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Abstract: In this paper, the dehazing algorithm is proposed using a one-channel grayscale depth
image generated from a LiDAR point cloud 2D projection image. In depth image-based dehazing,
the estimation of the scattering coefficient is the most important. Since scattering coefficients are used
to estimate the transmission image for dehazing, the optimal coefficients for effective dehazing must
be obtained depending on the level of haze generation. Thus, we estimated the optimal scattering
coefficient for 100 synthetic haze images and represented the distribution between the optimal
scattering coefficient and dark channels. Moreover, through linear regression of the aforementioned
distribution, the equation between scattering coefficients and dark channels was estimated, enabling
the estimation of appropriate scattering coefficient. Transmission image for dehazing is defined with
a scattering coefficient and a grayscale depth image, obtained from LiDAR 2D projection. Finally,
dehazing is performed based on the atmospheric scattering model through the defined atmospheric
light and transmission image. The proposed method was quantitatively and qualitatively analyzed
through simulation and image quality parameters. Qualitative analysis was conducted through
YOLO v3 and quantitative analysis was conducted through MSE, PSNR, SSIM, etc. In quantitative
analysis, SSIM showed an average performance improvement of 24%.

Keywords: dehazing; LiDAR; scattering coefficient; depth

1. Introduction

Haze is a phenomenon in which the visible distance is reduced due to dust, smoke
particles, and polluting particles in the atmosphere. Particles in the atmosphere scatter
light; thus, images obtained in these environments decrease contrast and, eventually,
deteriorate visibility. Recently developed automatic navigation systems rely heavily on
vision sensors [1]. If the input image is in poor condition, the overall system will suffer.
Therefore, dehazing technology, which can obtain clear images, can benefit systems such as
image classification [2–5], image recognition [6–10], visual odometry [11,12], and remote
sensing [13–15].

Currently, the most commonly used sensors for robots and vehicles include light
detection and ranging (LiDAR) and camera. The sensors allow the performance of visual
odometry, LiDAR odometry, SLAM, autonomous navigation, etc. For these purposes,
they can be used as visual-only [11,12,16,17], LiDAR-only [18,19], or fused [20]. When
the LiDAR and visual are fused, the two sensors are used complementarily to increase
robustness of the system [20]. Even with the increase in robustness, damage to the resulting
values can occur if the input data obtained from the sensors are inherently in poor condition.
Therefore, it is necessary to make quality input data to prevent this degradation.

We can attach cameras to numerous platforms such as vehicles, drones, and robots to
get image data. If the weather allows, we can get clear images such as Figure 1a. In this
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case, dehazing is unnecessary for effective vision-based processes. However, in the event
of haze due to smoke or fine dust in the atmosphere, such as in Figure 1b, utilizing such
processes becomes challenging [21]. Therefore, the contrasts from images obtained in a
hazed environment should be enhanced.
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Figure 1. Clear image and hazy image: (a) clear image; (b) hazy image.

Each image pixel value in hazy images can be expressed with atmospheric scattering
model, a linear combination of the pixel values from actual image, transmission image, and
airlight [22–24]. Airlight and transmission images are required to perform scene radiance
recovery through the scattering coefficient model.

Traditional algorithms use color attenuation prior [25] and dark channel prior [26]
to create a transmission image, whereas recent research uses deep learning to perform
dehazing. The proposed method succeeds traditional methods, with its contribution in
utilizing depth image and scattering coefficient to perform dehazing.

Existing methods for obtaining depth images include using stereo camera or depth
camera. More recent research adopts deep learning in obtaining depth images from monoc-
ular images through training of existing depth images [27]. In this paper, the depth image
is obtained by 2D projection of LiDAR point cloud. In this way, by obtaining a depth image
through LiDAR and performing dehazing on vision data, we would like to propose a more
complementary and robust LiDAR–vision fusion system.

