10 individuals through their breath samples [93].
Self-developed MOS-chemiresistors, in the form of pellets, based on a mixture of SnO2
and ZnO nano-powders (9:1) have been effectively used for asthma diagnosis; however,
a small number of subjects was included [94]. The combination of various materials for
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sensor-array development was also reported; an on-chip array of parallel ZnO, Pd, and
polypyrrole single NWs for instance has been used for BC biomarkers, permitting increased
responsiveness and sensitivity as well as total discrimination of the volatile biomarkers
(Table 2) [95].

However, hybrid materials comprise the most extensively used materials for chemire-
sistive sensor arrays. Noble metal-functionalized MOS have been broadly studied. Halitosis
diagnosis using an array of pristine and Pt NPs-decorated WO3 macroporous NFs com-
prises a representative example (Table 2); increased responses towards H2S were achieved
by the 0.042 wt% Pt NPs-WO3 NFs [96]. PCA successfully discriminated H2S, acetone,
toluene, and methyl mercaptan vapors, while real-breath samples of healthy controls (HC)
and simulated halitosis breath were effectively classified [96]. Similarly, an array of pris-
tine Au NPs (1/3 nm) decorated with vertically ordered hematite NTs, has been studied
for acetone detection; the desired analyte led to far greater responses, while the studied
vapors (acetone, ethanol, CO, H2, NH3, toluene, and benzene) were differentiated using
PCA [97]. The theoretical acetone LOD of 304 ppt renders Au NPs-Fe2O3 NTs-based sensor
particularly promising for diabetes diagnosis. Cross-sensitivity towards NO and toluene
using pristine WO3 NTs (with increased selectivity for NO) and catalyst (Pt and Pd) deco-
rated WO3 NTs (more selective for toluene) has been also achieved, holding great promise
for asthma and LC diagnosis via breath analysis [56]. The development of halitosis and
diabetes diagnostic sensors has been attempted by the same group using cross-sensitive,
pristine, thin-walled, and Pt NPs-decorated WO3 Hemi tubes, with increased sensitivity
towards H2S and acetone respectively [98]. More recently, a 2 × 4 array of sensors based
on pristine Pt, Pd, or Au NPs decorated In2O3 and WO3 nano-rods (NRs), was investigated
for the detection of acetone, NO, and H2S as diabetes, asthma, and halitosis biomarkers.
This achieved low LOD and visual discrimination between the three analytes using polar
plots (Figure 5); however, further statistical analysis is required [99]. The same group has
also developed a 3 × 3 sensor array based on WO3, SnO2, or In2O3-based thin films, Au
NPs-decorated thin films and Au NP-decorated villi-like structures; the array efficiently
discriminated ppt levels of H2S and ppb levels of NH3 and NO in 80% of RH, being poten-
tially applicable to halitosis, renal disorder, and asthma diagnosis, respectively [100]. The
notable sensor sensitivity was attributed to the increased surface-to-volume ratio created
by the Au NPs and the highly porous villi-like structure [100].

Apart from MNPs-decorated MOS, other promising types of hybrid materials have
been studied; MOS for instance have been combined with graphene derivatives. An e-Nose
based on graphene-doped TiO2, NFs, and nano-ribbons was recently developed for ethanol,
acetone, CO and NO detection, common biomarkers for Staphylococcus aureus infection,
diabetes, asthma, COPD, and cystic fibrosis (CF), respectively [101]. Breath-simulating
samples of different VOCs-concentrations (respective to HC and patients of a selected
disease) have also been studied, leading to effective discrimination of VOC concentrations.
In another attempt for the development of an e-Nose, molecularly functionalized rGO
layers with different amine-ligands, have been used for the discrimination of exhaled cancer
biomarkers ethanol, 2-ethylhexanol, nonanal, and ethyl benzene [102]. The molecular lig-
ands, serving as the organic sensing film, alter the adsorption capacity and conductivity of
the rGO. Concerning CNTs-based cross-reactive sensor arrays, calixarene functionalization
has permitted the detection of aromatic compounds (toluene, benzene, ethyl benzene, and
xylenes) with high sensitivity [103]. Decoration with Au (1.5 nm), Pd (0.2 nm), and Cr
(1.0 nm) has been used along with a pristine sensor element to effectively distinguish NH3,
ethanol, CO, and CO2 using PCA [104]. Remarkably, in a more recent study, an array of
nylon fibers wrapped with SWCNTs, MWCNTs, and ZnO QDs-SWCNTs has been devel-
oped as a flexible wearable sensor to be incorporated in face masks. Detection and effective
discrimination of NH3, ethanol, and formaldehyde [105], and common disease biomarkers
(ethanol [101], formaldehyde [106], NH3 [7]) was achieved [7]. SWCNTs-functionalization
with semiconducting organic polymers, monomers or oligomers is also reported, espe-
cially for real-world sample experiments, discriminating successfully COPD patients from
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HC as well as selected analytes; however, larger clinical trials remain to be conducted
(Table 2) [107].
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The most common types of hybrid sensing layers are those composed of a conductive
inorganic material, surrounded by an organic functional film where the gaseous analytes are
adsorbed therefore changing the conductivity of the device [15]. CNTs, MNPs (e.g., Au) [15],
or carbon black [15,108] can be used as the conductive part while non-conducting molecular
ligands (MCNPs) [51,108,109] or polymers [110] as the organic one. Such sensors offer
the prospect of cross-reactive sensor-array development since the organic part is selected
based on the chemical and physical properties of the VOCs [16]. Upon sensor exposure to
gaseous biomarkers, the latter diffuse into the organic layer interacting with its functional
groups [15]. Those interactions cause swelling of the organic matrix [15], posing a stress to
the underlying NPs layer [41], thus increasing the inter-particle distance of the conducting
NPs and the measured resistance [6]. In addition, the relative dielectric constants of the
VOCs and the organic layer, all of which affect the permittivity of the organic matrix,
change the measured resistance [6].

Molecularly-functionalized conducting nanomaterials have been extensively investi-
gated for the cross-reactive detection of VOCs by Haick et al. Molecularly-capped Au NPs
and molecularly-coated random SWCNTs networks have been successfully developed for
exhaled VOCs-biomarkers detection using real-world samples, usually in combination with
chromatographic analysis of breath samples. Irritable bowel syndrome disease (IBS) [111],
ovarian [44], colon, lung, gastric [16,112], breast and prostate cancer [16,42], chronic kidney
diseases (CKD) [113], multiple sclerosis [62], Alzheimer’s and Parkinson’s diseases [15,114]
have been effectively diagnosed with such chemiresistors. In the case of multiple sclerosis
e.g., PAH-coated SWCNTs sensor-arrays have exhibited sensitivity, specificity and accuracy
percentages comparable to those of invasive and expensive techniques such as MRI and
cerebrospinal fluid electrophoresis [62]. VOCs targeted for the diseases mentioned above
are presented on Table 2. In a remarkable application of a MCNPs/SWCNTs-based chemire-
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sistor array (20 sensors), 17 different diseases (Table 2) were successfully discriminated,
with 86% accuracy, based on the detection of a pattern of only 13 VOC whose concentra-
tion differed significantly between HC and/or different diseases [115]. More recently, a
MCNPs-based chemiresistor was developed for COVID-19 detection, with remarkable
diagnostic accuracy over healthy and non-COVID infected subjects [24]. Despite the fact
that targeted VOCs were not listed in this study, the most notable VOCs for COVID-19 are
probably methylpent-2-enal, 2,4-octadiene, 1-chloroheptane, and nonanal (10–250 ppb) [25].
Interestingly, a tailor-made nanoscale artificial nose (NA-NOSE), based on this type of
sensing films, has been developed by Haick et al. [116]. NA-NOSE is composed of seven
cross-reactive MCNPs-layers with different ligands, from which 6 are composed of spheri-
cal Au NPs and 1 of cubic Pt NPs. NA-NOSE seems to be promising for breath analysis, as
it has been effectively used, e.g., for BC diagnosis [116]. Molecularly-modified Au, Pt, and
Cu NPs have been used for the development of a 6-sensors array, to effectively diagnose
the infectious disease human cutaneous Leishmaniasis with a 98.2% accuracy, after identify-
ing 9 potential biomarkers using GC/quadruple-TOF [109]. A representative example of
MCNPs-based chemiresistors is presented in Figure 6.
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Figure 6. Schematic representation of a MCNPs-based chemiresistor, programmed according to the
VOCs identified as inflammatory bowel and irritable bowel syndrome disease biomarkers. The sensor
was exposed to simulated, HC and patient breath samples. Time-dependent and reversible shift in
the sensor’s resistance is associated with the MCNPs–VOCs interactions. The variability of molecular
ligands leads to varying sensing responses; pattern recognition methods such as ANN, permit the
development of effective diagnostic classifiers. Reprinted with permission from ref. [111]. Copyright
© 2016 WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim.

The size, composition, inter-particle distance, and periodicity of the NPs as well as the
aggregate thermal stability of such sensors are essential yet easily controlled parameters [51].
However, one major drawback is humidity cross-sensitivity which is a major component of
exhaled breath. Thus, sensor reliability and reproducibility for real samples analysis is of
major concern. Humidity compensation is proposed as an effective solution, enhancing the
diagnostic ability of the sensor [42].

Remarkably, hybrid composites based on polymers seem particularly promising as
well. One of the most commonly studied commercial e-Noses i.e., Cyranose 320, consists of
32 chemiresistors based on composites of carbon black conducting particles and different
polymeric films [117,118]. Cyranose 320 has been effectively used amongst others, for the
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discrimination of asthma [119], COPD [120], BC [121], or pneumonia [122] patients from
HC. Among self-developed sensor arrays, CNTs combined with 5 different polymers have
permitted the effective differentiation of 9 VOCs as LC potential biomarkers using PCA
analysis (Table 2) [110]. Notably, the combinations of MNPs with polymers, apart from
molecular organic ligands, comprise a promising type of coating materials for chemical
cross-selectivity to be achieved. Chemically unmodified MNPs (Pt [48,123] or Au [71] of
mean diameter 4–5 nm [41,48,123]), coated with different polymeric films and with affinity
for different compounds, have been investigated along with pattern recognition methods
for pesticide detection [41] and more recently pesticide discrimination (chlorpyrifos, bupiri-
mate, and humidity) [124]. The sensing film is deposited on Au IDEs [41] while the device
can be fabricated on rigid (e.g., oxidized Si wafer) [41,48] or flexible (e.g., polyimide) [123]
substrate as can be seen in Figure 7. Such sensors could be particularly promising for
disease diagnosis applications, as semi-selective sensors of exhaled VOCs.
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Figure 7. (a) SEM image of an array of polymer-coated PtNPs-based chemiresistors, developed for
pesticide detection, TEM image of PtNPs layer, with surface coverage 46% and mean nanoparticle
diameter of 5 nm; (b) schematic representation of the sensor array. Different polymer susceptibility
towards water/pesticide vapors leads to a gas-sensing array that is capable of identifying each of the
gas-analytes. Reprinted with permission from Ref. [41] Copyright © 2018 Elsevier Ltd.
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Table 2. Sensor arrays for exhaled VOCs detection as biomarkers of several diseases, in real-world or synthetic samples, using conventional materials and/
or nanomaterials.

Sensing Element Disease Targeted VOCs LOD Subjects Classifier Results T Ref.

In Vivo Studies—Real-World Samples

Chemiresistor—arrays

Molecularly capped
AuNPs—

14 different
ligands

Lung cancer
1-Methyl-4-(1-methyl ethyl) benzene, Toluene, 3,3-Dimethyl pentane,

2,3,4-Trimethyl hexane, Dodecane,
1,1′-1-Butenylidene)bis benzene

NA
30 LC, 26 CC,
22 BC, 18 PC,

22 HC
PCA

Good discrimination of
cancer types from HC,
but not between them.

No VOC overlap in
abundance between HC

and cancer patients.

RT [16]

Colorectal
cancer

1,1′-(1-Butenylidene)bis benzene,
1,3-Dimethyl benzene, 1-Iodo nonane, (1,1-Dimethylethyl)thio acetic

acid,
4-(4-Propylcyclohexyl)-4′-cyano1,1′-biphenyl-4-yl ester benzoic acid,

2-Amino-5-isopropyl-8-methyl-1-azulene carbonitrile

Breast cancer
3,3-Dimethyl pentane, 2-Amino-5-isopropyl-8-methyl-1-azulene
carbonitrile, 5-(2-Methylpropyl)nonane, 2,3,4-Trimethyl decane,

6-Ethyl-3-octyl ester 2-trifluoromethyl benzoic acid

Prostate
cancer

Toluene, 2-Amino-5-isopropyl-8-methyl-1-azulene carbonitrile,
2,2-Dimethyl decane, p-Xylene

Molecularly capped
AuNPs—7 different

ligands

Prostate
cancer

Toluene, 2-Amino-5-isopropyl-8-methyl-1-azulene carbonitrile,
2,2-Dimethyl decane, p-Xylene

NA

9 PC, 10 HC

DFA

100% specificity,
100% sensitivity

RT [42]
Breast cancer

3,3-Dimethyl pentane, 2-Amino-5-isopropyl-8-methyl-1-azulene
carbonitrile, 5-(2-Methylpropyl)nonane, 2,3,4-Trimethyl decane,

6-Ethyl-3-octyl ester 2-trifluoromethyl benzoic acid
10 BC, 11 HC 100% sensitivity,

95% specificity

Molecularly capped
AuNPs—3 different

ligands

Chronic
kidney disease

healthy vs. stage 2: Isoprene, Acetone, Styrene, Toluene, 2-Butatone,
2,2,6-Trimethyl octane, 2,4-Dimethyl heptane

Stage 2 vs. 3: Isoprene, Acetone, 2,2,6-Trimethyl octane, 2-Butatone,
2,4-Dimethyl heptane

Stage 3 vs. 4: Acetone, Ethylene Glycol, Acetoin

1–5 ppb 42 CKD, 20 HC SVM

79% accuracy early-stage
CKD vs. HC

85% accuracy CKD stage
4 vs. stage 5

RT [113]

Molecularly capped
AuNPs—5 different

ligands

Ovarian
cancer

Styrene, Nonanal, 2-Ethylhexanol,
3-Heptanone, Decanal, Hexadecane ppb level 17 OV, 26 HC DFA 82% accuracy RT [44]

Molecularly capped
AuNPs—8 different

ligands
COVID-19 NA NA

49 COVID-19,
33 non-COVID

symptomatic, 58
HC

DFA

76% accuracy COVID-19
vs. HC

95% accuracy COVID-19
vs. non-COVID

symptomatic

RT [24]
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Table 2. Cont.

