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Abstract: The sophistication of ship detection technology in remote sensing images is insufficient,
the detection results differ substantially from the practical requirements, mainly reflected in the
inadequate support for the differentiated application of multi-scene, multi-resolution and multi-
type target ships. To overcome these challenges, a ship detection method based on multiscale
feature extraction and lightweight CNN is proposed. Firstly, the candidate-region extraction method,
based on a multiscale model, can cover the potential targets under different backgrounds accurately.
Secondly, the multiple feature fusion method is employed to achieve ship classification, in which,
Fourier global spectrum features are applied to discriminate between targets and simple interference,
and the targets in complex interference scenarios are further distinguished by using lightweight CNN.
Thirdly, the cascade classifier training algorithm and an improved non-maximum suppression method
are used to minimise the classification error rate and maximise generalisation, which can achieve
final-target confirmation. Experimental results validate our method, showing that it significantly
outperforms the available alternatives, reducing the model size by up to 2.17 times while improving
detection performance be improved by up to 5.5% in multi-interference scenarios. Furthermore, the
robustness ability was verified by three indicators, among which the F-measure score and true–false-
positive rate can increase by up to 5.8% and 4.7% respectively, while the mean error rate can decrease
by up to 38.2%.

Keywords: ship detection; multiscale feature extraction; lightweight CNN; robustness

1. Introduction

Ship detection from infrared remote sensing images has an important but challenging
role in remote surveillance and military reconnaissance [1,2]. Due to the large coverage
area of infrared remote sensing images, and the small proportion of targets in the images,
the accuracy of target-detection algorithms and real-time processing performances is se-
riously affected. For example, a remote sensing image obtained by one satellite contains
30,000 × 30,000 pixels, among which the size of ship area is 10 × 10 pixels, and the target
area only accounts for one part per million of the image, which results in a serious lack
of target texture detail, especially when the image resolution is low. Although certain
existing infrared-image ship detection technologies have emerged, it is difficult for these
methods to simultaneously address the following challenges: (1) it is difficult to extract
universal features for various types of target ships in low-resolution or low-contrast im-
ages. Detection in low-resolution or low-contrast images will lead to the loss of texture
details, and difficulty in the extraction of the available features of the target. Coupled with
the interference of infrared image noise from clouds, reefs and so on, the features of the
middle and lower layers are easily ignored, and it is easy to generate false-positives and
negatives. (2) It is harder to maintain the balance between algorithm performance and
algorithm complexity. Generally speaking, algorithms with high detection performances
have high levels of complexity due to their calculation modes. When algorithms with high
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complexities need to be transplanted to embedded chips with limited resources, part of
the algorithm’s performance is often sacrificed. (3) Most of the existing detection methods
compromise on real-time computing. The majority of detection algorithms have require-
ments that make them difficult to match with the resources that are available in real-time
space reconnaissance applications, especially when introducing algorithms with the depth
of neural networks to target classification; it not only requires a large amount of training
data to be effectively generalized but also uses a larger amount of computational power
compared to other methods.

Infrared images have a strong spatial correlation, contain more homogeneous regions,
and have weak texture features, so the mean gray value is relatively stable [3]. However,
when detecting a target ship on the sea surface, there are still several forms of interference:
first of all, because the response characteristics of each pixel in the infrared imaging
equipment are not completely consistent, different detection units produce different outputs
under the same radiation input, so there is a bright and dark striped noise in the infrared
image, resulting in a low signal-to-noise ratio of the image, which seriously affects the
performance of the target-detection algorithm. Secondly, remote sensing satellites are easily
affected by clouds, sea-clutter, and other weather during imaging, resulting in a complex
detection background, reduced contrast between the target and background, which makes
it easy to produce a large number of false-alarm. Thirdly, it is difficult to select appropriate
features to separate the target and background because of the existence of various types
and sizes of targets, and the unequal representation of grayscale features. Therefore, at
present, there is no detection algorithm that is applicable to all possible scenarios, exist
methods can only be used to minimise interference and ensuring detection efficiency in
specific detection scenarios.

With the improvement of artificial intelligence technology, deep learning can adap-
tively and automatically learn features in data by constructing a deep neural network,
which makes up for the deficiency of manual design features to a certain extent [4–6].
Object detection technology based on deep learning can generally be divided into one-stage
and two-stage detection methods. Two-stage target-detection algorithms generally consist
of candidate-region extraction and target confirmation, they utilize powerful features with
statistical classifiers to discriminate ships from false-alarm, which has great advantages in
maintaining detection accuracy. One-stage target-detection algorithms aim to extract all
the candidate regions for a subsequent classifier, they omit the step of candidate-region
extraction and directly obtain the target category and position from the image. Compared
with two-stage algorithms, they have a huge speed advantage, but their detection accu-
racies are low due to their rough detection strategy. When deep learning algorithms are
deployed on embedded platforms or other platforms, it is a great challenge to balance the
accuracy, speed and memory resources needed for target detection.

As a result of the above-mentioned analysis, the complex background and diverse
interference factors will seriously affect the extraction and classification of the effective
features of the targets. In addition, during the process of deployment and application,
it is difficult to balance detection performance, computational complexity and real-time
performance. In order to solve the problems raised above, the contributions of this paper
are presented as follows. (1) Candidate-region extraction: our method combines the cascade
rejection mechanism with multiple other features through a linear cascade classifier, which
orders candidates from simple to complex, uses relatively simple features to exclude a
large number of simple alarms, such as seawater and clouds, and uses more sophisticated
features to extract final candidate regions. (2) Multiple feature fusion-classification: a false-
alarm elimination method based on Fourier global spectral features and lightweight CNN
is proposed. In this method, the global Fourier transform was applied to each candidate
area to obtain the corresponding feature description and achieve a rough classification of
candidate regions, then the local feature was extracted by the lightweight CNN model to
further eliminate false-alarm. (3) Classifier training and target confirmation: a classifier
training algorithm is proposed to minimise the classification error rate and maximise
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generalisation, and the improved NMS algorithm is used to merge real ships and achieve
an accurate output.

The remainder of this paper is organized as follows. Section 2 describes the related
work. Section 3 introduces the methodology and details the elaborate implementation
and optimization of the core module of the algorithm. Section 4 describes the extensive
experiments, and Section 5 presents our conclusions and recommendations future work.

2. Related Work

In recent years, many infrared ship detection algorithms have been proposed by
researchers. In these researches, ship target detection algorithms are generally divided into
traditional ship detection method and deep learning ship detection method. The existing
traditional ship detection algorithms can be divided into four categories for different
scenarios: ship detection algorithms based on wake extraction; ship detection algorithms
based on template matching; ship detection algorithm based on feature statistics; and ship
detection methods based on classification learning. Although some scholars have put
forward some novel research ideas, their core ideas are inseparable from the above types of
target detection. Traditional target-feature extraction methods are mainly based on the idea
of grey and texture features where a pre-trained classifier is employed for classification.
For example, some researchers propose a saliency strategy, a feature descriptor [7,8], and a
local comparison method [9] to determine small infrared targets, but these methods are
very sensitive to noise, which usually generates a high false-alarm rate. Most infrared
small-target-detection methods based on saliency have high computational complexity and
are difficult to optimise using parallelism. Therefore, ship detection algorithms based on
the weighted local difference measurement [10], and weighted voting mechanism [11] have
been proposed. Moreover, references [12,13] introduce the multiscale local uniformity and
greyscale difference weighting strategy to detect small infrared targets. In references [14,15],
multi-frame images and sensor data in the infrared image sequence were analysed for
ship detection. Based on extreme value theory, the edge detection [16,17] and cascading
characteristics methods [18] are adopted to identify the objects of interest and suppress
background clutter. The above traditional detection methods are often based on low-level,
hand-made features. It is a great challenge to achieve high detection accuracy in complex
scenes, such as those with cloud interference and low contrast, and improvement is needed.