Our contribution is as follows: (1) Proposal of a depth image-based dehazing technique
available in LiDAR–vision fusion systems; (2) Proposal of a scattering coefficient estimation
technique through the DCM-scattering coefficient model.

An outline of the paper is as follows. Section 2 outlines the theoretical background
of dehazing and the related works applied to the proposed method. Section 3 outlines
the overall description of the proposed method, and Section 4 summarizes the analysis of
the simulation results obtained through the proposed method. Finally, Section 5 briefly
describes the conclusions, the limitations of the proposed method, and the future works for
improving the limit.

2. Image Dehazing
2.1. Related Works

Image dehazing has always been a popular method to obtain clear images for image
processing. Due to its popularity, numerous methods of dehazing have been proposed.
Assumption-based and prior-based methods are typically used. Tan et al. [28] found
that the contrast was higher for images without haze than those with haze. Thus, Tan
et al. [28] performed single image dehazing by maximizing the local contrast for single
images. Fattal et al. [29] discovered that pixels of image patches typically exhibit a one-
dimensional distribution, and used it to recover the scene transmission. Huo et al. [30] per-
formed dehazing with the white balance algorithm and the atmospheric illuminance prior.
Zheng et al. [31] performed dehazing with patch adaptive structure decomposition and
multi-exposure image fusion. He et al. [26] uses the assumption that pixels without haze
tend to have a meager intensity value for at least one channel out of three RGB channels.



Sensors 2022, 22, 1199 3 of 16

He defined this channel as the dark channel and used it to create a transmission
image. The method from He is the most widely used and considered a standard in
dehazing. Zhu et al. [25] proposed a color attenuation prior-based method to generate
a depth image from a hazy image. Here, the transmission image used to obtain the de-
hazed image was obtained through the relationship between the depth image and the
transmission image.

Recently, learning-based methods have also been proposed [32–37]. Cai et al. [32]
proposed an end-to-end dehazing using a convolutional neural network (CNN) model. This
was done by estimating the transmission image using the BReLU and Maxout activation
functions. Ren et al. [33] performed dehazing by using multiscale CNN to estimate the
transmission image. In addition, Li et al. proposed AOD-NET [34] and Dehze-cGAN [35]
using the generative adversarial network.

In this paper, the proposed method uses a depth image to obtain the transmission
image. During the process, the required scattering coefficient is obtained by estimating
through the relationship between dark channel and scattering coefficient. Then dehazing is
performed using the obtained transmission image.

2.2. Atmospheric Scatterming Model

Due to the light scattered by the atmosphere, and the atmospheric light, the hazy image
looks blurry, as shown in Figure 2. This phenomenon can be explained by Equation (1) [22–24].

I(x) = J(x)t(x) + A(x)(1− t(x)) (1)

where x represents a two-dimensional vector, comprised of the position of each pixel in the
image. J(x) is an image before being distorted by haze, which is the ultimate result we want
to obtain through the above equation. I(x) is the hazy image and t(x) is the transmission
image, representing the proportion of light that reaches the camera through the atmosphere.
A is airlight, and it is assumed that all pixels in the image have the same value.
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Figure 2. Atmospheric scattering model.

From Equation (1), we can see that the information I(x) from the camera is lost as the
actual information J(x) and the signal reflected from the target pass through the atmosphere,
leaving only the J(x)t(x) level. In addition, A(x)(1− t(x)) caused by atmospheric light
sources is mixed, resulting in haze, shown in Figure 1b.

Through Equations (1) and (2) can be derived to obtain dehazed image J(x):

J(x) =
I(x)− A(x)(1− t(x))

t(x)
(2)

As the distance between the object and the camera increases, the atmosphere between
the camera and the object becomes thicker. In other words, when the scattering coefficient is
a constant, the further the distance, the worse the haze becomes. Through this relationship,
Equation (3) can be obtained.

t(x) = e−βd(x) (3)
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where β is the scattering coefficient, which is a constant indicating the level at which light is
scattered due to fine particles. d(x) is the depth image, x is the distance between the target
and the observer to the pixel, and t(x) is the transmission image.