Sensing Element Disease Targeted VOCs LOD Subjects Classifier Results T Ref.

PAH-coated random
SWCNTs network—

4 different
PAHs

Multiple
sclerosis Hexanal, 5-Methyl-undecane NA 37 MS, 18 HC DFA 80.4% accuracy RT [62]

Molecularly caped
AuNPs/CDs-coated
random SWCNTs

network—
20 different sensing

films

Alzheimer’s
and

Parkinson’s
disease

24 VOCs 1–5 ppb 15 AD, 30 PD,
12 HC DFA

85% accuracy AD vs. HC
78% accuracy PD vs. HC
84% accuracy AD vs. PD

RT [114]

Molecularly caped
AuNPs/PAH-coated

random SWCNTs
network—

20 different sensing
films

17 diseases
(LC, CC, HNC,
OC, BLC, PC,
KC, GC, CD,
UC, IBS, IPD,
MS, PDISM,

PH, PET,
CKD)

2-Ethylhexanol, 3-Methylhexane,
5-Ethyl-3-methyloctane, Acetone, Ethanol, Ethyl acetate, Ethyl benzene,

Isononane, Isoprene, Nonanal, Styrene, Toluene, Undecane
10 ppb

813 any of
17 diseases,

591 HC

DFA,
HCA 86% average accuracy RT [115]

Ligand capped Au,
Pt, and

CuNPs—6 different
sensing films

Human
cutaneous

leishmaniasis

2,2,4-trimethyl pentane, 4-methyl-2-ethyl-1-pentanol, methyl vinyl
ketone, nonane, 2,3,5-trimethyl hexane,

hydroxy-2,4,6-trimethyl-5-(3-methyl-2 butenyl)cyclohexyl) methyl
acetate, 3-ethyl-3-methyl heptane, octane,
2-methyl-6-methylene-octa-1,7-dien-3-ol

NA 28 HCL, 32 HC PCA, DFA
98.2% accuracy, 96.4%

sensitivity, 100%
specificity

RT [109]

pristine, COOH-,
Hex-4T-

Hex/DNA/oligomers,
PTCDA/TAPC/TCTA
monomers or PANI-

functionalized
SWCNTs

COPD NH3, NO2, H2S, benzene, 2-propanol, acetone, ethanol, sodium
hypochlorite, water sub-ppb 12 COPD, 9 HC PCA

Acetone, ethanol and
2-propanol selective
PANI-, TAPC- and

COOH-CNTs,
respectively.

NO2 relevant driver of
real-samples
classification.

Larger clinical trials
needed.

RT [107]

Pristine WO3,
0.008 wt %

and 0.042 wt %
Pt-WO3

macroporous NFs

Halitosis H2S and Methyl mercaptan
(in presence of Toluene and Acetone) sub-ppm

4 simulated
halitosis breath

samples (1 ppm),
4 HC

PCA Successful classification 350 ◦C [96]
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Table 2. Cont.

Sensing Element Disease Targeted VOCs LOD Subjects Classifier Results T Ref.

7 different
commercial MOS Lung cancer Ethyl benzene, 4-Methyl octane,

Undecane, 2,3,4-trimethyl hexane
Down to a
few ppb

37 NSCLC
(81.1% I, II),

48 HC
PCA

75% accuracy
Promising prognostic
tool after LC resection

surgery

300 ◦C [89]

5 different
commercial MOS

Lung cancer,
COPD NA NA 32 LC, 38 COPD,

72 HC

PCA,
SVM,

k-nearest
neighbors

LC vs. HC: 91.3%
accuracy, 84.4%

sensitivity and 94.4%
specificity

COPD vs. HC: 90.9%
accuracy, 81.6%

sensitivity and 95.8%
specificity

NA [87]

Field Effect Transistor (FET)—arrays

Molecularly
modified SiNWs Gastric cancer 2-Propenenitril, Furfural,

6-Methyl-5-heptene-2-one
Down to a
few ppb 30 GC, 77 HC DFA >85% accuracy RT [125]

Molecularly
modified SiNWs

Gastric cancer 2-Propenenitril, Furfural,
6-Methyl-5-heptene-2-one

Down to a
few ppb

149 LC, 40 GC,
56 Asthma/COPD,

129 HC

DFA,
ANN

>80% accuracy RT [43]
Lung cancer Heptane, Decane, 2-Methyl pentane,

2-Ethyl-1-hexanol, Propanal, Pentanal, Acetone

Asthma/COPD Pentane

Electrochemical sensor

Commercial NO,
CO sensors, carbon

electrode with
linear-aldehyde
selective porous

poly
tetrafluoroethylene

membrane

Diabetes

NO, CO, Formaldehyde, Acrolein, Propanal, Crotonaldehyde, Butanal,
Pentanal, Hexanal, Heptanal, Octanal, Nonanal, Decanal,

Acetaldehyde
Low ppb

15 diabetic,
14 HC

LC vs. HC, diabetic vs. HC
Cross-sensitivity for

aldehyde sensor:
Moderate for high level

of ethanol and
isopropanol/Weak for

H2S, NO, methanol,
3-heptanone/None for

NO2, propofol, isoprene,
or acetone

RT [126]

Lung cancer 3 LC, 3 smokers,
3 HC
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Table 2. Cont.

Sensing Element Disease Targeted VOCs LOD Subjects Classifier Results T Ref.

Optical—Colorimetric sensor arrays

24 chemically
reactive colorants Lung cancer NA Low ppm 92 LC, 137 HC LPM

Accuracy 81.1% LC vs.
HC,

82.5–89% one histology
vs. HC,

86.4% ADC vs. SCC

RT [127]

Optical sensors

PMTFP-coated
optical fiber

Vit. E
deficiency Ethane

pmol/L 20 HC NA NA RT [128]

Liver diseases,
Schizophrenia,
Breast cancer,
Rheumatoid

Arthritis

Pentane

Lung cancer Heptane, Octane, Decane, Benzene, Toluene, Styrene

Piezoelectric (SAW) sensor arrays

GC-column/
Polyisobutylene-

coated SAW,
non-coated SAW

sensors

Lung cancer
Styrene, Decane, Isoprene, Benzene, Undecane, 1-Hexene, Hexanal,

Propyl benzene, Heptanal, 1,2,4-Trimethyl benzene, Methyl
cyclopentane

500 ppb
20 LC, 15 HC,

7 chronic
bronchitis

ANN 80% sensitivity and
specificity RT [6,129]

Piezoelectric (QCM) sensor arrays

7 different
metalloporphyrins COPD NA NA

5 COPD per
GOLD stage (20),

5 HC
PLS-DA

Fair repeatability of
measurements within
HC and hypoxemic

COPD patients (stage 4)
Potential COPD severity

assessment

RT [130]

8 different
metalloporphyrins Asthma NA NA 27 asthma, 24

HC PCA, FNN 87.5% accuracy RT [131]

8 different
metalloporphyrins Lung cancer NA NA 20 LC, 10 HC PLS-DA

85% accuracy LC vs. HC
75% accuracy ADC vs.

SCC
RT [132]
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Table 2. Cont.

Sensing Element Disease Targeted VOCs LOD Subjects Classifier Results T Ref.

8 different
metalloporphyrins Lung cancer NA NA 70 LC, 76 HC PLS-DA 81% sensitivity,

100% specificity RT [133]

8 different
metalloporphyrins Tuberculosis NA NA

51 TB
(31/51 +HIV),

20 HC

PCA,
k-nearest
neighbors

94.1% sensitivity,
90% specificity RT [134]

7 different
metalloporphyrins Halitosis H2S, Butyric acid, Valeric acid 10–15 ppb Oral malodor

subjects, HC PCA PC1 78% of data variance 50 ◦C [135]

8 different
anthocyanins Asthma NA NA 15 asthma,

27 HC
Factor

Analysis

75% of total variance
Repeatability similar to

spirometry and eNO
RT [136]

In vitro studies—Cell lines/Synthetic samples

Chemiresistor arrays

CNT-conductive
polymer

nanocomposites—
5 different
polymers

Lung cancer Isopropanol, Tetrahydrofuran, Dichloromethane, Toluene, n-Heptane,
Cyclohexane, Methanol, Ethanol, Water NA PCA

High sensitivity and
selectivity for all the

analytes,
PC1-PC3 98% of total

variance, except the two
alkanes

RT [110]

Pristine rGO and
rGO functionalized

with 8 different
amine

ligands—9 elements

Cancer Ethanol, 2-Ethylhexanol, Ethyl benzene, Nonanal 25 ppm NA PCA

Successful
discrimination of VOCs
The LOD and the effect
of humidity have to be

decreased

RT [102]

Pristine Pd, ZnO
and polypyrrole

NWs
Breast cancer

Heptanal 8.98 ppm

NA PCA
73.2% PC1 variance
High sensitivity and

specificity
RT [95]

Acetophenone 798 ppb

2-Propanol 129.5 ppm

Isopropyl myristate 134 ppm

Pristine In2O3 and
WO3 NRs, Au, Pt, or

Pd NPs-decorated
In2O3 and WO3

NRs—8 elements

Diabetes Acetone 1.48 ppb

NA Polar plot

Effective visual
discrimination between

the gases.
Future PCA, DFA, HCA

analysis.

150–300 ◦C [99]
Asthma NO2 1.9 ppt

Halitosis H2S 2.47 ppb
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Table 2. Cont.

Sensing Element Disease Targeted VOCs LOD Subjects Classifier Results T Ref.

WO3 NTs
Pt NPs—WO3 NTs,
Pd NPs—WO3 NTs

Asthma NO 50 ppb

NA NA NA

350 ◦C

[56]
Lung cancer Toluene 100 ppb 400 ◦C

Pristine, 0.1% wt
GO- and 0.1 wt %

thin layered
graphite WO3 Hemi

tubes

Diabetes Acetone

1 ppm NA NA NA 350 ◦C [57]
Halitosis H2S

Electrochemical sensor

MWCNTs/Au-Ag
NPs/GCE

Gastric cancer

3-Octanone 0.3 ppb MGC-803 GC
and GES-1

gastric mucosa
cell lines

NA

Easy cell line
discrimination, high

sensitivity, good VOCs
selectivity in presence of
CO2, acetone and ethanol

RT [137]

Butanone 0.5 ppb

SiNWs-rGO Infectious
diseases

Cyclohexane, Formaldehyde in presence of Methanol, Ethanol,
Acetonitrile, Acetaldehyde and humidity 1 ppm NA

Novel electrode platform
with increased sensitivity,

selectivity and
repeatability

[106]

Piezoelectric (SAW) sensor arrays

SH-Calix4arene,
AuNRs, AgNCs,

Calix4arene-
AuNRs,

Calix4arene-AgNCs

Lung cancer Chloroform, Toluene, Isoprene, Acetone, n-Hexane, Ethanol

1.52–12.34 ppm
for CHCl3

1.54–2.64 ppm
for toluene

NA NA

Sensitivity ↑ for all VOCs
Chloroform, toluene: 6–8
times higher sensitivity

than individual
responses

Selectivity ↑:
modified AuNRs for

CHCl3,
modified AgNCs for

Toluene

RT [49]

Pristine or AuNPs-
functionalized

zeolitic-imidazole-
framework

nanocrystals (ZIF-8,
ZIF-67)

Diabetes Acetone, Ammonia, Ethanol

acetone
1.1–3.6 ppm,

ethanol
0.5–3 ppm

NH3
1.6–3.2 ppm

NA PCA Effective discrimination
of diabetes biomarkers RT [138]
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Table 2. Cont.

Sensing Element Disease Targeted VOCs LOD Subjects Classifier Results T Ref.