With the improvement in artificial intelligence technology, deep learning has attracted
an increasing amount of attention. Target-detection techniques based on deep learning in-
clude anchor-based and anchor-free techniques. Firstly, anchor-based technology includes
one-stage and two-stage detection. One-stage detection techniques include the single-shot
detector (SSD) [19], the deconvolutional SSD (DSSD) [20], RetinaNet [21], RefineDet [22],
You Only Look Once Version 3 (YOLOV3) [23], etc. Two-stage detection techniques in-
clude FTP-region-based convolutional neural networks (RCNNs) [24], region-based fully
convolutional networks (R-FCNs) [25], the Feature Pyramid Network (FPN) [26], Cascade
R-CNNs [27], the subnet Internet Protocol (SNIP) [28], etc. Generally, two-stage target
detection is more accurate than one-stage target detection, but the processing speed is
slow. Secondly, anchor-free technology includes key-points and segmentation. Key-point-
based technologies include CornerNet [29], CenterNet [30], Cornernet-Lite [31], etc., and
segmentation technologies include a feature-selective anchor-free (FSAF) module [32], a
fully convolutional one-stage (FCOS) object detector [33], FoveaBox [34], etc. These deep
learning methods achieve good detection accuracy in natural image target detection, but
they also have great limitations during satellite processing with limited remote sensing
image resources. First, the compression method of deep neural networks has higher perfor-
mance requirements, especially for large networks. Second, the algorithm has difficulty
meeting performance expectations. It is difficult to design a state-of-the-art machine for
the data-flow scheduling of different layers, and there will be considerable redundancy
in logical resources. In addition, there is the data dependence problem. Compared with
traditional methods, deep learning relies more on the large-scale training of data and it
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needs a large amount of data to understand the potential data-mode. When the target
features and false-alarm features in the detected images are relatively uniform, such a data
dependence problem is not obvious, otherwise, when the target features and false-alarm
features in the detected images are significantly different, the scale of training data will
need to be considerably increased, which is a great practical challenge.

In some relatively simple conditions, the methods mentioned above can achieve
considerable detection results. However, the detection performance of these algorithms will
be affected in the following three situations: (a) low contrast between ships and background;
(b) scenes with complicated sea conditions; and (c) in situations of false-alarm interference.
In addition, these algorithms also give rise to different levels of missed detection when
multiple vessels are docked. Therefore, there is still much room for improvement in
ship detection.

3. Methodology
3.1. Candidate-Region Extraction

To solve the problem of complete extraction of the ship region, the suspected region
of the target ship is located step-by-step based on the idea of coarse-to-fine detection,
as is shown in Figure 1. We design the candidate-region extraction through three parts.
Firstly, using a multi-scale model, hierarchical images are constructed, which are employed
as original image-data for subsequent processing. Secondly, regional gradient-feature
reconstruction is undertaken. The region of interest (ROI) is extracted by constructing the
Sobel operator and gradient template, and the target region is preliminarily determined.
Thirdly, in the vector binarization of flow convolution, target information is extracted from
the combination of multiple features by traversing the image data using flow convolution
alongside using the more sophisticated features for further identification.
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3.1.1. Multiscale Model

The target types to be detected are different under different image resolutions, such
as in 5-m-resolution images, the target ships are generally large military targets, large
passenger targets and large cargo targets, but in high-resolution images, fishing ships and
other small ships are also the targets that need to be detected. Ships in the same remote
sensing image have different sizes, and the same ship has different scales in images with
different resolutions. Therefore, the existing methods are difficult to adapt to problems
that involve large differences in the apparent features of ship caused by scale diversity.
In order to find target ships of different sizes in remote sensing images, we constructed a
standard image model through repeated smoothing and sub-sampling, and then generated
a multi-scale image model through reasonable scaling. The definition of each layer is shown
in Equation (1).

Layi = Layori ⊗ θi, i = 1, 2, 3. . .n (1)

where Layi represents the generated image models at different scales, Layori represents the
standard image model, ⊗ represents the bilinear interpolation operation, θi represents the
scaling factor, and the value of parameter i ranges from 1 to n. In the candidate-region
extraction stage, one of the more important parameters is the filter size (k × k), which is
the sliding cell that we need. As to the small target, we can set the filter size to ensure that
it completely covers the target. As for the larger ships, if a smooth or partial calculation
can’t cover the whole target, we down-sample the image according to the actual testing
requirements in terms of narrowness, until the scaled target size meets the minimum
coverage area. Therefore, the selection of the parameter “k” is very important. If k is too
small, the target ship cannot be covered, otherwise, false-alarm will appear in the covering
box. By analyzing the size of target ship in the dataset, we can select parameters 10–15,
basically to detect all ships in the dataset on the basis of a multi-scale model, this size-range
is the optimal processing unit size after a lot of derivation, and can deal with different
target sizes and characteristics. In this paper, we define k as 11, that is, the filter size is
11 × 11 pixels.

The parameter θ relates to the reduction factor for image scaling. For easy under-
standing, the parameter θ can be regarded as the enlargement factor for the sliding 11 × 11
window. In the multi-scale model stage, there are two important parameters: the image
size img × img; and the threshold value θ. Since the size of the sliding window is 11 × 11,
the parameters should be set to fully cover the target when using the maximum reduction
factor, where the maximum reduction factor is the result of the multiplication of θ1, θ2 and
θ3. Through a large amount of training and derivation, we find that when the scale is too
small it will result in incomplete coverage, and if the scale is too large it will result in the
loss of target features. When the maximum reduction factor is close to 35, better results
can be obtained in the data set. Further tests of the combination of factors in each layer
achieve combinations of values of 2, 1.25 and 1.25 for the maximum reduction factor. Under
this set of parameters, our algorithm can achieve a better detection effect. Of course, this
specific combination is not unique, we only need an approximate optimal combination, and
the parameters θ1, θ2 and θ3 can be exchanged freely. Therefore, in order to meet the test
requirements, if we make θ1= 2, θ2 = 1.25, θ3 = 1.25, we design a three-layer scale scaling
model that can meet the full coverage requirements of all ships of different sizes, and the
maximum coverage size can reach 34 pixels, which meets the test requirements of ship
samples in the dataset. At the same time, because the multi-scale model uses a standard
image zooming process for large object detection without any processing of the standard
image for testing, it can also provide security for small-target detection (e.g., pixels covering
far less than 11 × 11 of a small target in a standard image can be detected even if the target
is not detected after scaling through the entire range of scales in the model), and avoid the
occurrence of missed detection problems.

Since the sizes of images obtained in the detection stage are different, to facilitate
subsequent processing, the first stage of this paper is to carry out image scaling. For
vector images, image scaling does not cause distortion, blur or other problems, but the
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infrared remote sensing image is similar to a bitmap, and thus, it is necessary to select an
appropriate image scaling algorithm. Bilinear interpolation is the interpolation of image
pixels. Even under the condition that the original image is not smooth, bilinear interpolation
will produce a smooth output, and as the infrared remote sensing image resolution is low,
the target ships in the images require contour smoothing if they are small. In this case, the
bilinear interpolation algorithm has a high-quality effect; the algorithm complexity is lower,
and the time efficiency is better.