2.3. Dark Channel Prior

According to He et al. [26], for pixels without haze, most of the three RGB channels
tend to have low values for at least one channel. For channels exhibiting this tendency, the
author defines it as the dark channel, hence, such prior using them referred to as the dark
channel prior. The following Equation (4) defines the dark channel for image J(x):

Jdark(x) = min
c∈{r,g,b}

( min
y∈Ω(x)

(Jc(y))) (4)

where Jdark is the dark channel of image and Jc(y) is the color channel of the pixel x of
image. Ω(x) is a set of pixels within a specific range centered on pixel x.

The equation shows that the value of the dark channel, which corresponds to a specific
pixel x of the image, is the smallest value of the pixels around x. In He et al. [26], the pixel
which has a small dark channel value is primarily one of the following three cases: (1)
shadow area caused by object; (2) colorful object or surface; or (3) black or dark object
or surface.

Dark channel images generally have small pixel values because natural images without
haze are darkened by color or shadow [26]. However, if haze occurs, these objects will
become blurry and invisible, resulting in a large dark pixel value and a white dark channel
image. Based on these notions, we can identify the haze intensity of the image.

2.4. Guided Filter

The guided filter uses a guide image as an edge-preserving smoothing filter to perform
smoothing without distorting key information of the entered image [38]. The filter assumes
that the output images can be modeled linearly with guide images and linear coefficients.

qi = ak Ii + bk, ∀i ∈ ωk (5)

qi = pi − ni (6)

where qi is the output image, Ii is the guide image, and ak and bk are linear coefficients
constant within ωk. Since the linear coefficient (ak, bk) in Equation (5) must be determined,
Equation (5) is modeled as Equation (6) where pi is the input image and ni is the noise in
the image. Then, we define the cost function to obtain linear coefficients through finding a
solution that minimizes the cost function. The cost function is defined in Equation (7).

E(ak, bk) = ∑
i∈ωk

((ak Ii + bk − pi)
2 + εa2

k) (7)

where ε is the regularization parameter, which prevents ak from growing infinitely. The
solution to minimize Equation (7) is Equations (8) and (9).

ak =

1
|ω| ∑

i∈ωk

Ii pi − µk pk

σ2
k + ε

(8)

bk = pk − akµk (9)

where σ2
k , µk is the variance and mean of Ii within the ωk region. |ω| is the number of pixels

in the region ωk. Lastly, pk is defined in Equation (10).

pk =
1
|ω| ∑

i∈ωk

pi (10)
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After obtaining linear coefficients via Equations (8) and (9), the output image qi can
be calculated. In this equation, the size of the region ωk and ε affect edge-preserving and
smoothing the output image.

3. Image Dehazing Based on LiDAR Generated Grayscale Depth Prior

The structure of the proposed dehazing method is shown in Figure 3. First, hazy image
and point cloud are used as input data. Through a relationship in Section 3.1, the point cloud
is projected and converted into a depth image. When projecting the point cloud, the point
cloud of the LiDAR must be projected within the camera frame through the calibration
of the camera and LiDAR. Thereafter, the scattering coefficient is estimated through a
relationship in Section 3.2 by using the image with haze as an input image. The dark
channel image used in Section 3.2, obtained from the hazy image, is also used to estimate
the atmospheric light. Finally, the transmission image is estimated through the depth image
and the scattering coefficient, and after refining the transmission image by applying the
guided filter in Section 3.3, the dehazing is performed according to Equation (13).
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Figure 3. Flowchart of the proposed method.