Piezoelectric (QCM) sensor arrays

TiO2-MWCNTS
and Cobalt (II)

phthalocyanine-
silica on Au

layers

Diabetes Acetone 4.33 ppm

NA NA High sensitivity RT [139]
Asthma NO 5.75 ppb

Optical—Colorimetric arrays

36 chemically
responsive dyes

(porphyrin
derivatives,

NaFluo)

Lung cancer p-Xylene, Styrene, Isoprene, Hexanal 50 ppb NA
HCA,
PCA,

BPNN

100% accuracy of kind
and concentration

discrimination,
promising for

real-sample experiments

RT [140]

AuNRs-modified
metalloporphyrins
and pH responsive

dyes—36 spots

Lung cancer Decane, Undecane, Hexanal, Heptanal, 1,2,4-Trimethylbenzene,
Benzene <1 ppm NA PCA,

HCA

64.2% accuracy of
structurally similar

VOCs, 93%
photoprotection of

metalloporphyrins, ↑
repeatability and

long-term stability

RT [141]

AD: Alzheimer’s Disease, ADC: Adenocarcinoma, ANN: Artificial Neural Network, BC: Breast cancer, BLC: Bladder cancer, BPNN: Back-Propagation Neural Network, BUN: Blood
urea nitrogen, CC: Colorectal cancer, CD: Crohn’s Disease, CDs: Cyclodextrin derivatives, CKD: Chronic Kidney Disease, COPD: Chronic Obstructive Pulmonary Disease, DFA:
Discriminant Function Analysis, FNN: Feet-forward Neural Network, GC: Gastric cancer, GCE: Glass Carbon Electrode, GOLD: Global Initiative for Obstructive Lung Disease, HC:
Healthy control, HCA: Hierarchical Cluster Analysis, HNC: Head and Neck cancer, IBS: Irritable bowel syndrome, IPD: Idiopathic Parkinson’s disease, KC: Kidney cancer, LC: Lung
cancer, LOD: Limit of Detection, LPM: Logistic prediction model, MLP: Multi-layer Perceptron, MS: Multiple Sclerosis, MWCNTs: Multi-wall carbon nanotubes, NA: Not Applicable,
NaFluo: sodium fluorescein, NCs: Nanocubes, NFs: Nanofibers, NPs: Nanoparticles, NRs: Nanorods, NSCLC: Non-small Cell Lung Carcinoma, OC: Ovarian cancer, PAH: Polycyclic
aromatic hydrocarbons, PC: Prostate cancer, PCA: Principal Component Analysis, PD: Parkinson’s Disease, PDISM: Atypical Parkinsonism, PET: Pre-eclampsia toxemia, PH: Pulmonary
Hypertension, PLS-DA: Partial Least Square Discriminant Analysis, PMTFP: Polymethyl(3,3,3-trifluoropropyl)siloxane, RT: Room temperature, SCC: Squamous cell carcinoma,
SiNWs: Silicon nanowires, SVM: Support Vector Machine, T: Temperature, TB: Tuberculosis, TFB: Poly(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4-s-butylphenyl)diphenylamine), UC:
Ulcerative Colitis.
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3.2. Field-Effect Transistors (FET)

Field-effect transistors are voltage-controlled [6] devices consisting of two electrodes
(the source and the drain electrode), a semiconducting channel, an insulating gate, and
a conducting gate electrode [13]. The current flows between the source terminal and the
drain terminal through the semiconducting channel by applying a source-drain potential.
Voltage applied between the source terminal and the gate terminal controls the current
flow between source and drain as well as the conductivity of the conduction channel. For a
constant source-gate voltage, exposure to gaseous analytes can affect the conductivity of the
conduction channel [6,13]. Notably, the main difference between chemiresistors and FET
sensors is the ability of the latter to provide not only current variations but also threshold
voltage changes upon analyte exposure [142].

Depending on the gaseous analyte-type and the carrier type of the channel material
(holes/electrons), the charge carrier concentration of the semiconducting channel material
can be changed upon device exposure. In the case of an n-channel FET, oxidizing gas
exposure reduces the majority carriers of the channel region thus decreasing the current flow.
In the case of exposure to a reducing gas or of a FET with a p-type channel exposed to an
oxidizing gas, the current flowing through the channel increases. Measurement of current
variations permits the detection as well as the quantification of analytes after appropriate
calibration [13]. The applied gate voltage permits control of sensitivity, providing it is set
so as to permit the maximum conductance variation [142].

A chemical FET can also possess a gas-selective coating/a series of coatings, between
the transistor gate and the analyte. Different chemical modification of the gate allows
reaction with different chemical species hence permitting their differentiation [43,143].
For ion sensitive FETs charged species at the sensing interface of the gate, change the
polarization of the underlying semiconductor/dielectric interface. Electron conductance
through the semiconducting channel is sensitive to gate polarization and the chemical
modification of the gate can either attract or repel the semiconductor-charge carriers.
Thus, by measuring the source-drain current, the polarization of the sensitive interface is
determined [51].

Channel conductivity is also affected by the gas-analyte polarity. Adsorption (molecu-
lar gating) of polar molecules on the outer surface of the conducting channel is considered
to provoke changes in the electric field. Molecular binding of non-polar molecules can
potentially change the density of charged surface states of the functionalized semiconductor
surface, due to analyte induced conformational alternations, or can affect the dielectric
medium close to the semiconductor surface [6,144].

3.2.1. Selective Applications

Selective FET sensors are commonly developed using nanomaterials for the formation
of the conductive channel and used mainly for the detection of simple gases. CNTs
(specifically SWCNTs acting as p-semiconductors) have been extensively investigated for
CNTFET gas sensors, possessing p-transistor characteristics [7,50]. Pristine CNTs have
been used for the detection of the oxidizing gases NO [145] and NO2 [145–147] and the
reducing gas NH3 [145,147], as well as for ethanol and benzene detection [147]. Remarkably,
the CNTFET sensor developed by Chang et al. exhibited the ability to discriminate the
gaseous analytes due to distinguishable temporal response of conductance to gate voltage
pulse [147].

2D material-based FETs have been also developed using TMDs or graphene derivatives.
WS2 n-type semiconducting multilayer nano-flakes have been used for ethanol and NH3
detection under illumination [148], while MoS2 multilayer-based FETs permit NO [149],
NH3, and NO2 detection [150]. rGO-based FETs have also permitted ethanol [151], NH3
and NO2 detection achieving low ppb LOD [152], while NH3 detection was also reported
using NO2-dopped graphene [153].

Hybrid materials have also been used in selective FET sensors. 2D graphene/MoS2 het-
erostructures used in flexible and potentially wearable p-type devices, in which graphene
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replaces the metallic electrodes, have been reported for NO2 and NH3 detection albeit with
lower sensitivity [154]. Combinations of CNTs with other materials for sensing performance
improvement are also reported in the literature. Polypyrrole-SWCNTs have been used
for NH3 detection, achieving increased sensitivity and reduced response/recovery times
by controlling film thickness, SWCNTs concentration and annealing temperature [155].
Selective H2S detection has been also attempted using Au-decorated SWCNTs, leading
to high Au NPs size-dependent sensitivity and lower LOD (≤100 ppb) in comparison to
carboxylated SWCNTs (Figure 8) [156]. A lower LOD of 10 ppb and a theoretical LOD of
500 ppt for selective H2S detection have been recently achieved using a FET based on Au
NPs-functionalized ZnO NWs [157]. Au NPs of 1, 3, 5, 7, and 10 nm were tested, with those
of 7 nm leading to the maximum interaction between the analyte and the sensing film.
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H2S sensing. Au NPs play a crucial role in device-performance by modulating the mobility after
the gaseous-molecule interactions. Reprinted with permission from Ref. [156]. Copyright © 2011
Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim.

3.2.2. Cross-Reactive Applications

NWs-FET sensors comprise the most common type used for cross-reactive VOCs
detection, including FETs based on SiNWs and MOS NWs (e.g., SnO2, ZnO, In2O3) [63,142].
Using pristine SiNWs, it is possible to discriminate VOCs with high dielectric constants,
such as methanol, ethanol, and 2-propanol, with 96% accuracy and acetone, ethanol, and
water with 100% accuracy by using pattern recognition methods [158]. As far as MOS
NWs are concerned, n-type MOS have been mainly studied. SnO2 NWs, e.g., have been
used for acetone, ethanol, and methyl ethyl ketone discrimination; the modulation of
gate voltage as well as of the operating temperature, permitted the adjustment of sensor
response and selectivity [159]. p-Type MOS NWs are also reported to achieve effective
VOC detection, such as CuO NWs for NO2 and ethanol detection, with ethanol response
being reversible by temperature increase due to oxidation towards CO2 and water and
electron transfer from water to CuO NWs [160]. Complementary-MOS based sensors have
also been investigated, along with pattern recognition methods, especially for acetone,
acetic acid ethanol, propanol, butanol, and hexanol discrimination [161]. In this case,
only one sensor can be used, rather than a sensor array, as selectivity can be achieved by
alternating the drain-source and gate potential and without any further modification [161].
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Concerning FET arrays based on different nanomaterials, n-type semiconducting In2O3,
SnO2, and ZnO NWs combined with a SWCNT-FET have successfully discriminated H2,
NO2, and ethanol [162]. The 4-sensor array was tested at both 200 ◦C and RT as well as at
different analyte concentrations, while SWCNT-FET incorporation improved ethanol and
H2 overlapping [162].

Remarkably, molecular functionalization has been reported, specifically by Haick et al.,
for particularly promising FET applications. Molecularly functionalized random CNTs
networks have been used for nonpolar and polar VOCs detection. As representative
LC biomarkers, decane and 1,2,4-trimethylbenzene have been effectively detected by
molecularly modified CNTs [163]. Notably, it has been observed that CNT-functionalization
determined the semiconducting character of the material, with tricosane-CNTs leading
to a p-type and pentadecane/dioctyl phthalate-CNTs to a n-type behavior thus affecting
signal responses [163]. More interestingly, molecularly functionalized SiNWs have been
used for cross-reactive FET sensors, targeting exhaled volatile organic biomarkers not only
in synthetic but also in real-world breath samples; the discrimination of GCa patients
from HC [125] as well as the discrimination of patients with asthma/COPD, LC and GCa
(Figure 9) with remarkably increased accuracies [43] (Table 2) are noteworthy examples.
As is to be expected, chemical functionalization of different nanomaterials allows for the
detection of both polar and non-polar VOCs.
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Figure 9. Schematic of (a) surface modification of SiNW FET sensors (SSM, single-step modification;
TSM, two-step modification); (b) sensor exposure to synthetic samples of potential organic volatile
biomarkers for each disease (asthma/COPD, LC, GCa); (c) sensor exposure to real breath samples of
patients with selected diseases, in comparison to HC; (d) ANN analysis representation. Increased
accuracies were obtained for the discrimination of GCa vs. LC and LC vs. asthma and COPD patients.
Reprinted with permission from Ref. [43]. Copyright © 2016, American Chemical Society.
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3.3. Electrochemical Sensors

Electrochemical sensors are divided into potentiometric (voltage measurement), am-
perometric (electric current measurement), or conductometric (conductivity or resistivity
measurement) [143]. Analyte detection occurs on appropriate electrodes on which a chemi-
cal reaction (oxidation or reduction) takes place. Electrochemical sensors typically consist
of a sensing (working) electrode and a counter electrode separated by a thin layer of elec-
trolyte [51]. The sensing electrode, on which the reaction occurs, is characterized by high
surface-to-volume ratio (for signal enhancement) and is composed of catalytic materials,
e.g., platinum, palladium, or carbon-coated metals [143] that are specific for the desired
analyte [51]. Analyte-electrode reaction generates a sufficient electrical signal [51] measured
with respect to the counter electrode [143]. A schematic representation of electrochemical
sensors is presented in Figure 4.

3.3.1. Selective Applications

Electrochemical sensors have mainly been used for the selective detection of gas
biomarkers. To this end, conventional, polymeric and hybrid materials have been stud-
ied. For example, Prussian Blue electro catalyst-modified carbon electrodes on wearable,
paper-based sensor have been developed for H2O2 detection which serves as a lung-disease
biomarker [164]. As an example of polymeric sensing films, cylindrical nano-porous semi-
conducting polymers have permitted NH3 detection in ppb levels via a redox reaction [165].
Hybrid materials, especially the ones containing 2D nanosheets, are also reported in the lit-
erature for sensing oxygen-compounds. Nonanal detection for instance has been achieved
using SnO2 nanosheets decorated with SnO2 NPs as well as noble metal catalysts (Pt, Au,
and Pd), aiming at LC early-diagnosis [59]. Solid proton-conducting electrolyte based on
sulfonic acid co-functionalized cellulose NFs and GO nanosheets, has been developed
for ethanol detection via oxidation with a LOD of 25 ppm [166]. More recently, Au NPs-
decorated MoS2 nano-flakes were used for oxygen-based VOCs detection such as the
diabetes biomarker acetone, with sensor responsiveness and selectivity being increased
due to electron-donation from Au NPs to MoS2 (Figure 10) [69].
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(left) and are oxidized by the adsorbed oxygen species, releasing electrons to MoS2 (right); (c) oxygen-
based VOCs using MoS2 decorated with Au NPs, which increase electron concentration and, thus,
oxygen species adsorption on MoS2; (d) returning more electrons upon interaction with the oxygen-
based VOCs. Reprinted with permission from ref. [69]. Copyright © 2019, American Chemical Society.

3.3.2. Cross-Reactive Applications

Cross-reactive electrochemical sensors have been reported for the in vivo/in vitro
diagnosis of diabetes, LC [126], and GCa [137] (Table 2); such devices are based on poly-
mers [126] and nanomaterials (e.g., MNPs, CNTs, SiNWs, graphene derivatives, and their
combinations). Remarkably, ultrahigh sensitivity for two GCa biomarkers (Table 2) has
been achieved using an Au-Ag NPs-MW CNTs glass carbon electrode, due to the high
surface area of both MWCNTs (Au-Ag NPs adsorption enhancement) and Au-Ag NPs
(electron-transfer acceleration) [137]. The synergistic catalytic activity of the bimetallic
NPs on the other hand enhances the selectivity [137]. Notably, electrochemical sensors
are conventionally constrained in detecting electrically inert simple aromatic compounds
and hydrocarbons, since the target analyte should be electrochemically active [51]. More
recently, the detection of cyclohexane along with formaldehyde, has been reported using a
Si NW-rGO sensing film, due to cyclohexane-oxidation catalysis by rGO [106].

3.4. Piezoelectric Sensors

In general, piezoelectric materials produce voltage due to the application of mechanical
stress and vice versa [51]. Piezoelectric sensors, by definition sensitive to mechanical
stress [15], are often used as mass-sensitive sensors [36]. Acoustic wave devices are used in
piezoelectric sensors, also called mass, gravimetric, or microbalance sensors. An oscillating
circuit is used for the generation of acoustic waves, allowing the piezoelectric crystal to
resonate [143]. The most important categories of piezoelectric gas sensors are QCM and
SAW [40].