For point P = (x, y) on the line between Q1 = (x0, y0) and Q2 = (x1, y1), the calcula-
tion process of the y coordinate is shown in Equation (2):

y = y0 + (x− x0)
y1 − y0

x1 − x0
=

y0(x1 − x) + y1(x− x0)

x1 − x0
, (2)

From the perspective of the weighted average, the weight is inversely proportional
to the distance between the known point and the unknown point, that is, the closer the
known point is to the unknown point, the greater the weight of the solution result of the
unknown point. Therefore, according to the distance between the normalised unknown
point and the two known points along the X-axis, the two weights should be x−x0

x1−x0
and

x1−x
x1−x0

, respectively. We obtain the derivative calculation progress of y that is shown in
Equation (3) as follows:

y = y0

(
1− x− x0

x1 − x0

)
+ y1

(
1− x1 − x

x1 − x0

)
= y0

(
1− x− x0

x1 − x0

)
+ y1

(
x− x0

x1 − x0

)
, (3)

Bilinear interpolation is the extension of linear interpolation in the plane region, and its
core idea is to perform linear interpolation in each direction of two dimensions. Given the
coordinates of four points Q11 = (x1, y1), Q21 = (x2, y1), Q12 = (x1, y2), and Q22 = (x2, y2),
and given the value of function f at four points, the bilinear interpolation algorithm can be
utilised to obtain the value of function f at point P(x, y). The calculation process is shown
in Equations (4)–(6):

f (x, y1) =
x2 − x
x2 − x1

f (Q11) +
x− x1

x2 − x1
f (Q21), (4)

f (x, y2) =
x2 − x
x2 − x1

f (Q12) +
x− x1

x2 − x1
f (Q22), (5)

f (x, y) =
y2 − y
y2 − y1

f (x, y1) +
y− y1

y2 − y1
f (x, y2), (6)

In this paper, a bilinear interpolation algorithm is used to expand and shrink the image
size of the module to be detected, and images of different sizes are obtained as the input of
the subsequent detection module. Through this scaling process, the subsequent detection
algorithm has better adaptability to target ships with different characteristics. A summary
of the multiscale model’s operation is shown in Algorithm 1.

3.1.2. Regional Gradient-Feature Reconstruction

The target in the image usually has a well-defined contour, while most backgrounds
do not. According to the difference between the target and the background, the background
and target can be distinguished by gradient features.

To quantify the possibility of targets being contained in a region, the region size is
adjusted to a fixed size, and then the gradient of the whole region is calculated as the
feature vector. For image I, I (i, j) represents the grey value at position (i, j) in the image.
The gradient xi of image I along the x-direction is the first derivative of the image in the
x-direction. The gradient yi of image Img along the y-direction is the first derivative of the
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image in the y-direction. The calculation of gradients Ix and Iy is shown in Equations (7)
and (8), respectively:

Ix =
I(i + h, j)− I(h, j)

h
(7)

Iy =
I(i, h + j)− I(h, j)

h
(8)

In the actual algorithm design process, the value of h is generally 1, and the Sobel
operator is applied to quickly extract image gradient features. Sobel operator is a discrete
difference operator, which is used to approximate the gray-level from an image brightness
function. Using this operator at any point in the image will produce the corresponding
grayscale vector. The Sobel operator is based on the gray-weighted-difference between the
upper, lower, left, and right adjacent points of a pixel. If the gradient value of a pixel in the
overall x and y directions is obtained, it only needs to add the gradient calculation results
calculated by Sobel in each direction. The Sobel operator is used to calculate the gradient
characteristics of the image, which is shown in Equations (9) and (10) as follows:

Ix= Sx ⊗ Img (9)

Iy= Sy ⊗ Img (10)

where Img represents the input image, Sx and Sy represent the Sobel operators, and ⊗
represents the gradient operation. The gradient amplitude M (i, j) of image Img at (x, y)
can be obtained from Ix and Iy, which are shown in Equation (11):

M(i, j)= min(|Ix(i, j) |+|Iy (i, j)|, S image) (11)

Algorithm 1 Multiscale model operation

Input: Blocks of images, location to be processed, down-sampling parameter θ

Output: “ResamImg” represents the output layers after down-sampling
1. Do the following steps:
2. Initialise parameters of first layer θ = 2, initialisation Loc.x, Loc.y, Loc.height, Loc.width, and
ResamImgylen;
3. Update ResamImg as following condition:

for lav = 1
pos = detector (ResamImg, model, Opts);
Loc.x = [Loc.x, pos.x × scale + xstart];
Loc.y = [Loc.y, pos. y × scale + ystart];
Loc.height = [Loc.height, pos. height × scale];
Loc.width = [Loc.width, pos. width × scale];
ResamImg_xlen = round(ResamImg_xlen/Opts.sStep);
ResamImg_ylen = round(ResamImg_ylen/Opts.sStep);
ResamImg = imresize (ResamImg, [ResamImgylen, ResamImg xlen],’bilinear’);
scale = 2;

end
4. End

Figure 2 shows a schematic of the image after scaling. The target ship can be better
represented by selecting an appropriate scaling factor.

3.1.3. Vector Binarization of Flow Convolution

The operation of linear convolution is essentially the computation of the inner product
of two vectors by representing a vector as the weighted sum of multiple binary vectors,
consisting of −1 and 1, such that the inner product operation of a vector can be computed
quickly using simple bit operations. The convolution operation is an important step
in the realisation of whole-target detection. When hardware is employed to realise the
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convolution operation, it is necessary to identify a scheme that accurately realises the
convolution operation. The operation does not occupy too much space and is fast enough
to complete the convolution operation of a target region in a pixel-clock. During the
convolution operation, it is necessary to know the value of pixels around the current pixels.
However, in the process of image processing, the data obtained exhibit the form of pixel
streams rather than the whole image, and thus, it is necessary to cache the surrounding
pixels that are needed. Algorithm 2 shows a summary of the vector binarisation operation.
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Algorithm 2 Vector binarisation operation

Input: Vector w to be approximated, number of binary vectors Nw

Output:{{ ∂j}Nw
j=1

}
, {{ βj}Nw

j=1

}
, represents Nw binary vectors and corresponding weights

1. Do the following steps:
2. Initialise residuals ε= w
3. Update ∂j and βj as the following conditions:

for j = 1 to Nw do
∂j = sign(ε)

βj=<∂j, ε> /||∂j||2

ε← ε− β jαj
end

4. End

The approximate representation of w can be obtained through the vector binarisation
approximation algorithm, w ≈ ∑Nw

j=1 β j∂j, assuming that the region size is 8 × 8. The

gradient feature is a 64-dimensional feature vector, x ∈ R64. The model parameters of
the linear support-vector-machine (SVM) classifier based on gradient-feature training are
equivalent to the gradient feature dimension, which is also a 64-dimensional vector, and is
defined as w ∈ R64. In the above summary of Algorithm 2, ∂j represents the binary basis
vector ∂j ∈ {−1, 1} 64. After the binary approximation algorithm, there are a total of Nw
binary basis vectors, and βj represents the weight coefficient corresponding to the basis
vector ∂j.