3.1. Point Cloud Projection

In this study, synthetic haze image generation and verification of dehazing algorithm
are performed using a KITTI dataset [39]. In order to generate depth images required for the
dehazing algorithm, the point cloud of the KITTI dataset was projected into an image [37].
Using the calibration data from the dataset, the projection, rotation, and translation matrices
can be obtained, and the point cloud in 3D format projects into 2D through the relationship
shown in Figure 4.
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First, when a point in the 3D space is represented as [X, Y, Z, 1]T , its position on the
2D image is expressed in [x, y, 1]T where X, Y, and Z refer to the coordinates of a point
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cloud in the world frame, and x and y are image pixel coordinates in the camera frame.
To perform a projection, points in the 3D space belonging to the world frame should be
represented within the camera frame. This can be expressed by multiplying the world
frame’s rotation with the matrix extrinsic matrix for translation.

Then, [X, Y, Z, 1]T can be projected onto a two-dimensional plane by normalizing
the obtained values and multiplying them by the intrinsic matrix containing focal length
(fx, fy) and principle points (cx, cy). Figure 5 is a 2D depth image obtained through point
cloud projection.
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Figure 5. Result of point cloud projection: (a) projected 2D point cloud; (b) 3D point cloud.

The LiDARs used in the KITTI dataset are mechanical spinning LiDARs with 360-
degree coverage. These LiDARs have a high point cloud density, but when the point cloud
is matched for that image, they are sparse, as shown in Figure 5, and depth image using
these sparse data is challenging to use. Therefore, by increasing the size of the projected
point cloud, this sparsity should be lowered. Figure 6 is the depth image depending on the
different sizes of point cloud.
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3.2. Scattering Coefficient Estimation

To obtain a transmission image for dehazing from depth image, a scattering coefficient
is required. However, it is not easy to obtain an accurate scattering coefficient with only
the image obtained from camera. Therefore, using synthetic haze image and ground truth
image, a model that can estimate the scattering coefficient should be obtained.

The synthetic haze images required for this were synthesized based on the atmospheric
scattering model using the KITTI dataset [39] and depth images. The depth image used for
the synthesis was generated by monodepth2 [40].

Figure 7 shows that haze is generated throughout the images. Thus, estimating
the dark channel of hazy image and calculating average brightness is higher than when
calculated in a no-haze situation. This can be confirmed in Figure 8. Such a relationship
allows us to model equations that obtain the scattering coefficient from the dark channel’s
average brightness. In this study, this average brightness is called the dark channel means
(DCMs). To model the equation, an optimal scattering coefficient value for the haze image
should be obtained. This can be obtained by performing dehazing of each value of the
scattering coefficient, gradually increasing the scattering coefficient, and comparing the
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obtained results with the ground truth. Comparison of images is performed by calculating
the mean square error (MSE) for pixels of each image, and when the mean square error
becomes the smallest, the value at that time is set as the optimal scattering coefficient.
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Algorithm 1 is pseudocode for estimating optimal scattering coefficients. The input
data of the algorithm is ground truth image (GT), hazy image (hazy), and depth image
(depth) (line 3). The algorithm initializes the scattering coefficient to 0 and 0.01 (line 1
and 2), incrementally increases them (line 16 and 17), and dehazing is performed using
Equation (2) (line 10 and 11) and Equation (3) (line 7 and 8).

After dehazing, MSE is obtained through the dehazed image and GT (line 13 and 14).
When MSE becomes the smallest (line 5), the scattering coefficient is determined as the
optimal scattering coefficient (line 20).

Using the method in Algorithm 1, the optimal scattering coefficient for each hazy
image is estimated. Next, we obtain the DCM of each hazy image and create a distribu-
tion chart using the DCM and the optimal scattering coefficient. The following Figure 9
refers to a scattering coefficient—DCM distribution chart obtained by the synthetic KITTI
haze dataset. In Figure 9, the x-axis represents the DCM, and the y-axis represents the
scattering coefficient.
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A total of 100 synthetic haze images were used to obtain the scattering coefficient
model. This is the result of synthesizing 20 types of images in 5 stages depending on th
level of haze generation. Figure 10 shows synthetic haze images with varying scattering
coefficients of step 5.
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Using the distribution of the DCM-optimal scattering coefficient for 100 hazy synthetic
images, the relationship between the two variables can be derived.