3.4.1. Quartz Crystal Microbalance (QCM) Sensors

QCM sensors possess quartz crystal resonators functionalized with different appro-
priate sensing elements (e.g., metalloporphyrins [131,132], sensitive polymers, MOS, or
nanomaterials) [6,40,167]. The acoustic wave propagates through the bulk of the crystal
perpendicularly or parallel to the surface [51]. When a gas is absorbed on the sensitive sur-
face of a crystal the mass changes thus alternating the resonance frequency [167]. Typically,
mass increase results in a decrease in the oscillation frequency of the resonator [143] which
comprises the measured physical quantity [167]. The sensing mechanism of QCM sensors
is presented in Figure 11a.

Selective Applications

QCM sensors are used extensively for selective gas detection and are potentially
applicable in breath analysis. As an example of MOS based sensors, ZnO has been used
in the form of NWs [168] and vertically-aligned NRs [169] for NH3 detection, permitting
the development of reproducible and stable systems in both cases as well as increased
selectivity against liquefied petroleum gas, N2O, CO, NO2, and CO2 in the case of NRs.
Notably, VOC detection with MOS-QCM sensors is feasible at RT (despite the use of MOS)
since it is directly connected to mass-changes [169]. Concerning polymeric materials, for
the selective detection of NH3 [170] and formaldehyde [171], the use of polymeric NFs
based on poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) [170] and polyethylenimine
(PEI)/PVA [171], respectively, has been demonstrated. More recently, a Si NPs-containing
methacrylic acid-based MIP-composite was reported to selectively detect hexanal as LC
biomarker in the presence of trimethyl amine, NH3, ethanol, acetone, acetic acid, and
diethyl ether, due to analyte binding through hydrogen bonding formation [74].
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with a LOD at ppm levels; prediction of toluene concentration in mixtures with ethanol 
was also permitted [173]. Macrocyclic calixarene derivatives, on the other hand, have 
achieved the detection of 16 VOCs belonging to ketones, alcohols, aromatic, and chlorin-
ated compounds, at ppm levels, due to “host–guest” interactions. Sensor sensitivity and 
selectivity were dependent on the number and functional groups of calixarene derivatives 
[174]. In a more recent application, 13 different MIPs of different compositions and cavity 
structures were studied for the detection of hexanal, nonanal, and benzaldehyde, which 
are common cancer biomarkers. A combination of five sensors led to the most effective 
VOC discrimination while sensor-array performance was found to be dependent on both 
molecular imprinting and matrix effect [73]. 

Metalloporphyrin-based cross-reactive QCM sensors seem as the most promising 
QCM sensors (Table 2) while they have been also applied in real breath samples [130–134]. 
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Figure 11. Representation of the sensing mechanism of gas detection using (a) a QCM sensor where
the oscillation of the quartz crystal substrate and propagation of the transverse acoustic wave through
the quartz substrate are caused by the alternating electric field applied over the electrodes; sensing
layer-gas interactions change the mass on the substrate and hence wave amplitude and velocity,
leading to a resonance frequency shift (∆m→ ∆f); (b) SAW sensors where a surface wave confined
within one acoustic wavelength of the surface of the piezoelectric material is induced by an input
RF-voltage applied across the interdigitated transmitter (IDT); mechanical energy is transformed
back into radio frequency as an output when the SAW reaches the receiving IDTs. Analyte adsorption
on the piezoelectric coating induces mass variations and ultimately a shift in frequency. Reprinted
with permission from Ref. [172]. Copyright © 2021 Elsevier B.V. All rights reserved.

Cross-Reactive Applications

In the case of cross-reactive applications, hybrid and especially polymeric/macrocyclic
sensing materials are investigated. TiO2NPs-decorated MWCNTs and cobalt (II) phthalo-
cyanine-silica, for instance, have been used as sensing elements in a 3 sensor array, along
with a bare QCM sensor; this was used for simultaneous acetone and NO detection,
which serve as diabetes and asthma biomarkers, respectively [139]. No response was ob-
served by the bare sensor, while analyte adsorption to the modified sensors is attributed to
analyte-sensing film coordination interactions [139]. Concerning polymeric materials, eight
different polythiophene derivatives have achieved acetic acid, toluene, acetone, p-xylene,
ethanol, 1-octanol, acetonitrile, and water discrimination based on VOC-polarity, with a
LOD at ppm levels; prediction of toluene concentration in mixtures with ethanol was also
permitted [173]. Macrocyclic calixarene derivatives, on the other hand, have achieved the
detection of 16 VOCs belonging to ketones, alcohols, aromatic, and chlorinated compounds,
at ppm levels, due to “host–guest” interactions. Sensor sensitivity and selectivity were
dependent on the number and functional groups of calixarene derivatives [174]. In a more
recent application, 13 different MIPs of different compositions and cavity structures were
studied for the detection of hexanal, nonanal, and benzaldehyde, which are common cancer
biomarkers. A combination of five sensors led to the most effective VOC discrimination
while sensor-array performance was found to be dependent on both molecular imprinting
and matrix effect [73].

Metalloporphyrin-based cross-reactive QCM sensors seem as the most promising QCM
sensors (Table 2) while they have been also applied in real breath samples [130–134]. Such e-
Noses have been examined for asthma [131], COPD [130], halitosis [135], LC [132,133,175],
and tuberculosis [134] diagnosis with particularly promising diagnostic performance. Sim-
ilarly, an anthocyanin-based QCM sensor called BIONOTE e-Nose has been developed
by Santonico et al. [176] and was recently studied for use in asthma diagnosis of children,
with the aim to assess the within and between-day repeatability of obtained measurements;
values similar to those of conventional methods were achieved (Table 2) [136].

3.4.2. Surface Acoustic Wave (SAW) Sensors

In SAW gas sensors, the acoustic wave propagates only parallel to the surface of
the piezoelectric crystal, penetrating about one acoustic wavelength in depth into the
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crystal. Motion at the surface is both parallel and perpendicular to it [51]. Crystal surface
is modified with a chemically selective layer [40,143]. Exposure to the analyte affects the
propagation waves [143], as the mass (acoustic field of the SAW) and/or the electrical
conductivity (electric field of the SAW, associated with the acoustic field) of the chemical
interface change [15]. As a result, a change is induced in the propagation frequency of
the SAW, which can then be measured [6,40]. The sensing mechanism is presented in
Figure 11b.

Selective Applications

Similar to QCM sensors, MOS including ZnO, SiO2, TiO2, Co3O4, WO3, and other
combinations [7,172], have been used extensively for SAW devices and most commonly for
selective VOCs detection. For example, ethanol detection has been achieved at 300 ◦C using
a YX LiTaO3-based SAW sensor modified with a ZnO intermediate layer of 1.2 µm and a
WO3 sensing layer of 150 nm [177]; porous ZnO-SiO2 bilayer nano-films have been used
for NH3 detection, with SAW sensor sensitivity being better than the one for single layers
and was found to be dependent on bi-film conductivity [178]. In the latter system, it was
observed that increased ZnO film thickness led to larger absolute sensor response but also
to larger response and recovery times; the study concluded that 60 nm of ZnO led to the
best sensing performance for 30 ppm NH3 [178]. The detection of NH3 concentration levels
that were lower than 1 ppm has been also attempted by the same group in the presence of
H2, CO, CH4, H2S, and ethanol using SiO2-TiO2 films of 200 nm that exhibited remarkable
system selectivity, stability, and reproducibility [179].

Cross-Reactive Applications

Non-functionalized [180,181] or polymer-functionalized [129] SAW sensors have been
combined with GC columns as detectors for the development of point-of-care diagnostic
systems. BC [180], tuberculosis [181], and LC [129] patients for instance, have been effec-
tively diagnosed with an accuracy of 79%, 84%, and 80%, respectively. SAW sensors have
been also used for the detection of both polar and non-polar VOCs, after their modification
with appropriate sensing films [6].

Cross-reactive SAW sensor arrays with polymeric coatings of different composi-
tion [182] or thickness [183] have been reported; SAW sensors coated with eight different
polymeric films have achieved effective discrimination of chloroform, octane and xylene
vapors as shown by radar plots, maintaining their performance for a period of 3 years [182].
Interestingly, 3 polyisobutylene films of varying thickness, namely 10, 50, and 100 nm,
allowed for chloroform, chlorobenzene, o-dichlorobenzene, heptane, toluene, hexane, and
octane discrimination by analyzing the transient responses characterized by analyte-specific
kinetics variability (different stages of equilibrium attainment, for different coating thick-
ness) [183]. Such polymer-based SAW sensors hold a great promise for potential breath
analysis applications. CNTs, SWCNTs, and MWCNTs dispersed in ethanol or toluene for
example, have been separately tested for ethanol, toluene, and ethyl acetate sensing at RT
with a LOD of 1 ppm [184]. The main advantage of CNTs-modified sensors is the enhanced
SAW sensor-sensitivity, due to the ability to sense variations not only in mass but also in
conductivity [172].

Among hybrid materials, MWCNTs combined with other materials have achieved
selectivity enhancement. Polyepichlorohydrin and polyurethane were combined with
different MWCNTs percentages so as to develop a 4 sensor-array, for toluene and octane
detection and differentiation using polar plots [185]. Notably, no response was observed
for gases such as H2, NH3, NO2, and CO, while toluene adsorption was far more enhanced
than that of octane [185]. In a different publication, MWCNTS combined with nano-sized
CeO2 (100:1) have formed a semiconducting composite that achieved acetone and ethanol
detection, with higher sensitivity for the former [186]. As far as MNPs-based hybrid
materials are concerned, thiol containing calix4arene-modified AuNRs and Ag nano-cubes
(NCs) have been recently used in a 5-sensors array, for the detection of polar and non-polar
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VOCs in low ppm levels including the LC biomarker toluene. Chloroform and toluene were
detected with greater sensitivity by the modified AuNRs and AgNCs respectively when
compared to unmodified NPs (Table 2) [49]. Calix4arene modification enhanced sensitivity
largely due to the increase of the surface interaction area as well as the arrangement of
the macrocyclic ligands (Figure 12) [49]. The use of pristine or Au NPs-functionalized
zeolitic-imidazole-framework nanocrystals (ZIF-8 and ZIF-67) in a 4-sensor array for the
discrimination of diabetes biomarkers (acetone, ethanol, and NH3) via PCA is another
example of promising hybrid materials [138] (Table 2). Molecularly functionalized MOS-
NPs are also reported in the literature. Using a layer of amino-terminated iron oxide
NPs for instance, the VOCs butanol, isopropanol, toluene, and xylene were detected with
a low LOD of 1, 12, 3, and 0.5 ppm, respectively, thus developing an effective sensing
device of lower cost in comparison to MNPs-based sensing systems [187]. Iron oxide NPs
have been also used in combination with polymers. Fe3O4 NPs of varying diameter (7,
13, or 50 nm for 0.4 mg NPs/mL polymer solution) and concentration (0.2, 0.4, or 0.8 mg
NPs/mL polymer solution for NPs 50 nm), have been embedded in PEI [52]; by employing
a PEI functionalized sensor, a 6-sensor array was developed for the effective detection of
methanol, ethanol, and toluene while sensitivity increased for smaller NP-diameters and
greater concentrations. Remarkably, NPs of 7 nm permitted ethanol detection with a LOD
five times better (65 ppm) than solely PEI-based sensors [52].
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Figure 12. Sensitivity values (1/ppm) of (a) sensors S1–S3, (b) sensor S1–S4–S5 in radar plots, and
(c) sensors S1–S5 in bar chart representation, for six different analytes under 0% RH provided with
responses to 100% humidity. Inserted graph: magnified view of data below 2 × 109 1/ppm. (S1:
SH-Calix[4]arene, S2: AuNRs, S3: Calix[4]arene modified AuNRs, S4: AgNCs, and S5: Calix[4]arene
modified AgNCs, ISP: isoprene, ACE: acetone, n-HEX: n-hexane, EtOH: ethanol, CHL: chloroform,
TOL: toluene). Calix[4]arene modification (S3, S5) increased the sensitivity, under 0% of humidity,
especially for TOL and CHL, while thiol terminated calix[4]arene (S1) exhibited increased response
towards CHL. S5 exhibited the highest responsiveness towards TOL among other VOCs and the
highest among all sensors (π–π interactions leading to host–guest complexes). Reprinted with
permission from Ref. [49]. Copyright © 2021 Elsevier B.V. All rights reserved.

In comparison to QCM sensors, SAW based sensors are generally characterized by
higher sensitivity, while the potential for surface modification is expanded. On the other
hand, it is worth noting that in both cases apart from the sensing film composition that
determines sensor selectivity, the high surface area of the nanostructures comprises the
fundamental factor that enhances sensitivity due to the creation of more adsorption sites
(defects) [52,169,171,187]. In general, piezoelectric gas sensors, investigated primarily in
synthetic samples, are characterized by increased sensitivity, small response time and
low-powered operation. However, the low signal-to-noise ratio and the requirement for
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complex electronic circuits, may render this sensor type less enticing for the development
of efficient e-Noses [40].

3.5. Optical Sensors

Optical gas sensors detect analytes by measurable changes of absorption, luminescence,
scattering, reflectivity, refractive index or optical path length [40], due to the interaction
of the radiation with the desired gas or a selective layer [143]. In the first two cases, light
intensity or wavelength are measured [40].

3.5.1. Optical Fiber-Based Sensors

Optical fibers possessing a chemical reagent (e.g., chemical dye) or a sorbent phase
(e.g., polymeric film) as a reactive layer, are commonly used as transduction elements in
optical gas sensors [6,143] specifically for VOC detection [6]. Upon vapor exposure optical
or structural changes of the reactive layer alter the effective index and hence the light
transmission properties of the fiber [6].