The pixels around the target pixels are stored in registers according to their addresses.
During the algorithm’s operation, values flow from left to right and top to bottom through-
out the image as required. The next step is to convolve the pixel value stored in the register
with the corresponding convolution-kernel weight. The ping-pong operation is a com-
monly used data-flow control-processing technique, the main process is to assign input data
streams to different data buffers isochronously through an input-data selection unit. The
ping-pong operation sends the buffered data-stream to the processing module continuously
for calculation by an input-data selection unit and an output-data selection unit, switching
with each other according to the beat. Because the input-data- and output-data-flows
are continuous, it is very suitable for the pipeline processing of data-flows to complete
seamless buffering and processing of data, greatly saving buffer space. In this paper, the
number of convolution kernels is constant, a new pixel can be input in a pixel-clock-cycle,
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and the convolution result can be output after several clock-cycle delays. If the ping-pong
operation is not used, the data preprocessing module will become the bottleneck to limit
the system-data-throughput in the design. By optimizing the ping-pong operation’s design,
the computation period is increased. The data throughput of the system can be improved
through the cache design optimisation while increasing the data buffer delay. This process
can be defined as follows:

Conv = Max(conv(T xn, Cxn) (12)

where Txn represents the pixel matrix, which is processed according to the regional gradient,
Cxn represents the convolution template, the templates in this article are 11 × 11 pixels, and
there are six template types in different directions, as shown in Figure 3. Max represents the
maximum pixel matrix after convolution of the image matrix and several pixel matrices.

Sensors 2022, 22, 1226 10 of 26 
 

 

pixels, and there are six template types in different directions, as shown in Figure 3. Max 
represents the maximum pixel matrix after convolution of the image matrix and several 
pixel matrices. 

 
Figure 3. Diagram of six templates with different directions in the convolution module. 

The value of each pixel of Conv is compared with the detection threshold ξ. A value 
greater than ξ is regarded as a suspected target ship, and the coordinate information of 
the target is output. Otherwise, it is regarded as a nontarget point. To choose an appro-
priate value of η, the recall rates are counted with different choices of ξ, which are shown 
in Table 1. We can see that a value of ξ = 0.6 is a turning point in the recall rate. When ξ is 
set larger than 0.6, the recall rate quickly decreases. On the other hand, when ξ is set 
smaller than 0.6, it will slow down the subsequent processes and bring additional false-
positives. So, we choose η = 0.6 in our method as this is the optimal parameter-solution 
proved by a large number of tests. In addition to ensuring that the recall rate of the algo-
rithm remains within an appropriate range, the real-time processing performance of the 
algorithm is maximally improved. The target information output by the threshold model 
is regarded as the input for region classification, in which the target information mainly 
includes an x-coordinate, a y-coordinate, a width and a height. 

Table 1. The effect of threshold on algorithm performance. 

ξ 0 0.2 0.4 0.6 0.8 1 
Recall rate 1 0.999 0.996 0.992 0.756 0 
Time/img 1.998 1.996 1.986 1.962 1.42 0 

3.2. Multiple-Feature Fusion Classification 
To solve the problem of complete extraction of the ship region, the suspected region 

of the target ship is located step-by-step based on the idea of coarse-to-fine detection, as 
is shown in Figure 4. 
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The value of each pixel of Conv is compared with the detection threshold ξ. A value
greater than ξ is regarded as a suspected target ship, and the coordinate information of the
target is output. Otherwise, it is regarded as a nontarget point. To choose an appropriate
value of η, the recall rates are counted with different choices of ξ, which are shown in
Table 1. We can see that a value of ξ = 0.6 is a turning point in the recall rate. When ξ is set
larger than 0.6, the recall rate quickly decreases. On the other hand, when ξ is set smaller
than 0.6, it will slow down the subsequent processes and bring additional false-positives.
So, we choose η = 0.6 in our method as this is the optimal parameter-solution proved by a
large number of tests. In addition to ensuring that the recall rate of the algorithm remains
within an appropriate range, the real-time processing performance of the algorithm is
maximally improved. The target information output by the threshold model is regarded
as the input for region classification, in which the target information mainly includes an
x-coordinate, a y-coordinate, a width and a height.

Table 1. The effect of threshold on algorithm performance.

ξ 0 0.2 0.4 0.6 0.8 1

Recall rate 1 0.999 0.996 0.992 0.756 0

Time/img 1.998 1.996 1.986 1.962 1.42 0

3.2. Multiple-Feature Fusion Classification

To solve the problem of complete extraction of the ship region, the suspected region of
the target ship is located step-by-step based on the idea of coarse-to-fine detection, as is
shown in Figure 4.

We design the multiple-feature classification process through two parts. The first is
Fourier global spectral feature extraction. The global spectral features based on Fourier
transform are applied to extract the Fourier features of positive and negative samples to
train the classifier. The magnitude of the gradient generated by the Fourier global spectral
feature represents the difference between a point in the image and its neighbourhood,
which can better distinguish the target ship from the ocean background and initially
exclude false-alarm. Secondly, local feature classification through lightweight CNN is
undertaken. Through the full analysis of target ships in infrared remote sensing images,
available features that can effectively distinguish target ships from typical false-alarm
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(clouds, tracks, etc.) are selected. The optimal feature-subset of the target can be constructed
to quickly and accurately eliminate false-alarm to improve the accuracy and universality of
ship detection.
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3.2.1. Fourier Global Spectral-Feature Extraction

Through the function of frequency domain analysis, we can change the angle and im-
prove the visibility of certain signal information. For example, by Fourier transform [35,36],
if the numerical value is graphed and existing spikes are visible, they not only represent
hidden frequencies in the mixed signal but also can solve the problem of distinguishing
between several signals. Specifically, the work of this stage is to perform Fourier transform
on the candidate slices obtained in the previous stage. For each candidate target image, the
spatial domain is converted to the frequency domain. In other words, a two-dimensional
Fourier transform is applied to each candidate region to obtain the spectral domain, which
is the distribution of the image gradient. The magnitude of the gradient represents the
strength of the difference between a certain point on the image and the neighbourhood
point, which is used to better distinguish the target ship from the ocean background. During
the training, the Fourier transform is extracted from the positive sample set of six different
directions (ship direction up, down, left, right, left tilt 45 degrees, and right tilt 45 degrees)
to extract the spectrum characteristics. The diagram of six templates is shown in Figure 5.
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More specifically, each sample slice is extracted from six parts of theimage block,
among which, the first part is the whole area of the square data block, the second part is
the upper part of the square data block (width 32, height 8), the third part is the left part of
the square data block (width 8, height 32), the fourth part is the lower part of the square
data block (width: 32, height: 8), the fifth part is the right part of the square data block
(width: 8, height: 32), and the sixth part is the middle part of the square data block (width:
16, height: 16). These specific extracted features are shown in Figure 6.
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To be more specific, each sample section is extracted from the spectral features of one
global region, four background regions, and one central region to which the target belongs.
The two-dimensional Fourier transform is defined as follows:

F(u, v) = ∑M−1
x=0 ∑N−1

y=0 f(x, y)e−j2π( ux
M +

vy
N ) (13)

where u and v are frequency variables, the value of u ranges from 0 to M − 1, and the value
of v ranges from 0 to N − 1. F(x, y) represents the graph function, and M, N represents
the length of the sequence f(x, y). The feature descriptions of the entire global slice I1, the
centre region I2 containing the target ship, and the background region I3 except the centre
are f1, f2, and f3. The calculation process refers to Equation (14) as follows:

fi = A(ζ[Ii(x)]), (14)

Among them, the value of i ranges from 0 to 5, and A is the Fourier transform
operation. The frequency-domain descriptor F is obtained by fusing the global and local
features of the image, F = [ f0; f1; f2; f3; f4; f5]. Similarly, we perform a similar task for a
negative sample set. The spectrum feature vectors obtained by the Fourier transform of the
positive and negative sample sets in the abovementioned steps are sent to a classifier. In the
experimental process, Fourier global features are applied to roughly eliminate false-alarm
and extract several candidate areas. For easy understanding, the six-part solution of the
Fourier transform is shown in Algorithm 3.