β = 0.0174 ∗ DCM− 0.5919 (11)

Equation (11) is a model obtained by linear regression of the DCM-optimal scattering
coefficient distribution for 100 synthetic images.

Algorithm 1 Estimate β

1: β1 = 0
2: β2 = 0.01
3: Input: GT, hazy, depth
4: For MSE1 < MSE2 do
5: trans1 = transmission(β1, depth) . . . . . . eq.(3)
6: trans2 = transmission(β2, depth) . . . . . . eq.(3)
7: dehaze1 = dehazing(hazy, trans 1) . . . . . . eq.(2)
8: dehaze2 = dehazing(hazy, trans 2) . . . . . . eq.(2)
9: MSE1 = MSE(dehaze 1, GT)
10: MSE2 = MSE(dehaze 2, GT)
11: β1 = β1 + 0.01
12: β2 = β2 + 0.01
13: end for
14: return β1 − 0.01
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3.3. Transmission Image Refine

The transmission image of the atmospheric scattering model can be obtained by
Equation (3). The raw transmission image is estimated using the depth image and the
scattering coefficient, obtained by point cloud 2D projection and Equation (11), respectively.

The raw transmission image is estimated as shown in Figure 11c. Since the trans-
mission image is generated from the depth image via point cloud 2D projection, the raw
transmission image shows the block effect in He et al. [26]. Therefore, the raw transmission
image obtained through Equation (3) should be refined. To refine the transmission image,
the hazy image and raw transmission image are used, and the guided filtering is performed.
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3.4. Background Parameter

Background parameters are used to prevent dehazing performance degradation due
to differences in detection range between camera and LiDAR. If an object can be seen from
the camera, but is outside the detection range of LiDAR, the pixel value of the transmission
image is 1 for the absence of point cloud, so dehazing is not effective. Therefore, for
places where point cloud does not exist, it should be set to a value between the maximum
pixel value that point cloud can have and the original maximum pixel value of 255. The
compensation process for an empty space in which the point cloud does not exist is
performed through a background parameter. Figure 12 is the result of the transmission
image after applying the background parameter.
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The background parameter was set to 195 because it was the most effective after
several times of dehazing through real-world haze photographs. It is impossible to set the
parameter through quantitative analysis because there is no ground truth image for the
actual haze occurrence image. Therefore, the background parameter was set by a heuristic
approach. Figure 13 is the result of dehazing through several background parameters.
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3.5. Scene Radiance Recovery
3.5.1. Estimation of Atmospheric Light

Generally, the appropriate value for atmospheric light in the hazy image would be the
strongest pixel value within the image. In this case, however, it has the disadvantage of not
being able to distinguish white objects. To compensate for these shortcomings, the dark
channel prior is used. After obtaining the dark channel prior from the hazy image, the top
0.1% of the brightest pixels are drawn from the dark channel. We can consider these pixels
as the most hazy pixels. So, among these pixels, the brightest pixel in the input image I(x),
is selected as the atmospheric light A(x).

3.5.2. Dehazing Process

The 2D depth image is obtained through projection of the point cloud, and the scatter-
ing coefficient is obtained through the DCM—scattering coefficient equation. Transmission
images can then be obtained through the acquired depth image and the scattering coefficient.
Thus, scene radiance recovery can be performed through the atmospheric scattering model.

J(x) =
I(x)− A(x)

t(x)
+ A(x) (12)

To avoid noise generation due to the transmission image, it is necessary to set the
lower bound of the transmission image. The equation in which the lower bound is added
can be expressed as follows.