Selective Applications

Nanomaterial-based hybrid materials have been used for optical fiber modification
as sensing films for selective VOC detection. The use of graphene, commonly combined
with MNPs [188,189], is a representative example. Pt NPs-GO [188] and Ag NPs-GO [189]
functionalized optical fibers have been developed for efficient and selective NH3 detection
(NH3 is a common biomarker for renal and liver diseases as well as Helicobacter pylori
infection) [7]. Remarkably, Pt NP-functionalization increased the sensitivity in comparison
to pristine GO [188], while the concentration of Ag NPs was inversely correlated with
sensitivity [189]; this reveals the benefits as well as the vulnerability of the synergistic
effects of hybrid materials. An additional hybrid material, namely a thin film of poly
(allylamine hydrochloride) and Si NPs infused with tetrakis (4-sulfophenyl) porphine, has
been used as an optical-fiber coating for the selective detection of methanol in the presence
of water and other alcoholic vapors [190].

Cross-Reactive Applications

Standalone polymers or polymers combined with nanomaterials have also been used
for cross-reactive applications. PMMA-based fibers functionalized with nano-crystalline
bismuth oxide-clad have effectively detected NH3, ethanol, methanol, and acetone, exhibit-
ing increased selectivity towards methanol [191]. Detection of hydrocarbons and aromatic
compounds in real breath samples of HC, as potential biomarkers of various diseases, has
been also achieved using a polymethyl (3,3,3-trifluoropropyl) siloxane-coated optical fiber;
the device features a low LOD posing as an attractive alternative for disease diagnosis
(Table 2) [128]. Despite their extensive investigation in the field of breath analysis for VOCs
detection, such devices are scarcely studied for real sample experiments [6].

3.5.2. Colorimetric

Colorimetric sensors, usually classified as a sub-group of optical sensors [51], are
based on environmentally dependent color changes [15]. Chemo-responsive indicators are
able to chemically react and change color in a distinctive way upon exposure to different
gas analytes [6], thus permitting analyte identification. In this case the response upon
analyte exposure is based not on the physical properties but the chemical reactivity of the
indicators [15].

Selective and Cross-Reactive Applications

Selective applications of colorimetric sensors have scarcely been studied. Lead acetate
(PbAc2) NPs anchored to polyacrylonitrile nanofibers (NFs) comprise an example of a
selective sensing element that was investigated for H2S colorimetric detection (a halitosis
biomarker); a LOD of 400 ppb which is far lower than the 5 ppm of PbAc2 paper tests,
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was achieved [192]. Concerning cross-reactive sensing systems, there are five possible
categories to which an indicator may belong to: pH responsive, (Brønsted acidity/basicity);
metal-ion-containing dyes (Lewis basicity—electron pair donation); redox-responsive metal
salts; nucleophilic indicators (responsive to electrophilic analytes) and dyes with large
permanent dipoles (e.g., solvatochromic dyes) [6]. Such optical sensors have been exten-
sively investigated in the field of breath analysis, mainly for LC diagnosis, using both
synthetic [140,193] and real-world breath samples [127,194]. Hou et al. have achieved
to discriminate at first 4 (Table 2) [140] and then 20 [193] LC-related VOCs in two sep-
arate studies, with accuracies of 100% and 90%, respectively. Mazzone et al. achieved
to differentiate LC patients and HC, with moderate accuracies [127,194], as well as LC
patients of different histologies with a higher accuracy percentage (Table 2) [127]. The main
challenges for such sensors include low sensitivity, high LOD and low response times.
Furthermore, their irreversible operation renders them disposable (single-use tests), which
is something that should also be considered [7,167]. Nanomaterials may be also used for
enhanced sensing properties. For the detection of VOCs that have been identified as LC
biomarkers the use of AuNRs-modified metalloporphyrins has proven to protect the device
from photo-degradation, to provide good repeatability, increased long-term sensor stability,
and increased shelf-life (Figure 13) [141].
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3.5.3. Localized Surface Plasmon Resonance (LSPR)-Based Sensors

Non-conventional chromophores, such as MNPs, have also been investigated in
optical sensors, due to their interesting optical properties. LSPR-based gas sensors [36,40]
are based on the dependence of the LSPR properties of the MNPs from the refractive
index of the dielectric environment surrounding the NP [36] (i.e., coating, surrounding
medium, supportive substrate [51]). Refractive index alternation of the medium changes
the wavelength of the incident light [36]. The main advantage of MNPs is the fact that the
extinction coefficients are several orders of magnitude higher than those of conventional
dyes, in the visible spectrum, allowing higher sensitivity and lower LOD for the desired
analyte [51].

Optical detection of VOCs using various compositions and shapes of MNPs has also
been reported. Au NPs, Ag NPs, and Au NSs have been used for chlorobenzene, m-xylene,
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pentanol, toluene, and octane cross-reactive detection [195]. Hybrid materials containing
MNPs have been used as well. Selective polymer-coated Au nano-islands, for instance,
have effectively detected a-pinene [196].

3.5.4. Surface Enhanced Raman Spectroscopy (SERS)-Based Sensors

Another, more widespread optical-sensor application of the LSPR phenomenon in
MNPs, is SERS [36], i.e., the enhancement of Raman signals due to the LSPR phenomenon.
SERS is a vibrational spectroscopic technique [197] that permits single-molecule detection,
and has been investigated among others for VOCs detection [198].

Functionalization of different MNPs with appropriate molecules has been reported for
selective VOC-detection. Aldehydes detection as LC biomarkers by SERS-based sensors
seems promising [198,199]. Dendritic Ag nanocrystals coated with the aldehyde-selective
probe molecule p-aminothiophenol have achieved low LOD (ppb range) in the presence
of confounding LC biomarkers (hydrocarbons, alcohols, ketones, esters, nitrogen, and
aromatic compounds) [199]. NO, on the other hand, serves as a biomarker for asthma [36],
hypertension, arteriosclerosis, diabetes, and rheumatoid arthritis [197]. NO detection has
been achieved by o-Phenylenediamine-modified Au NPs which have permitted selective
chemical reaction between functionality moieties and NO, leading to nano-probe SERS
variations; such sensors have achieved a LOD of 1.7 × 10−7 M, in the presence of H2S and
CO [197].

As it can be observed, SERS-based sensors have been developed for the selective
detection of a specific VOC or classes of VOCs, rather than cross-reactive detection. Notably,
optical sensors are not preferred for e-Nose development, mainly due to their size and
complex signal conditioning [40].

On Table 2 representative examples for different types of sensor-arrays, using conven-
tional materials or nanomaterials, are presented. Sensitivity, selectivity, and discriminant
accuracy of the sensor arrays highlight their promising application as diagnostic tools. It
can be observed that the incorporation of nanomaterials in the sensing element ameliorates
the sensing performance (i.e., sensitivity, LOD), while appropriate modification permits
the desired cross-selectivity. Sufficient LOD, similar to the usual concentration of VOCs in
exhaled breath, is achieved by all sensor types. As far as MOS-based sensors are concerned,
it is apparent that their main drawback towards all the other categories is their increased
operating temperature. Chemiresistors are probably the most investigated gas sensor
type for cross-reactive systems, incorporating different (nano)materials, being particularly
attractive for the diagnosis of a wide range of diseases. Remarkably, most of the branded
e-Noses that have been developed and tested for breath analysis applications, presented
on Table 3, appertain to chemiresistors (AeoNose, Cyranose 320, SpiroNose, DiagNose,
and Common Invent e-Nose). Another noteworthy information presented on Table 2 is the
variety of data analysis and machine learning techniques used among the different studies,
in the absence of which the discrimination of subjects would be infeasible.
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Table 3. Branded e-Noses and type of technology used in each case.

Electronic Nose Technology Used Ref.

Cyranose 320 32 carbon black-polymer composite chemiresistors [117,118]

Common Invent e-Nose MOS sensors [90,117]

SpiroNose 5 sensor arrays, each composed of 4 MOS sensors [91,117]

AeoNose Micro hotplate MOS [92,117]

DiagNose 12 doped MOS [93,118]

BIONOTE e-Nose 8 QCM sensors using anthocyanin-coated gold electrodes [117,136]

Tor Vergata e-Nose QCM covered with metalloporphyrins [117]

Owlstone Lonestar e-Nose Field asymmetric ion mobility spectrometry [117]

e-Nose: Electronic Nose, MOS: Metal Oxide Semiconductor, QCM: Quartz Crystal Microbalance.

4. Differential Diagnosis and Disease Phenotyping and Staging in Breath Analysis

As can be observed on Table 2, exhaled VOCs have been used not only for disease
diagnosis in comparison to healthy subjects, but also for the discrimination between
different diseases (e.g., GCa, LC, and asthma/COPD [43]) or even for the discrimination
between the different stages of a particular disease (e.g., CKD stages [113]). One of the
main prerequisites for the development of clinically applicable diagnostic tests is the
effective discrimination between different diseases with similar symptoms and biochemical
pathways [200]. The uncertainty in the differentiation of patients with distinct diseases
comprises one of the main drawbacks for studies distinguishing a specific disease from
HC [201]. Thus, the use of breath analysis for differential diagnosis as well as disease
staging or phenotyping, using either analytical techniques or sensing devices (Table 4),
attracted significant research interest over the last years. As expected, the contribution of
nanomaterials is of great importance with many recent publications of nanomaterial-based
sensors focusing on disease differentiation, staging or phenotyping, rather than the simple
discrimination between patients and HC (Table 4).

4.1. The Case for Lung Diseases

Chronic and acute lung diseases such as asthma, COPD, idiopathic pulmonary fibrosis
(IPF), LC, mesothelioma, and sarcoidosis have been connected with similar metabolic
alternations [202]. Especially asthma and COPD are also characterized by similar symp-
toms [37] with COPD being commonly underdiagnosed or diagnosed at late stages [203].
Concerning LC, no symptoms are expressed in early stages [204] while disease manifesta-
tion is limited to non-specific symptoms [204] including cough, short breath, chest pain,
and weight loss [37]. Disease phenotyping, on the other hand, is mandatory in some cases.
Asthma subtypes such as eosinophilic, neutrophilic, mixed granulocytic, and paucigran-
ulocytic asthma [205] are characterized by similar symptoms while different treatment is
required [206]. Similarly, immunosuppressive, antifibrotic, or a combination of medications
may be needed for fibrotic interstitial lung diseases (ILDs), depending on the respective
phenotype (inflammatory, more fibrotic, or combination) [207]. Thus, reliable phenotyping
is needed for appropriate medication to be administered [33,206,207]. LC is subdivided
into different categories with different clinical characteristics as well. Small cell LC (SCLC),
with 20–25% percentage of occurrence [208], is characterized by increased metabolic and
proliferation rates compared to other cancer cells [209], while non-small cell LC (NSCLC)
accounts for 70–75% of LC cases and is subdivided into the smoking-related [37,210] squa-
mous cell carcinoma (SCC) [208] and the non-squamous cell carcinomas [37] including
adenocarcinomas (ADC) (minor smoking correlation) and large-cell carcinoma (LCC) [208].
Consequently, the accurate discrimination of different lung diseases and subtypes of a lung
disease, especially using breath analysis of exhaled VOCs, is of particular importance.
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The use of GC-MS has rendered lung disease differentiation, phenotyping and staging
feasible in many cases. To be more specific, LC discrimination from patients with other
lung diseases has been investigated in several studies. In an attempt to discriminate
between NSCLC, COPD, and HC patients, by taking smoking habits into account, 4 VOCs
were identified (in varying concentrations) for NSCLC and COPD [211]. In another study,
Wang et al. attempted to discriminate LC from COPD, asthma, pneumonia, pulmonary
embolism and benign lung tumor patients; however, the selected 10 VOCs could not
discriminate accurately between the two groups, implying their potential confounding
role during LC-biomarkers determination [18]. Koureas et al. have also attempted to
discriminate LC from other respiratory diseases, using 19 distinctive VOCs, based on the
underlying disease mechanisms (targeted method); only the discrimination of LC patients
from HC, using ethylbenzene, toluene, styrene, 2- and 1-propanol was achieved [200].
However, in a more recent study of the same group, the discrimination of LC patients
from patients suffering from sarcoidosis, hypersensitivity pneumonitis, interstitial lung
diseases or pulmonary infections was achieved with an increased accuracy of 75.3%; the
29 VOCs were selected following a hypothesis-generating non-targeted strategy [212]. In a
different study, LC was accurately distinguished from pulmonary non-malignant diseases
(PNMD; COPD, pulmonary tuberculosis, asthma) using 10 VOCs while 5 were selected as
characteristic of LC in contrast to both PNMD and HC [213].

The differentiation of LC patients from patients with benign pulmonary nodules
(BPN) has also been extensively reported. Apart from a study by Wang et al. [18] which
included patients with benign lung tumors, Fu et al. have investigated the respective
discriminant ability of carbonyl VOCs [214–216]. Four carbonyl VOCs, captured by a
silicon micro-reactor, were found to present increased concentration in LC patients when
compared to BPN patients and HC [214]. In a subsequent study, the same group achieved
the differentiation of both early and III, IV stage LC patients from BPN patients, with high
sensitivity (83%) and particularly increased specificity (74%) in comparison to positron
emission tomography (90% and 39%, respectively) [215], while 6 carbonyl VOCs have
permitted a classification accuracy of 89% of LC vs. BPN patients [216]. More recently,
Chen et al. identified 19 VOCs able to distinguish not only LC and BPN patients (this
with an accuracy of 80.9%) but also early-stage LC patients from BPN (with an accuracy of
75.6%), being remarkably promising for early LC diagnosis [204].