The global Fourier transform was applied to each candidate frame to obtain the
corresponding feature description, achieve a rough classification of candidate regions, and
then the local feature was extracted by the lightweight CNN model to further eliminate
false-alarm in the following section.
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Algorithm 3 Fourier operation

Input: Original image (img) to be approximated.
Output: Final vector feature, number of binary vector Nf.
1. Do the following steps:
2. Initialise residual feature (i)
3. Update feature (i) as the following conditions:

im = im2double(im);
IM = abs(fft2(im)); feat0 = IM (:)’; feat0(1) = 0;
IM = abs (fft2(im (1:10:))); feat1 = IM (:)’; feat1(1) = 0;
IM = abs (fft2(im (:1:10))); feat2 = IM (:)’; feat2(1) = 0;
IM = abs (fft2(im (end-7:end:))); feat3 = IM (:)’; feat3(1) = 0;
IM = abs (fft2(im (:end-7:end))); feat4 = IM (:)’; feat4(1) = 0;
IM = abs (fft2(im (end/4+1:end/4×3, end/4+1:end/4×3))); feat5 = IM (:)’; feat5(1) = 0;

feat = [feat0, feat1, feat2, feat3, feat4, feat5];
feat = feat./(sum(feat));

4. End

3.2.2. Local Feature Classification through Lightweight CNN

Generally, when deep learning methods are utilised to extract features for classifica-
tion, deeper network layers and larger datasets are needed to achieve higher classification
performance. However, the larger the model, the larger the number of parameters and
computing resources that are consumed. It is difficult to meet the limited resource require-
ments of the onboard processor. Therefore, to balance accuracy, speed and memory, the
global features of positive and negative samples are extracted with the Fourier spectrum
features in the previous part to roughly eliminate false-alarm in the candidate region of the
target ship. A lightweight classification network is then designed to accurately identify the
local features of the ship. The reason for combining the Fourier global features with local
features extracted from lightweight networks in this chapter is to consider the following
two aspects. (a) In general, the full connection layer in deep networks learns global patterns
from the feature space, and the convolution layer learns local patterns, while lightweight
networks can only learn simple features at a lower level. (b) With an increase in the net-
work layer number, the receptive fields are also increased gradually. If the network layer is
low, the convolution kernels are lower, and the receptive fields are unable to capture the
global image. Therefore, the Fourier spectrum of global features can effectively reduce the
size of the previous stage to produce the number of invalid candidate areas, reducing the
complexity for the lightweight classification-network classification target.

The target ship itself in the external remote sensing image has a small scale of ap-
proximately 10 to 50 pixels. Considering the small scale of the target ship itself, the model
compression will compensate for the loss of accuracy. Therefore, lightweight networks with
fewer network layers are designed in this chapter. The lightweight classification network
consists of four convolutional layers and two fully connected layers. The network structure
is shown in Figure 7. Among them, the first three convolutional layers are configured with
a convolution kernel with a size of 3 × 3, followed by the maximum pooling layer of down-
sampling. The last convolution layer is configured as a 1 × 1 convolution kernel. Deep
convolution and 1 × 1 convolution can reduce the computational complexity of the model
with a small precision loss. These convolutional layers are deployed on rectified-linear
activation-unit (ReLU) activation functions to make the network undisturbed by vanishing
gradients compared to sigmoID activation functions and tanh activation functions. In
addition, different data enhancement strategies are adopted in the training process. The last
fully connected and softmax layers address the classification problem based on the features
extracted from the previous convolutional layer. During the experiment, cross-entropy was
employed to define the loss function as follows:

Loss(Y, P) = − 1
N

N−1

∑
i=0

2

∑
K=1

(yik log(pik)), (15)
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where N is the batch size, which is 128 in this experiment. The term i represents the label
of the candidate slice, yik represents that the candidate slice label of block I belongs to
category K, and pik represents the predicted probability that the candidate slice belongs to
category K. In order to facilitate understanding, the extraction and calculation of feature
vectors at each layer are briefly shown in Algorithm 4.

Algorithm 4 Local feature extraction

Input: N training pictures of size m × n,
Output: Parameters and thresholds for each classifier comprise the output
1. Do the following steps:
2. Initialise and normalize training image size and the number of filters;
3. N training pictures can be obtained: I = [I1, I2, I3 . . . In

]
, where I is an image obtained after

rearrangement and preprocessing of each image.
4. Filter at every stage can be expressed as: ψ1

f = ef(µ
T), f = 1, 2, 3. . .L1, where ef(µ

T) denotes the
f principal eigenvector of µT;
5. Each obtained image was preprocessed, and the results of image segmentation were merged
together, compute the block result of N pictures and one of the filter convolutions
ϕi= [ϕ1,ϕ2 . . .ϕL1

]
6. By solving the eigenvector of ϕϕT, the feature vector corresponding to the second largest
eigenvalues was taken as a filter, ψ2

f = ef(ϕϕ
T), f = 1, 2, 3. . .L2;

7. Similarly, we can calculate: ψ3
f = ef(ϕϕ

T), f = 1, 2, 3. . .L3, ψ4
f = ef(ϕϕ

T), f = 1, 2, 3. . .L4
8. Through spatial pyramid pooling, hash coding, etc., the feature vector of each training image
was obtained.
9. Input the trained feature vectors into the LibSVM to train and test them
10. End
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This section proposes a lightweight convolutional network based on the target can-
didate region under resource constraints in real scenes. Based on the multi-scale target
candidate-region extraction model, the network orders the candidate region to identify
the real target and false-alarm, returns the index corresponding to the correctly classified
candidate region to the corresponding connected region in the original image, and realises
the target location according to the largest connected region’s outer rectangle. In this way,
the regressive operation of object detection based on deep learning is avoided, and the
amount of computation is doubled. Therefore, the computational complexity of the model
with a small precision loss can be reduced.

3.3. Classifier Training and Target Confirmation

As a powerful classification method with the ability to minimise the classification error
rate and maximise generalisation, the basic working principle of the SVM is described as
follows [37]: two kinds of samples that are linearly indivisible in the input space are mapped
to a high-dimensional feature space by a kernel function, and linearly constrained quadratic
programming is solved in the high-dimensional feature space to obtain a classification
hyperplane with a maximum interval that can linearly divide the samples.
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For the dataset T = {(x 1, y1), (x 2, y2), . . . , (x m, ym)}, yi ∈ {−1,+1} and the hyper-
plane (w, b), the geometric interval of sample points (x i, yi) is defined as
γi = yi(w/||w||·xi + b/||w||) , and the minimum geometric interval of the hyperplane
(w, b) with respect to the training dataset T is γ = min

i=1,2,...,N
γi. Solving a separated hy-

perplane with the maximum geometric interval requires the maximum and minimum
geometric interval, which can be expressed as the constrained optimisation problem max

w,b
γ.

Considering the relationship between the geometric interval and the function interval, lin-
early separable support vector machines can be transformed into an optimisation problem
as follows:

min
w,b

1
2
||w||2 + s.t.yi(w× xi + b)− 1 ≥ 0(i = 1, 2, . . . , N) (16)

For linear indivisibility, a soft interval can be considered to allow some samples to fail
to meet constraint conditions; the optimisation objective function is then defined as follows:

min
w,b

1
2
||w||2 + Cp∑n

i=1ξi, s.t.yi(w× xi + b) ≥ 1− ξi (17)

where C represents the degree of punishment for the right and wrong samples, and the
optimisation of the whole algorithm can still use the Lagrange multiplier method. It
can be seen from the optimisation objective function that an SVM ultimately achieves a
compromise between the maximum classification interval and the minimum classification
error, and its punishment is the same for positive and negative classification errors. In
the process of extracting potential regions of ships, the classifier must ensure a high recall
rate to avoid missing detection as much as possible. Therefore, the risks brought about
by classifying ships as backgrounds and classifying backgrounds as targets differ, and the
misclassification of the two cannot be treated equally. According to this feature, this paper
demonstrates how the optimisation objective function improves and that the constructed-
risk unbalanced SVM classifier overcomes the shortcomings of the traditional SVM classifier.
In addition, the risk-unbalanced SVM classifier is applied to the task of ship potential-
extraction. The optimisation objective function of an SVM with uneven risk is shown
as follows:

min
w,b

1
2
||w||2 + Cp ∑

yi=1
ξi + Cn ∑

yi=−1
ξi, s.t.yi(w× xi + b) ≥ 1− ξi (18)

where Cp and Cn are the risk of positive samples and the risk of negative samples, respec-
tively, and generally Cp > Cn. The flow of the cascade classifier training algorithm is shown
in Algorithm 5.

For the same target, the classification algorithm may identify several bounding boxes.
One target corresponds to multiple bounding boxes, meaning that it is necessary to filter
out the redundant windows and retain only the optimal bounding boxes. Non-maximum
suppression searches for the local maximum value of all bounding boxes to identify the
maximum value within a certain neighbourhood retains the windows with the highest
score in the neighbourhood and inhibits windows with low scores to filter part of the
bounding boxes to improve the final detection accuracy.

Non-maximum suppression is an iteration-ergo-elimination process; the specific algo-
rithm is expressed in Algorithm 6.

The traditional non-maximum suppression (NMS) algorithm generates a series of
detection candidate boxes B and the corresponding probability value S. First, we sort the
probability values and select the candidate box M with the maximum probability before
M joins the final detection result set D and deletes it from B. Candidate boxes in set B
whose overlap with candidate box M is greater than the threshold Nt are deleted. The
main problem of the algorithm is that the adjacent detection frames must be deleted. In
this case, if ships are clustered and distributed, there is an overlap between two detection
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frames, which causes the detection failure of ships near each other and reduces the detection
accuracy of the algorithm.

Algorithm 5 Cascade classifier training algorithm

Input: Training set T1= {(x 1, y1), (x 2, y2), . . . , (x m1, ym1)}, where xi ∈ X, yi ∈ Y = {−1,+1},
given the weights of the two classes Cp,Cn and the minimum recall rate dmin
Output: Parameters and thresholds for each classifier comprise the output
1. Do the following steps:
2. Calculate the variance of each sample in training set T1= {(x 1, y1), (x 2, y2), . . . , (x m1, ym1)}
3. Through all positive samples in the training set, adjust the threshold to make the recall rate d1
of the classifier meet d1 ≥ dmin
4. Eliminate the training samples marked as background by variance classifier from the negative
sample set of the training set T1= {(x 1, y1), (x 2, y2), . . . , (x m1, ym1)}. The training set becomes
T2= {(x 1, y1), (x 2, y2), . . . , (x m2, ym2)}
5. Calculate the gradient characteristics of each sample in the training set
T2= {(x 1, y1), (x 2, y2), . . . , (x m2, ym2)}
6. Train a linear SVM classifier according to the gradient characteristics of positive and negative
samples of the training set T2= {(x 1, y1), (x 2, y2), . . . , (x m2, ym2)} and Cp, Cn. Adjust the
threshold to make the recall rate d2 of the classifier meet the requirement d2 ≥ dmin
7. Output the parameters and classification threshold of the cascade classifier
8. End

Algorithm 6 Improved NMS algorithm

Input: Collection of bounding boxes B = {b1, b2, . . . , bn}, the score of the bounding box
S = {s1, s2, . . . , sn}, and the threshold value Nt
Output: D, S
1. Do the following steps:
2. Initialize D = {}
3. While B is not empty compute the index of the maximum value in S: m← argmaxS

Compute the corresponding bounding box: M← bm
4. Update s, D, B and S as the following condition:
D← D + M, B← B−M

for bi in B, do if iou(bi,M) is present,
update S← S + si, B← B− bi

end
5. End

To solve this problem in NMS, this paper adopts a probabilistic reset strategy to
improve NMS [38]. In this algorithm, the probability of an overlapping detection frame is
directly obtained by an attenuation function rather than zero. If a detection frame overlaps
greatly with M, it has a very low probability of still existing. In contrast, if the detection
frame only overlaps to a small extent with M, its detection probability is not affected. Its
probability reset function is shown as follows:

Si =

{
Si iou(M, bi) < Nt
Si(1− iou(M, bi)) iou(M, bi) ≥ Nt

(19)

4. Performance Evaluation
4.1. Experimental Setup
4.1.1. Dataset Description

Data are the core of artificial intelligence research, and labelling data is sometimes more
important than algorithms. Existing remote sensing image datasets are private datasets.
Because of sensitive data or copyright issues, many private ship datasets are difficult to
disclose. To promote ship detection research, this paper proposes and establishes a set of
standard, infrared remote sensing image target-ship datasets. The data are mainly derived
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from the image data collected by a satellite, which has an important experimental reference
value. Ships in the dataset have been marked in the form of rectangular frames. In different
scenarios, target ships have different sizes, directions and interferences. To verify the
anti-interference ability of the algorithm, the dataset should include samples of various
scenarios, such as cloud interference samples, trail interference samples, reef interference
samples, and sea-clutter interference samples to make the dataset persuasive.

The images employed in the experiment include ocean scenes and nearshore scenes,
which have not only calm and undisturbed sea state backgrounds but also complex back-
grounds, such as clouds and reefs. The ship length is various and the ship azimuth angle
is arbitrary, which is suitable for the comprehensive testing and comparison of the algo-
rithm performances. There are 214 images in the test set, including 1270 ships. This paper
enlarges the dataset by following methods: Random clipping, where a fixed size image
block is intercepted randomly from the original image, and the ships in the image block
have been marked in the form of a rectangular box; Mirror flip, through horizontal flip
and vertical flip to construct a new dataset; Rotation transformation, where the whole
image rotates in a specific direction around the fixed point; Enhanced contrast, where by
changing the image’s gray value to improve the visual effect of the image. We divide the
image into 8456 sub-images and convert these sub-images into five datasets: dataset 1
(noninterference), which includes 4129 sub-images, including 308 target ships; dataset 2
(cloud interference), which includes 2476 sub-images, including 826 target ships; dataset 3
(trial interference), which includes 1851 sub-images, including 421 target ships; dataset 4
(reef interference), which contains 1168 sub-images, including 85 target ships; and dataset 5
(cloud interference), which containes 2788 sub-images, including 428 target ships. These
datasets are classified according to interference types, and interference occurs simultane-
ously in multiple scenarios. However, the total number of target ships is still 1270 when
repeated target ships in each sub-dataset (after classification) are excluded.