LC histology and staging characterization using analytical methods is another impor-
tant target of this research field. It was reported that 1-butanol, 3-hydroxy-2-butanone [9],
as well as 4-hydroxyhexenal [214], can differentiate SCC from ADC patients with the former
being decreased for SCC in contrast to the other 2 VOCs. Similarly, SCLC and NSCLC can be
potentially distinguished from 4-hydroxynonenal and C5H10O [214]. Hexanal has also been
found in higher concentrations for SCLC patients compared to NSCLC, potentially due to
increased metabolic rates [209]; Chen et al. have achieved NSCLC and SCLC differentiation,
with an accuracy of 93.9%, using a pattern of 20 VOCs [204]. Concerning LC staging (I, II,
III, or IV), a pattern of 19 VOCs was used to distinguish between early (I, II) and advanced
LC stages (III, IV) with 82.7% accuracy [204] while Fu et al. demonstrated that exhaled
2-butanone concentration is significantly different between stages I and II–IV [214].

Apart from LC, other lung diseases are also studied for accurate diagnosis. A series
of studies have focused on asthma phenotyping using GC-MS. Brinkman et al. identi-
fied 3 VOCs significantly correlated with sputum eosinophils [90], while Ibrahim et al.
identified VOC-patterns differentiating eosinophilic from non-eosinophilic (6 VOCs) and
neutrophilic from non-neutrophilic (7 VOCs) [217]. Recently, Schleich et al. identified
4 VOCs discriminating eosinophilic from neutrophilic, eosinophilic from paucigranulocytic
and neutrophilic from paucigranulocytic asthma, with accuracy similar to blood eosinophils
and FeNO tests [205]. In a more recent study, the same group used two-dimensional GC-
high resolution-time-of-flight-MS, selected ion flow tube mass spectrometry (SIFT-MS),
10 VOCs, and 9 ion channels so as to achieve asthma phenotyping with an accuracy of
75% [206]. COPD phenotyping and staging has also been attempted using analytical tech-
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niques. Fens et al. identified 8 eosinophils- and 17 neutrophils-related VOCs, with only
one VOC overlapping between the two subgroups. More VOCs were related with cell
counts for Global Initiative for Obstructive Lung Disease (GOLD) stage II, in comparison
to GOLD stage I [120]. In another study, 11 COPD patients with >1% and 6 with >2%
eosinophil count were discriminated from non-eosinophilics (<1% and <2% eosinophil
count, respectively) with accuracies of 79% and 92% [218]. Exacerbation prediction of
both asthmatic children [219–221] and adults [90,217] as well as COPD patients [222] also
comprises a subject of study.

Following the promising applications of analytical methods that highlight the potential
capabilities of breath analysis in phenotyping, staging and differential diagnosis of lung
diseases, sensing devices have also been used in respective applications with remarkable
results. Research interest has focused on LC discrimination from other lung diseases such
as COPD and asthma. Cyranose 320 has achieved separation of NSCLC from COPD (GOLD
stage I–III) with an accuracy of 85%, in an article by Dragonieri et al. [223]. Tirzı̄te et al. have
used this e-Nose to effectively discriminate, not only LC patients from COPD, asthma, pneu-
monia, pulmonary embolism, benign lung tumor patients, and HC, with 87.3% accuracy,
but also between LC patients, COPD patients, LC patients suffering also from COPD and
HC with 77.4% accuracy, and totally correct classification of the 79 LC/COPD patients [224].
In a more recent study, the same group discriminated LC from patients with non-malignant
lung diseases as well as bronchiectasis, tuberculosis, and HC by taking into account smok-
ing habits. An overall sensitivity and specificity of 95.8% and 92.3% for smokers and 96.2%
and 90.6% for non-smokers, respectively, was observed using Cyranose 320 [225]. More
recently, the same e-Nose was used by Rodriguez et al. for the discrimination of COPD
from LC and BC, achieving an overall correct classification of 91.35% while LC correct classi-
fication in relation to COPD was equal to 96.47% [201]. Interestingly, the contribution of the
32 sensors in the discrimination was also assessed [201]. Tor Vergata e-Nose has been used
effectively for discriminating LC patients from COPD, Interstitial lung disease, Pleurisy
and Bronchitis patients, with a sensitivity of 89.3% for LC patients [175]. In a particularly
promising study, SpiroNose discriminated LC, asthma, COPD, and HC, with the respective
accuracy values presented in Figure 14a (68–88%) [91]. The applicability of breath sampling
and analysis was tested as the collection of asthma breath samples at two different sites
led to similar results (Figure 14b) [91]. In the field of non-commercial and self-developed
sensors, Tan et al. have attempted to develop a cross-reactive alkane-based chemiresistor
combining carbon powder and tetracosane, achieving not only high affinity for alkanes and
low sensitivity for polar VOCs (water, ethanol, ethanal) but also effective differentiation of
12 LC patient from 13 HC and 12 COPD patients [108]. In a more recent study, researchers
attempted to differentiate LC, COPD, and asthma patients from HC, using an array of
8 sensors of 4 different types (MOS, electrochemical, hot wire, and catalytic type). The array
achieved accuracy between 76.9–84.75%, using different machine learning methods [226].
Accuracy values were greater for LC and COPD prediction; however, the maximum accu-
racy value of 84.75% was attained using kernel principal component analysis—extreme
gradient boosting (KPCA-XGBoost), which indicates excellent discriminatory capability
for LC and COPD patients [226]. Similarly, using an array of 11 sensors of 4 different
types (namely MOS, electrochemical, hot wire, and catalytic type), Liu et al. differentiated
non-smoking LC and COPD patients, with the best discriminatory accuracy (96%) being
achieved using the same machine learning technique [227]. The discrimination of LC from
asthma and COPD patients was also achieved by Haick’s group with particularly high
classification accuracies [43]. Early-stage LC discrimination from BPN has been reported by
Haick et al. using an array of 40 chemiresistors based on MCNPs (Au NPs) and molecularly-
coated SWCNTs, achieving an accuracy of 87%. Considering that the required treatment
may change in the occurrence of genetic alternations, the differentiation of patients with
and without epidermal growth factor receptor (EGFR) mutation was also attempted with
an accuracy of 83% [228].
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Table 4. Sensing devices used for differential diagnosis, staging, and phenotyping of different categories of diseases.

Sensor Diseases/Phenotypes/Stages Subjects Classifier Results Ref.

Differential diagnosis

Cyranose 320

NSCLC vs. COPD (GOLD stage I-III) 10 NSCLC, 10 COPD PCA, CDA 85% acc. [223]

LC vs. non-cancer (COPD, asthma,
pneumonia, pulmonary embolism, BPN) 165 LC, 91 non-cancer

SVM
87.3% acc.

[224]

LC vs. COPD vs. LC/COPD vs. HC 63 LC, 15 COPD, 79 both, 78 HC 77.4% acc., 100% accurate LC/COPD classification

LC vs. non-cancer (COPD, asthma,
pneumonia, pulmonary embolism,

bronchiectasis, BPN, TB)
252 LC, 223 non-cancer LRA Sens.: 95.8% (S), 96.2% (NS)

Spec.: 92.3% (S) 90.6% (NS) [225]

Asthma vs. COPD 20 asthma, 30 COPD PCA, CDA
96% acc.

Within/between day repeatability, reproducibility of
e-Noses

[229]

Fixed and classic asthma vs. COPD
(GOLD stages II-III)

21 fixed asthma, 40 COPD PCA, CDA 88% acc., 85% sens., 90% spec.
[230]

39 classic asthma, 40 COPD 83% acc., 91% sens., 90% spec.

IPF vs. COPD 32 IPF, 33 COPD PCA, CDA 80% cross-validated acc., Wider patient cohorts and
inclusion of more comorbidities needed [231]

COPD vs. LC vs. BC 50 COPD, 30 LC, 50 BC PCA, CDA, CAP
Correct classification values:

LC vs. COPD 96.47%, LC vs. BC 93.05%, BC vs. COPD
100%, COPD vs. LC vs. BC 91.35%

[201]

Bronchial vs. Laryngeal SCC (advanced) 10 bronchial, 10 laryngeal JMP Pro 10% misclassification, 100% sens., 80% spec. [232]

AD vs. PD vs. HC 18 AD, 16 PD, 19 HC LDA 76.2% sens., 45.8% spec., p < 0.0001 [233]

AeoNose

ILDs (COP, CTD) vs. COPD,
ILDs subgroups (COP, HP, IPF,

sarcoidosis, uILD, asbestosis, NSIP,
RB-ILD, DIP)

28 COP, 23 COPD

Athena program, t-test

AUC 0.77, 75% sens., 71% spec.

[234]
25 CTD-ILD, 23 COPD AUC 0.85, 88% sens., 71% spec.

174 ILDs, 23 COPD Less accurate discrimination of ILDs subgroups (e.g.,
AUC IPF vs. CTD-ILD 0.86, COP vs. CTD-ILD 0.82)

Asthma vs. CF 20 asthma (moderate-severe), 13 CF ANN AUC 0.90, 89% sens., 77% spec. [235]

HNSCC vs. LC 52 HNSCC, 32 LC ANN Acc., sens., spec.: 93%, 96%, 88% (best fit),
85%, 85%, 84% (cross-validation) [236]

Cancer types 100 HNSCC, 40 bladder, 28 colon cancer ANN

Acc., sens., spec.: 81%, 79%, 81% HNSCC vs. colon
cancer,

84%, 80%, 86% HNSCC vs. bladder cancer,
84%, 88%, 79% Colon vs. bladder cancer

[237]



Sensors 2022, 22, 1238 38 of 57

Table 4. Cont.

Sensor Diseases/Phenotypes/Stages Subjects Classifier Results Ref.

SpiroNose

LC vs. COPD vs. asthma vs. HC 31 LC, 31 COPD, 37 asthma, 45 HC PCA Cross-validation values 78–88%, repeatability ↑ [91]

ILD subgroups: 141 sarcoidosis, 85 IPF, 33 CTD-ILD, 25
HP, 11 IPAF, 10 NSIP PLS-DA

Acc., sens., spec.:
77%, 75%, 84% IPF vs. HP, 94%, 98%, 85% IPF vs.

CTD-ILD, 92%, 92%, 90% IPF vs. NSIP, 89%, 87%, 100%
IPF vs. IPAF, 75%, 100%, 67% CTD-ILD vs. IPAF, 98%,
90%, 100% CTC-ILD vs. NSIP, 90%, 94%, 72% HP vs.
sarcoidosis, 91%, 92%, 88% (training), 91%, 95%, 79%

(validation) IPF vs. non-IPF

[207]

Chemiresistor-
based

alkane sensor

LC vs. HC
LC vs. COPD 12 LC, 12 COPD, 13 HC MANOVA LC: 83.3% sens., 88% spec.

Sensor acc no smoke-dependence [108]

MOS,
electrochemical, hot
wire, and catalytic

LC vs. COPD 48 LC, 52 COPD 8 different 76.9–84.75% acc., 75–81.36% sens., 78.79–88.14 spec.
Highest acc. With KPCA-XGBoost [226]

LC vs. COPD 33 LC, 28 COPD PCA-SVM, KPCA-SVM,
PCA-XGBoost, KPCA-XGBoost

82.52–96% acc., 78.33–95% sens., 85–96.67% spec.
Highest acc. With KPCA-XGBoost [227]

Organically-coated
AuNPs and

SWCNTs based
chemiresistor

LC (I/II) vs. BPN 16 LC, 30 BPN DFA 87% acc., 75% sens., 93% spec.
Low LC sample→ careful interpretation [228]

BC vs. benign 30 HC, 15 BBT, 13 DCIS, 96 BC DFA
Acc., sens., spec.: 88.3%, 90.6%, 83.3% BC vs. BBT/HC,

71.2–82%, 62.6–80%, 75.7–82.3% BC vs. BBT,
81.4–84.4%, 83–83.3%, 81–92% BC vs. DCIS

[238]

Gca vs. OLGIM groups (0-IV) 99 Gca, 155 OLGIM 0, 136 OLGIM I-II,
34 OLGIM III-IV, 53 PUD DFA

Acc., sens., spec.:
92%, 73%, 98% Gca vs. 0–IV, 84%, 90%, 80% Gca vs. 0,

87%, 97%, 84% Gca vs. 0–II, 90%, 93%, 80% Gca vs. III-IV,
85%, 93%, 80% Gca vs. I–IV, 87%, 87%, 87% Gca vs. PUD

[239]

Gca vs. benign gastric conditions 37 Gca, 32 ulcers, 61 less severe
conditions DFA

89% sens., 90% spec.
84% sens., 87% spec. [240]

ulcer vs. less severe

AD vs. PD
AD vs. PD vs. HC 15 AD, 30 PD, 12 HC DFA

AD vs. PD: 84% acc., 80% sens., 87% spec.
Feasible overall discrimination, with large PD/HC

overlap
[114]

NA-NOSE BC, benign breast conditions, normal
mammographs

11 BC, 14 benign, 7 normal
mammographs

PCA/ANOVA/Student’s t-test,
SVM

94% sens., 80% spec. for benign vs. BC and negative
mammography, Similar results with both methods [116]

MCNPs-based
chemiresistor—
6 sensors-array

IBD vs. IBS
71 IBD (35 UC, 36 CD), 26 IBS ANN

81/88% acc., 92/73% sens., 53/100% spec.
(real/artificial)

[111]
CD vs. UC 75/96% acc., 75/100% sens., 47/93% spec.

(real/artificial)
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Table 4. Cont.

Sensor Diseases/Phenotypes/Stages Subjects Classifier Results Ref.

Molecularly
modified SiNW FET

Gca vs. LC
40 Gca, 149 LC, 56 asthma/COPD DFA, ANN

92% acc., 93% LC, and 85% Gca correct classification
[43]

LC vs. asthma and COPD 89% acc., 92% sens., 80% spec.