In order to evaluate the stability of the dataset and its compatibility with small sample
detection, we tested and verified it through cross-validation. The specific process of the
cross-validation experiment is as follows: the sample is divided into 10 parts. First, K parts
are randomly selected from the sample for training, and the remaining parts are tested. To
ensure the accuracy of this experiment, it was repeated three times, and then the average
value of the three results was taken as the accuracy of this verification. Finally, the test
accuracy of different proportions of training samples from the entire sample set is obtained,
which can be used to evaluate the accuracy of the algorithm more accurately. The accuracy
of the training samples is stable, which proves that the proposed method has good target
expression characteristics and can effectively distinguish the target and background. At the
same time, when the size of the training set exceeds 50% of the total number of samples,
the test accuracy is basically stable at over 98%.

4.1.2. Applicable Platform

As the geometric progression of remote sensing image data increases and the complex-
ity of intelligent processing algorithms increases, it is more and more difficult to process
remote sensing images in real-time on the satellite platform with strictly limited resources.
For large-scale remote sensing images, spaceborne resources have high requirements on
algorithm running time, storage space resources and detection performance. At present,
the cooperative realization of a space-borne infrared ship detection system based on DSP
and FPGA has become the mainstream, but it faces two challenges: (a) it is limited by the
complex space environment and hardware platform in terms of volume, weight, power
consumption, transmission bandwidth alongside other aspects; and (b) satellite processors
are slow to update due to the reliability, stability and cost of the equipment, which will
result in their performance generally being lower than mainstream processors.

The test and verification platform of the target-detection algorithm proposed in this
paper is a Tesla k40 M GPU equipped with 64 GB memory, an Ubuntu16.04 operating sys-
tem, and the MATLAB 2016 language. This test environment is mainly used to help us train
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the models and verify the performance of modules. As a large number of templates need to
be trained in the algorithm, this test environment is needed in order to ensure the accuracy
of the training results. According to the actual demand for infrared target detection, this
algorithm will eventually be carried out on the FPGA platform. For example, when we
select the xc7k410t from Xilinx as the core processing module of the image processing unit,
it is difficult to meet the deployment requirements of deep learining methods, mainly be-
cause the compression method of deep neural networks has higher resource requirements,
especially for large networks. Moreover, it is difficult to design a state-of-the-art machine
for data-flow scheduling for different layers, and there will be considerable redundancy in
logical resources. Therefore, deep learning methods achieve good detection accuracy in
natural image target detection, but they also have great limitations during image processing
with limited resources. This is the advantage of the lighter network model designed in this
paper under the condition of ensuring the detection rate.

The storage space of the network model designed in this paper is less than 25 MB,
which meets the requirement of limited space-borne resources and provides a feasible
scheme for real-time satellite image processing. Considering the low power consumption
of FPGAs, the algorithm proposed in this paper provides a feasible solution for deploying
deep learning networks on satellite-borne FPGAs with guaranteed accuracy.

4.2. Effectiveness of Our Method
4.2.1. Detection Performance Verification

In this paper, the main indicators employed in the algorithm performance verification
include algorithm recall rate R, algorithm accuracy P and algorithm error rate E, in which
the algorithm error rate is the sum of the error rate L and error rate F, which can effectively
reflect the robustness of the algorithm. The calculation process of each indicator refers to
Equations (20)–(24) as follows:

R =
Dc

Ts
, (20)

P =
Dc

Ds
, (21)

F =
Df
Ts

, (22)

L =
Dl
Ds

, (23)

E = F + L, (24)

where Dc represents the number of correctly detected target ships and Df represents the
number of falsely detected target ships. The term Dl represents the number of missed
detected target ships, Ds represents the detected targets by different methods, Ts represents
the total real targets contained in the dataset, and the value of Ts is 1270. This paper
compares qualitative and quantitative methods with several other representative target
detection methods in the dataset. The algorithm performance was verified by datasets
under different interference scenarios, as shown in Table 2.

The test results show that the proposed algorithm can achieve better detection perfor-
mance in the non-interference scenario, with a recall rate of 98.2%, an accuracy of 96.8%
and an error rate of only 5%. It is not difficult to determine that island interference has a
great impact on the algorithm in several test scenarios. The most notable reason is that the
similarity among islands and ships is high, and it is difficult to distinguish between them.
The test results show that the recall rate is 92.9%, that the accuracy rate is 90.9%, and that
the error rate is 16.2%, which can still reach the expected performance, reflecting that the
algorithm has a strong anti-interference ability.

After multi-scene verification of our algorithm, we compare five target-detection al-
gorithms, mainly including SVDNet [39], Faster R-CNN [40], SPP-PCANet [41], RB [42],
MRA [43], and DF [44]. Among them, SVDNet is designed based on the recent popu-
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lar convolutional neural networks and the singular value decompensation algorithm, it
provides a simple but efficient way to adaptively learn features from remote sensing im-
ages; Faster R-CNN proposes a Region Proposal Network(RPN) that shares full-image
convolutional features with the detection network, thus enabling nearly cost-free region
proposals. SPP-PCANet proposes coarse-to-fine ship detection strategies based on anomaly
detection and spatial pyramid pooling; RB proposes a nearly closed-form ship-rotated
bounding box space used for ship detection, and designs a method to generate a small
number of high-potential candidates based on this space; MRA proposes a method to
densely divide a test infrared image into a set of image patches and the radiation anomaly
of each patch is estimated by a Gaussian Mixture Model, thereby target candidates are
obtained from anomaly image patches, then target candidates are further checked by a more
discriminative criterion to obtain the final detection result; DF consists of a simple region
proposal network and a deep forest ensemble, among which the region proposal network,
that is trained over gradient features robustly generates a small number of candidates
that precisely cover target ships in various backgrounds, and the deep forest ensemble
adaptively learns features from remote sensing data and discriminates real ships from
region proposals efficiently.

Table 2. Detection results of our method under different interferences.

None Cloud Trail Reef Clutter Total

Ts 488 1056 658 186 524 1270
Ds 495 1095 676 189 531 1298
Dc 479 999 607 165 468 1180
Df 9 57 51 21 56 116
Dl 16 96 69 24 63 92

R (%) 98.2 94.6 92.3 88.6 89.3 92.9
P (%) 96.8 91.2 89.8 87.2 88.1 90.9
E (%) 5 14.2 17.9 24.2 22.6 16.2

Through the comparative analysis of the compared methods regarding their recall,
precision, running time, etc. We summarize the experimental results from three parts.
Compared with traditional detection methods such as RB and MRA, our method has a
greatly improved detection performance and the processing unit is smoother and more
efficient; compared with deep learning methods such as SVD, Faster R-CNN, SPP-PCANET
and DF, our method is lighter on the premise of ensuring the detection accuracy, especially
compared to the lightweight networks SVD and SP-PCANET, and shows substantial results
in in terms of processing speed. In addition, there are also some space-oriented methods in
the above algorithms such as SVD and MRA, despite this our method is better in terms of
detection performance and processing speed, although MRA algorithms may have fewer
resources because of their lack of networks. The performance comparison results are shown
in Table 3. In brief, our approach is more effective at ship detection than the other three
methods and takes less time to process an image.

The detection results of different methods in different scenarios are shown in Figure 8.
The first line indicates thin cloud interference and has four real target ships, the second
line indicates the cloud interference and sea-clutter interference scenes and has three real
target ships, the third line indicates the reef interference and trail interference scenes and
has one real target ship, and the fourth line indicates a ship-intensive scene with eleven
real target ships. As shown in Figure 8, the yellow boxes represent the real detected targets
in the original image, and the red boxes represent the detected results of different methods.
Even though some false-alarm are generated due to all kinds of interference, our method
achieves impressive detection performance on different sea surfaces and fewer misses and
errors than other algorithms. It is proven that the proposed algorithm has high stability in
different scenarios.
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Table 3. Performance comparison results of the different algorithms.