MOS gas sensor
array

Gca vs. gastric ulcer patients 49 Gca, 30 gastric ulcer Back-propagation Neural
network

93% acc., 94.38% sens., 89.93% spec.
Classification acc. Of malignant, benign, normal

subjects: 92.54%, 93.17%, 92.49%.
[241]

OC vs. benign and HC 86 OC, 51 benign, 114 HC PCA, k-NN

Acc., sens., spec.: 85%, 6%, 84% (cross-validation/strict
prediction), 87%, 89%, 86% (prediction/strict prediction),
86%, 84%, 85% (cross-validation/most probable pred.),

100%, 100%, 100% (prediction/most probable pred.)

[242]

AD vs. PD vs. HC 20 AD, 20 PD, 20 HC PCA Effective discrimination of AD vs. PD and HC [243]

BIONOTE CLD vs. NC-CLD 65 CLD, 39 NC-CLD PLS-DA, radar plot Successful discrimination, 16 cirrhotic patients
misclassified [244]

Commercial (MQ)
gas sensors

CKD vs. diabetes vs. HC high creatinine,
HC low creatinine

84 CKD, 24 diabetes, 54 HC high
creatinine, 54 HC low creatinine

Radar plots, PCA, SVM,
PLS-regression, HCA

PCA: 96.64% of total variance expressed in PC1–3
SVM: 100% correct classification of samples [245]

Disease histology/phenotyping

Tor Vergata e-Nose SCC vs. ADC 10 SCC, 10 ADC PLS-DA 75% correct classification [132]

24 colorants
SCC vs. ADC 22 SCC, 50 ADC

LPM
86.4% acc.

[127]
SCLC vs. NSCLC 9 SCLC, 83 NSCLC 78.1% acc. (moderate)

UV-irradiated
pristine, Au, Pt,

Au/Pt, Ni, Fe-doped
WO3NWs

LC vs. HC

4 SCLC, 8 SCC, 10 ADC, 12 HC

PCA 98.6 % acc.

[246]SCLC vs. NSCLC, SCC vs. ADC DFA Acc.: 84.5% SCLC vs. NSCLC,77.5% SCC vs. ADC

Molecularly capped
AuNPs and

SWCNT based
chemiresistors

LC with vs. without EGFR mutation 19 with EGFR, 34 without EGFR DFA 83% acc., 79% sens., 85% spec. [228]

Cyranose 320, Tor
Vergata, Common
In-vent, Owlstone

Lonestar

Clinically stable vs. unstable episodes of
asthma 22 partly controlled persistent asthma PCA

Correct classification: 95% baseline vs. loss of control,
86% loss of control vs. recovery

Owlstone Lonestar the most prominent
[90]
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Table 4. Cont.

Sensor Diseases/Phenotypes/Stages Subjects Classifier Results Ref.

Cyranose 320

Asthma inflammatory phenotypes 24 EOS., 10 NEUTR., 18 PAUC. PCA
Acc., sens., spec.: 73%, 60%, 79% EOS. vs. NEUTR., 74%,

55%, 87% EOS vs. PAUC., 89%, 94%, 80% NEUTR. vs.
PAUC.

[247]

Uncontrolled asthma-like symptoms Training set: 65 cluster 1, 22 cluster 2, 34
cluster 3

one-way ANOVA,
Kruskal-Wallis

Significant differences concerning chest tightness during
exercise, dyspnea and gender [248]

HC and controlled vs. partly controlled
and uncontrolled asthma

10 HC, 9 controlled, 7 partly, 12
uncontrolled PCA, radar plot Good predictive ability

Cross-validated AUC 0.80, 79% sens., 84% spec. [119]

Organically-coated
AuNPs and

SWCNT-based
chemiresistor

BC subtypes
12 LuminalA, 42 LuminalB, 12 Triple

Negative, 16 HER2+, 14 HER2
equivocal

DFA

Acc., sens., spec.:
LuminalA vs. others 81.3–87.7%, 75–87.5%, 82.1–87.5%
LuminalB vs. others78.1–86.3%, 83.3–85.3%, 74.1–87.2%

HER2+ vs. others 81.3–82.4%, 81.3–91%, 80.7–81.3%
Triple neg, vs. others 82.9–90.3%, 83.3–93.3%, 82.9–89.4%

Luminal vs. non-Luminal 70.8–87.7%, 70.4–88.1%,
71.4–87.1%

LuminalA vs. LuminalB 85.7–94%, 75–91.7%, 88.2–95.2%
HER2 status/luminal 85.7–100%, 85.7–100%, 83.3–100%

HER2 status/non-luminal 90.9%, 90.9%, 90.9%

[238]

Disease staging

Tor Vergata e-Nose LC Stage I vs. II/III/IV 40 stage I, 18 stage II, 6 III/IV PLS-DA
Sens.: stage I 90% vs. stage II-IV 57% (+ metabolic

diseases),
stage I 96% vs. stage II-IV 60% (LC only)

[133]

24 colorants LC Stage I/II vs. LC stage III/IV 41 SCLC, 42 NSCLC LPM 79.3 % acc. (moderate) [127]

11 sensor-array
(MOS,

electrochemical, hot
wire and catalytic)

LC Stage III vs. IV 44 stage II, 46 stage IV PCA-SVM, KPCA-SVM,
PCA-XGBoost, KPCA-XGBoost 70.42–82.42% acc., 45–81% sens., 79–95.5% spec. [227]

Organically-coated
AuNPs and

SWCNTs based
chemiresistor

OLGIM stages 155 OLGIM 0, 136 OLGIM I-II, 34
OLGIM III-IV, 7 Dysplasia DFA

Acc., sens., spec.: 0-II vs. III-IV and dysplasia 61%, 83%,
60%, 0 vs. I-II 43%, 45%, 41%, 0 vs. III-IV 66%, 90%, 61%,
0 vs. I-IV 50%, 50%, 50%, I-II vs. III-IV 64%, 80%, 60%

[239]

GCa I-II vs. III-IV 17 GCa I-II, 18 GCa III-IV DFA 89% sens., 94% spec. [240]

Molecularly
modified SiNW FET

LC staging (I-II vs. III-IV)
34 early stage, 110 advanced stage DFA, ANN

81% acc., 34.5%sens.,95% spec.
[43]

GCa staging (I-II vs. III-IV) 86.5% correct classification, 84.6 early stage, 87.5
advanced
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Table 4. Cont.

Sensor Diseases/Phenotypes/Stages Subjects Classifier Results Ref.

Cyranose 320 Bronchial/Laryngeal
in situ vs. advanced

bronchial: 10 in situ, 10 advanced,
laryngeal: 12 in situ, 10 advanced JMP Pro 21% misclassification rate, 82% sens., 75% spec. [232]

BIONOTE Liver cirrhosis (A, B, C Child–Pugh) NA PLS-DA Successful discrimination [244]

Acc.: accuracy, AD: Alzheimer’s disease, ADC: adenocarcinoma, AUC: Area Under the Receiver Operating Characteristic Curve, ANN: artificial neural network, BC: breast cancer, BBT:
Breast benign tumor, BPN: benign pulmonary nodules, CAP: canonical analysis of principal coordinates, CD: Crohn’s Disease, CDA: canonical discriminant analysis, CF: cystic fibrosis,
CLD: chronic liver disease, COP: cryptogenic organizing pneumonia, COPD: chronic obstructive pulmonary disease, CTD-ILD: connective-tissue diseases-associated ILD, DCIS: ductal
carcinoma in situ, DFA: Discriminant Function Analysis, DIP: desquamative interstitial pneumonia, EOS: eosinophilic, GCa: gastric cancer, GOLD: Global Initiative for Obstructive Lung
Disease, HBC: hexabenzocoronene, HCA: Hierarchical Cluster Analysis, HER2: Human epidermal growth factor receptor 2, HNSCC: Head and neck squamous cell carcinoma, HP:
hypersensitivity pneumonitis, IBD: Inflammatory Bowel Diseases, IBS: Irritable Bowel Syndrome, ILDs: interstitial lung diseases, IPAF: interstitial pneumonia with autoimmune features,
IPF: idiopathic pulmonary fibrosis, k-NN: k-Nearest Neighbors, KPCA-XGBoost: kernel principal component analysis—extreme gradient boosting, LC: Lung cancer, LRA: logistic
regression analysis, LPM: Logistic prediction model, MANOVA: multivariate analysis of variance, MOS: metal oxide semiconductor, NC-CLD: non-cirrhotic CLD, NEUTR: neutrophilic,
NS: non-smokers, NSCLC: non-small cell lung cancer, NSIP: non-specific interstitial pneumonia, NWs: nanowires, OC: ovarian cancer, OLGIM: operative link on gastric intestinal
metaplasia, PAH: Polycyclic aromatic hydrocarbons, PAUC: paucigranulocytic, PCA: Principal Component Analysis, PD: Parkinson’s disease, PLS-DA: Partial Least Square Discriminant
Analysis, PUD: peptic ulcer disease, RB-ILD: respiratory bronchiolitis-associated ILD, S: smokers, SCC: squamous cell carcinoma, SCLC: small cell lung cancer, Sens.: sensitivity, Spec.:
specificity, SVM: Support Vector Machine, TB: Tuberculosis, UC: Ulcerative Colitis, uILD: unclassifiable ILD, UV: ultra-violet.
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Figure 14. (a) Presentation of the cross-validation percentages of the differentiation of asthma, 
COPD, LC patients, and HC, using SpiroNose; (b) PCA plot of breathprints collected from asthmatic 
patients at the Academic Medical Center (AMC), Amsterdam and Medical Spectrum Twente (MST), 
Enschede, for which no significant differentiation is observed (p = 0.892). Adapted with permission 
from Ref. [91]. Copyright © 2015 IOP Publishing Ltd. 

Figure 14. (a) Presentation of the cross-validation percentages of the differentiation of asthma, COPD,
LC patients, and HC, using SpiroNose; (b) PCA plot of breathprints collected from asthmatic patients
at the Academic Medical Center (AMC), Amsterdam and Medical Spectrum Twente (MST), Enschede,
for which no significant differentiation is observed (p = 0.892). Adapted with permission from
Ref. [91]. Copyright © 2015 IOP Publishing Ltd.

Concerning LC histology and staging with sensing devices, promising studies have
been reported in the literature. The discrimination of NSCLC subtypes ADC and SCC has
been permitted using Tor Vergata e-Nose with an accuracy of 75%, by applying endoscopic
breath sampling [132] as well as by using a colorimetric sensor-array of 24 elements devel-
oped by Mazzone et al. ultimately achieving an accuracy of 86.4% [127]. SCLC and NSCLC
differentiation and LC staging (I/II vs. III/IV) were also examined by Mazzone et al.
though with moderate accuracies [127]. A 6-sensor-array based on UV-irradiated (394 nm)
pristine or metal-doped WO3NWs (Table 4) differentiated effectively not only ADC from
SCC, but also between SCLC and NSCLC with 77.5% and 84.5% accuracy values, respec-
tively (Figure 15) [246]. In another study aiming at the discrimination of LC patients from
HC while taking into account the existence of metabolic comorbidities, Tor Vergata e-Nose
exhibited far higher sensitivity for stage I LC in comparison to the rest of stages, either
in the presence or absence of metabolic diseases (Table 4) [133]. LC staging was recently
attempted by Liu et al. along with COPD discrimination as mentioned above, with stage III
LC being effectively discriminated from stage IV with an accuracy higher than 80%, using
KPCA-XGBoost [227]. Haick’s team has achieved LC staging with an accuracy of 81% and
with low sensitivity, using a molecularly modified Si NW FET (Table 4) [43].

As in the case of breath analysis with analytical methods, precise diagnosis of lung
diseases other than LC via sensing devices is an extensive field of research. The effective
discrimination of COPD and asthma has been reported in the literature by Fens at al. using
Cyranose 320 and taking into consideration smoking habits, leading to high cross-validated
accuracy values (Table 4) [229,230]. More recently, asthma and CF discrimination was
also reported for pediatric population using AeoNose and with high accuracy values,
excluding the confounding factors of diet, exercise, comorbidities and inhaled drugs [235].
Concerning ILDs, Krauss et al. used the AeoNose in an attempt to differentiate between
ILDs subgroups (Table 4), with moderate accuracy, as well as between ILDs cryptogenic
organizing pneumonia and connective-tissue diseases-associated ILD from COPD patients
with good sensitivity and specificity [234]. COPD and IPF differentiation has been recently
investigated by Dragonieri et al., with a high accuracy of 80%, verified by external validation
using Cyranose 320 [231]. In contrast to Krauss et al., Moor’s group achieved to reliably
discriminate patients suffering from different ILDs by using SpiroNose as well as greater
cohorts of ILD-patients (Table 4) [207]; the group demonstrated the applicability of e-Noses
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in ILDs differential diagnosis and specifically in IPF discrimination from non-IPF patients
with high accuracies (91%) [207].
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Figure 15. DFA plots representing the discrimination of (a) LC patients from HC; (b) SCLC from 
NSCLC patients; and (c) SCC from ADC patients, using a 6-sensor array of UV-irradiated (394 nm) 
pristine or metal-doped WO3NWs. The arrays achieved the detection of lung cancer but also the 
prediction of LC histological subtypes. Reprinted with permission from Ref. [246]. Copyright © 2020 
Published by Elsevier B.V. 
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been also reported. Brinkman et al. used 4 different e-Noses in order to discriminate be-
tween stable and unstable periods, comparing baseline (control) vs. loss of control and 
loss of control vs. recovery breath samples, with the Owlstone Lonestar being the most 
prominent concerning the discrimination of unstable periods (Table 4) [90]. More recently, 
Moreira et al. demonstrated the ability of Cyranose 320 to discriminate the uncontrolled 
asthma-like symptoms, using 3 different groups of asthmatic or suspicious of asthma par-
ticipants divided by unsupervised hierarchical clustering [248]. The division of partici-
pants was based on asthma, lung function, symptoms of the last month, age, and 
food/drink intake 2 hours before breath sampling [248]. In another recent study, the same 
e-Nose was used for the effective discrimination of HC and asymptomatic-controlled asth-
matic children from the symptomatic partly-controlled and uncontrolled asthmatic chil-
dren, after assessing the discriminatory ability of subsets of the 32 sensors of Cyranose 
320 for the six different possible combinations of the 4 studied groups; increased feasibility 
and modest to good diagnostic accuracy values were obtained [119]. Cyranose 320 has 
been also used for COPD phenotyping permitting (especially in the case of GOLD stage 
I) the detection of activation of inflammatory cells, indicating increased inflammatory ac-
tivity in mild rather than severe COPD [120]. 
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Figure 15. DFA plots representing the discrimination of (a) LC patients from HC; (b) SCLC from
NSCLC patients; and (c) SCC from ADC patients, using a 6-sensor array of UV-irradiated (394 nm)
pristine or metal-doped WO3NWs. The arrays achieved the detection of lung cancer but also the
prediction of LC histological subtypes. Reprinted with permission from Ref. [246]. Copyright © 2020
Published by Elsevier B.V.