SVD [39] Faster
R-CNN [40] SPP-PCANet [41] RB [42] MRA [43] DF [44] Ours

Ts 1270 1270 1270 1270 1270 1270 1270
Ds 1293 1483 1319 1327 1288 1277 1298
Dc 1173 1188 1153 1133 1110 1144 1180
Df 119 253 160 185 175 132 116
Dl 98 94 121 143 162 126 92

R (%) 92.4 93.6 90.8 89.2 87.4 90.1 92.9
P (%) 90.7 80.1 87.4 85.4 86.2 89.6 90.9
E (%) 16.9 26.3 21.8 25.4 26.4 20.3 16.2

Time/img 3.2 3.28 3.14 5.2 4.6 2.7 1.9
Model

(M) 28 156 32 - - 52 24
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4.2.2. Robustness Verification

This algorithm is a strong, robust and effective algorithm. Specifically, robustness
is mainly reflected in the following three points. Firstly, the model has high accuracy or
effectiveness. Secondly, small deviations from model assumptions can only have small
impacts on the algorithm’s performance. Thirdly, large deviations from model assumptions
should not have a “catastrophic” impact on algorithm performance. So we verify function 1
with the F-measure, we verify function 2 with the True–False-positives rate, and we verify
function 3 with Mean error rate.

• F-measure score

The precision and recall rates are sometimes contradictory, so they need to be consid-
ered comprehensively. The F-measure is the weighted average of the precision rate and
recall rate, and the F-measure value is the arithmetic mean divided by the geometric mean.
When the F-measure value is small, true positives increase and false-positives decrease.
Therefore, we can verify the performance of the algorithm through the F-measure score
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that corresponds to the first of the three function-points of robustness verification above.
The calculation method for the F-measure is as follows:

Fscore =
(α2 + 1)P ∗ R
α2(P + R)

(25)

where P represents algorithm accuracy, R represents algorithm recall rate, and α represents
the calculation parameter and is usually set to 1.

The F-measure weighs both precision and recall, F-score comparison results of the
different algorithms are shown in Table 4, where Fnone represents an F-score without any
interference, Fcloud represents an F-score under cloud interference, Ftrail represents an F-
score under trail interference, Freef represents an F-score under reef interference, Fclutter
represents an F-score under clutter interference, and Ftotal represents the total F-Score
of detection.

Table 4. F-score comparison results of the different algorithms.

SVD [39] Faster
R-CNN [40]

SPP-PCANet
[41] RB [42] MRA [43] DF [44] Ours

Fnone 0.962 0.909 0.964 0.938 0.926 0.934 0.975
Fcloud 0.924 0.828 0.912 0.898 0.893 0.908 0.929
Ftrail 0.901 0.826 0.884 0.846 0.862 0.886 0.910
Freef 0.876 0.806 0.896 0.892 0.874 0.868 0.879

Fclutter 0.866 0.822 0.862 0.876 0.764 0.796 0.887
Ftotal 0.915 0.863 0.891 0.873 0.868 0.899 0.919

By comparing the experimental results in Algorithm 6, it is not difficult to find that our
algorithm can achieve a better F-score in different scenes, especially in the scene without
interference; the F-score of the proposed method reaches 0.975. Moreover, by comparing
experiments in full scenarios, it can be found that our method can also achieve better results,
which proves the effectiveness and stability of the algorithm in different scenes.

• True–False-positives graph

After the proposal of a region, the algorithm preliminarily obtains the potential tar-
get region, removes some background interference and negative targets, and obtains the
suspected positive targets. Then, real target ships, i.e., true positive targets, are screened
out through region classification, and false-alarm in the suspected positive targets, i.e.,
false-positive targets are eliminated. This part quantifies the performance of the algorithm
under different interference scenes by using the true–false-positives graph. Because dif-
ferent scenes have different effects on the algorithm, the curve can intuitively reflect the
adaptability of the algorithm to each scene, that is, whether there will be obvious differ-
ences in the algorithm’s performance when the interference changes. Therefore, this part
of the test corresponds to the second of the three function-points of the above robustness
verification. The calculation of the true positives rate is as follows:

Trate =
TP

TP + FP
(26)

where Trate means the true positives rate, TP means the true positives samples, and FP
means the false-positives samples.

In a supplemental test, we compare the correlations between the false-positive and true
positive rates of different algorithms under different interferences, as shown in Figure 9.

These four scenarios are a cloud scenario, a trail scenario, a reef scenario and a sea-
clutter scenario. Through the linear comparison of the data in the figure, our method
can quickly reach the expected detection rate when generating negative samples, which
indicates that the method has good robustness and anti-interference ability. The true–
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false-positive quantitative data under all scenarios are shown in Table 5, where FP means
false-positives, and Trate means the true positives rate.
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SVD [39] Faster R-CNN
[40]
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[41] RB [42] MRA [43] DF [44] Ours
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(FP = 20) 0.468 0.436 0.475 0.448 0.456 0.418 0.568
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Trate
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Table 5. Cont.

SVD [39] Faster R-CNN
[40]

SPP-PCANet
[41] RB [42] MRA [43] DF [44] Ours

Trate
(FP = 200) 0.849 0.796 0.816 0.811 0.808 0.798 0.867

Trate
(FP = 220) 0.856 0.804 0.821 0.826 0.812 0.809 0.869

Trate
(FP = 240) 0.868 0.807 0.836 0.841 0.827 0.814 0.875

Trate
(FP = 260) 0.869 0.811 0.842 0.850 0.829 0.825 0.878

Trate
(FP = 280) 0.873 0.813 0.844 0.855 0.842 0.831 0.882

Trate
(FP = 300) 0.876 0.815 0.849 0.860 0.838 0.836 0.883

• Mean error rate

The robustness of the algorithm should be compared regarding not only the detection
performance but also the avoidance of false and missed detections. To better prove the
robustness of the algorithm, we compare the mean error rate obtained with different image
quantities, as shown in Table 6. The third function-point of robustness is to verify the
impact of large deviations on the algorithm. Since the average value is considered to be a
positive correlation factor of an algorithm, the mean error rate is more meaningful than any
robust measure. Therefore, this part counts the average error rate in the overall operation
cycle of each algorithm, and the results can reflect the stability of the algorithm during
operation, The lower the mean error rate, the better the compatibility of the algorithm with
strong anti-interference.

Table 6. Mean error rate comparison results of the different algorithms.

SVD [39] Faster R-CNN
[40]

SPP-PCANet
[41] RB [42] MRA [43] DF [44] Ours

Images 214 214 214 214 214 214 214
False

detection 119 253 160 185 175 132 116

Missed
detection 98 94 121 143 162 126 92

Error
detection 217 347 281 328 337 258 208

False/image 0.56 1.18 0.74 0.76 0.82 0.62 0.54
Missed/image 0.46 0.44 0.57 0.67 0.75 0.59 0.43
Error/image 1.02 1.62 1.31 1.53 1.57 1.21 0.97

5. Conclusions and Future Work

This paper presents an infrared ship detection method based on the combination
of traditional feature recognition and lightweight CNN classification. The effective ship
candidate-region is extracted by a multiscale feature extraction model, and the global
features extracted by the Fourier transform are combined with the local features extracted
by a lightweight CNN to eliminate false-alarm to confirm the target ship. Compared
with the existing methods, the proposed method is more efficient and robust for target
detection in complex scenes. Our future work will focus on memory storage and explore
hard negative mining strategies to improve the generalisation performance.
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