Disease phenotyping using sensing devices seems to be also feasible. Plaza et al.
achieved differentiation between the three inflammatory phenotypes of asthma with high
accuracy values (Table 4), with the participants’ phenotypes being characterized by differ-
ential leukocyte counts in induced sputum [247] while asthma-control assessment has been
also reported. Brinkman et al. used 4 different e-Noses in order to discriminate between
stable and unstable periods, comparing baseline (control) vs. loss of control and loss of
control vs. recovery breath samples, with the Owlstone Lonestar being the most prominent
concerning the discrimination of unstable periods (Table 4) [90]. More recently, Moreira et al.
demonstrated the ability of Cyranose 320 to discriminate the uncontrolled asthma-like
symptoms, using 3 different groups of asthmatic or suspicious of asthma participants
divided by unsupervised hierarchical clustering [248]. The division of participants was
based on asthma, lung function, symptoms of the last month, age, and food/drink intake
2 h before breath sampling [248]. In another recent study, the same e-Nose was used for
the effective discrimination of HC and asymptomatic-controlled asthmatic children from
the symptomatic partly-controlled and uncontrolled asthmatic children, after assessing
the discriminatory ability of subsets of the 32 sensors of Cyranose 320 for the six different
possible combinations of the 4 studied groups; increased feasibility and modest to good
diagnostic accuracy values were obtained [119]. Cyranose 320 has been also used for COPD
phenotyping permitting (especially in the case of GOLD stage I) the detection of activation
of inflammatory cells, indicating increased inflammatory activity in mild rather than severe
COPD [120].



Sensors 2022, 22, 1238 44 of 57

4.2. Cancers

Discrimination between different cancer types and cancer stages/histologies as well
as between malignant and benign tumors (additionally to LC which has been mentioned
earlier) using breath analysis of VOCs is also a hot research topic. Analytical techniques
have been used for such applications. Phillips at al., for example, detected 5 VOCs and were
able to differentiate BC patients from patients with abnormal mammograms and negative
biopsies, with 93.8% sensitivity and 84.6% specificity [249]. Haick’s group identified
21 exhaled VOCs that were significantly different between HC and patients suffering
from breast benign tumors (BBT), ductal carcinoma in situ (DCIS, early-stage BC) and
BC; a potentially cancer-related set of 14 VOCs that were significantly different between
malignant and non-malignant patients was also identified in this study thus permitting
group differentiation with 78% sensitivity and 72% accuracy [238]. In another study by the
same group, the detection of GCa and the presence/absence and risk level of precancerous
lesions was attempted using GC-MS so as to identify 8 VOCs statistically different between
GCa and operative link on gastric intestinal metaplasia (OLGIM) groups (e.g., GCa vs.
OLGIM 0-IV, GCa vs. OLGIM 0-II, GCa vs. OLGIM 0), as well as between GCa and peptic
ulcer disease (PUD) and OLGIM 0-IV and PUD (p-values < 0.017) [239]. Those 8 VOCs,
in different combinations, are considered to correspond to the breathprints of OLGIM
groups [239].

Remarkably, respective applications of sensing devices have been extensively investi-
gated for various cancer types. Haick’s group has used NA-NOSE in order to discriminate
between subjects with BC, benign breast conditions or normal mammographs, achieving
increased sensitivity and specificity values for the BBT patients in comparison to the other
2 groups [116]. In another study by the same group a chemiresistor based on organically-
coated Au NPs and SWCNTs was successfully used for the differentiation of BC from BBT
and HC, BBT only or DCIS only, as well as for the differentiation of different molecular BC
sub-groups as presented on Table 4. Larger studies are necessary, though for significant
statistical results and more information to be obtained [238]. Very recently, differentiation
between BC and LC has been achieved as well by Rodriguez et al. with a correct classifica-
tion of 93.05% [201]. Concerning GCa, the differentiation of GCa and OLGIM groups as
well as between different OLGIM stages (e.g., OLGIM 0 vs. I–II, 0 vs. I–IV, I–II vs. III–IV)
has been attempted by Haick’s group using the same type of chemiresistor-array and lead-
ing to high validated accuracy values in some cases (Table 4) [239]. In another promising
study, Haick et al. used a nanomaterial-based chemiresistor (Table 4) that permitted the
successful discrimination of Gca from benign conditions along with Gca staging (early
vs. late stages) [240]. Gca differentiation from gastric ulcer patients has been achieved
by Daniel et al. with a great classification ability, using an array of commercial MOS gas
sensors and various ANN types [241]. Remarkably, a molecularly modified Si NW FET,
developed by Haick’s group, has permitted Gca staging with an accuracy of 87% as well
as Gca differentiation from LC with an accuracy of 92% [43]. More recently, discrimina-
tion of ovarian cancer (OC) from women with benign tumors and HC was achieved by
Raspagliesi et al. with great classification performance, both in the case of strict and most
probable prediction, using again MOS sensors [242]. Notably in class prediction applica-
tion, 4/23 early-stage OC patients were misclassified as benign/HC along with 2/14 OC
patients with tumor size < 3 cm in cross validation phase, while in prediction phase only
1/9 early-stage patients were misdiagnosed [242]. Another common cancer type, i.e., head
and neck cancer (HNC), has been studied for differential diagnosis with sensing devices.
As an example, Hooren et al. attempted to discriminate HNC from LC with a high accuracy
of 93% analyzing patients’ exhaled breath with AeoNose, excluding cutaneous tumors and
salivary glands malignancies [236]. HNC differentiation from colon and bladder cancer
with AeoNose was also reported, by the same group along with the discrimination between
bladder and colon cancer, demonstrating the discriminant ability of the e-Nose for those
cancer types after double cross-validation [237]. More recently, Cyranose 320 was used for
the differentiation of advanced bronchial (LC) and laryngeal (HNC) SCC, as well as for the
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discrimination of advanced and in situ stages of bronchial and laryngeal SCC, leading to
successful classification of the groups (Table 4) [232].

4.3. Liver, Renal, and Intestinal Diseases

Liver cirrhosis, chronic hepatitis [244], CKD [113], and inflammatory bowel diseases
(IBD) comprise common liver, kidney, and intestinal diseases, respectively. As far as CKD
is concerned, it is characterized by gradual loss of kidney function within months or
years, while different treatment is demanded depending on disease stage (stages I–V) [113].
Similarly, in the case of chronic liver disease (CLD), disease staging is of great importance;
following CLD diagnosis, using invasive biopsy, liver function assessment is conducted
biochemically [244]. On the other hand, early stage and precise IBD and IBS diagnosis, as
well as the invasive diagnostic methods followed for IBD, comprise challenging issues [111].
Consequently, precise diagnosis and staging of liver, kidney and intestinal diseases are
particularly important and have been attempted using breath analysis with sensing devices.
Pennazza et al. for instance used BIONOTE e-nose to successfully differentiate not only liver
cirrhosis and CLD from non-cirrhotic CLD (chronic hepatitis) but also liver cirrhosis stages
by taking into account smoking habits and potential comorbidities (e.g., diabetes, lung, and
heart diseases) [244]. Concerning renal diseases, Haick’s group achieved CKD staging using
organically functionalized Au NPs-based chemiresistors and SVM [113]. The classification
of CKD stage IV in relation to stage V was permitted by 2 or 3 sensors with an accuracy
of 85%, a sensitivity of 75% and specificity of 92% while only one sensor allowed for the
discrimination of early and advanced stages with 76% accuracy, 75% sensitivity, and 77%
specificity [113]. The discrimination of CKD from other diseases has been also attempted.
Specifically, discrimination of CKD, diabetes, and HC with high or low creatinine has been
attempted with success using an array of commercial (MQ) sensors along with different
classification methods, with SVM and PCA leading to good group classification [245].
Remarkably, pre-concentration or dehumidification were not needed for clear classification
to be accomplished [245]. The effective discrimination between the intestinal diseases IBD
and IBS has been also reported along with further differentiation of the IBD into ulcerative
colitis (UC) and Crohn’s disease (CD), using not only artificial but also real-breath samples
and a MCNPs-based chemiresistor (Table 4) [111]. The higher accuracy values observed
when using artificial samples is expected and attributed to the standard concentration of
VOCs, contrary to the variable concentration of VOCs in breath [111].

4.4. Neurodegenerative Diseases

Neurodegenerative diseases are characterized by gradually augmented occurrence, as
a direct consequence of the increased lifespan of human population [250], with Alzheimer
(AD) and Parkinson (PD) being the most frequent [114]. Concerning AD, early disease de-
tection is of great importance for preventing, decelerating and terminating the disease [250]
while diagnosis for both diseases is based on the assessment of clinical symptoms [114].
Remarkably, the analysis of exhaled VOCs has been investigated for precise AD diagnosis
as well as for differential diagnosis between AD and PD [114,250]. Recently, Tiele et al.
attempted to discriminate mild cognitive impairment due to AD (MCI) from AD, using
GC-MS, achieving 60% sensitivity and 84% specificity along with the detection of 6 potential
discriminant VOCs [250]. Haick’s group, on the other hand, achieved the discrimination
of AD and PD as well as an overall discrimination of AD, PD, and HC, using an array
of 20 nanomaterial-based chemiresistors and GC-MS (Table 4) [114]. In a similar study,
the ability of IMS and Cyranose 320 to differentiate AD, PD, and HC was demonstrated,
achieving a high overall discriminant capability (Table 4) [233]. IMS analysis revealed five
VOCs significantly different between the groups [233]. The discrimination of the same
groups of subjects has been also attempted using different arrays of MOS sensors (TGS,
MICS) with one of the combinations (8 MOS sensors) demonstrating the best discriminant
ability [243].
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5. Conclusions and Future Perspectives

Exhaled breath analysis, especially using selective or cross-reactive sensors, comprises
a non-invasive method that holds a great promise for application in early-stage and differen-
tial diagnosis of not only respiratory but also systemic diseases. The aim of this review was
to present the main categories of nanomaterials and sensors that have been used up to now
in exhaled breath analysis for disease diagnosis as well as to demonstrate the applicability
of breath analysis in differential diagnosis, phenotyping, and staging of several types of
diseases, especially via the use of cross-reactive sensing devices.

The progressive development of novel nanomaterials offers a great opportunity to
develop more effective sensing elements, both for selective and cross-reactive sensors and
especially for point-of-care diagnosis, treatment monitoring and population screening.
However, fundamental challenges in this novel research field inhibit the application of
breath analysis in clinical practice and should therefore be addressed. Concerning analytical
techniques used for exhaled VOCs identification, the use of bulky, expensive, and complex
analytical devices is limited in hospitals while their incorporation in portable point-of-care
systems is still unattainable [251]. In addition, the validity of breath analysis results is of
major concern since the trace levels of exhaled VOCs affect the analysis accuracy [252]. At
the same time the lack of clear breath sampling protocols [252], e.g., breath collection [251]
and breath storage, could potentially change sample composition [251] and therefore
emerge as important challenges. Sample composition can be also affected by confounding
factors, i.e., age, gender, place of living, habits, and nutrition. In the case of sensors
exhalation rate, a hardly controlled parameter, may also play a confusing role hence
complicating the procedure [251].

For those limitations to be overcome, breath analysis research should focus on sam-
pling and procedure protocols standardization [118,251] and system improvement towards
technical/physiological/pathophysiological confounders [118], in order to determine the
endogenous VOCs and to define valid exhaled patterns of biomarkers. Towards this
direction, standard correlations between blood and breath VOC concentrations could
be established [251]. Furthermore, the development of portable/wearable and low-cost
nanomaterial-based sensors that are resistant to humidity [251] and serve the clinical needs
(i.e., selectivity for disease-specific VOCs and inorganic gases, small recovery time for pop-
ulation screening), along with the optimization of sensor training and validation by using
different subject-groups comprise critical steps for the development of sensors applicable
in clinical diagnosis [118]. Notably, the ability of new sensing systems to discriminate
different diseases, to achieve precise early diagnosis of diseases with similar symptoms and
underlying mechanisms, is a major concern [200] that has only recently been considered.

In order to meet all of the aforementioned goals, interdisciplinary research and co-
operation is an essential prerequisite [251]. Breath analysis poses as a powerful and
promising diagnostic tool that could eventually be used in clinical practice or in portable
and compact health monitoring systems, provided it meets most of the existing challenges.
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