J(x) =
I(x)− A(x)

max{t(x), 0.1} + A(x) (13)

4. Simulation

The dehazing algorithm was written in Python, and simulations performed on the
Intel i5-3470@3.20GHz, 8GB RAM. In simulation, the improvement of the image was
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determined by comparing the mean square error (MSE), peak signal-to-noise ratio (PSNR),
image enhancement factor (IEF), and structural similarity index measure (SSIM) [41] of the
hazy image and dehazed image. In addition, our proposed algorithm was quantitatively
and qualitatively compared to existing algorithms, such as He et al. [26], Tan et al. [28], and
Fattal et al. [29].

4.1. Quantitative Analysis of Dehazing Improvement Quality

Dehazing improvement performance of the proposed algorithm is quantitatively
analyzed using performance improvement parameters. When the synthetic haze image is
composed, β is set to 0.003 and atmospheric light is set to 210. Figure 14b is the synthetic
haze image and Figure 14c is the result of dehazing.
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Performance analysis of three pairs of hazy images and dehazed images was per-
formed via PSNR, SSIM, and MSE. First, performance analysis for hazy image and ground
truth image is shown in GT-Hazed in Tables 1–3 and performance analysis for ground truth
and the dehazed image is shown in GT-Dehazed in Tables 1–3. The PSNR and SSIM of
GT-Dehazed were higher than those of GT-Hazed, and the MSE of GT-Dehazed were lower
than that of GT-Hazed. Therefore, the analysis results from the image analysis parameters
show that all three images have been improved.

Table 1. Quantitative analysis of improvement using first row image from Figure 14.

GT-Hazed GT-Dehazed Improvement (%)

PSNR (dB) 14.68 24.44 66.43
SSIM 0.8349 0.9658 15.68
MSE 0.0341 0.0036 −89.41

Table 2. Quantitative analysis of improvement using second row image from Figure 14.

GT-Hazed GT-Dehazed Improvement (%)

PSNR (dB) 13.14 25.19 91.63
SSIM 0.7373 0.9525 25.48
MSE 0.0485 0.0031 −93.81

Table 3. Quantitative analysis of improvement using third row image from Figure 14.

GT-Hazed GT-Dehazed Improvement (%)

PSNR (dB) 15.41 23.866 54.92
SSIM 0.8066 0.8502 5.410
MSE 0.0288 0.0041 −85.76

4.2. Quantitative Comparison of Different Dehazing Algorithm

We performed a quantitative performance analysis between the existing dehazing
algorithm and the proposed algorithm. Existing algorithms used for comparison of per-
formance are Tan et al. [28], Fattal et al. [29], and He et al. [26]. Analysis of the resulting



Sensors 2022, 22, 1199 12 of 16

images was conducted via MSE, PSNR, IEF, and SSIM as shown in Tables 4–6. Figure 15
shows an input image, synthetic haze image, and a dehazing image generated from the
proposed and existing algorithms, respectively.

Table 4. Comparison result 1 using upper image from Figure 15.

PSNR (dB) IEF SSIM MSE

Fattal et al. 16.56 1.542 0.8033 0.0221
He et al. 17.60 1.955 0.8711 0.0174
Tan et al. 14.00 0.8543 0.6079 0.0398
Proposed 24.44 9.451 0.9658 0.0036

Table 5. Comparison result 2 using middle image from Figure 15.

PSNR (dB) IEF SSIM MSE

Fattal et al. 15.86 1.867 0.7113 0.0260
He et al. 17.14 2.508 0.9073 0.0193
Tan et al. 14.00 1.219 0.6601 0.0398
Proposed 25.19 16.01 0.9252 0.0030

Table 6. Comparison result 3 using lower image from Figure 15.

PSNR (dB) IEF SSIM MSE

Fattal et al. 17.05 1.461 0.6803 0.0197
He et al. 18.19 1.900 0.8828 0.0152
Tan et al. 15.10 0.9326 0.6314 0.0309
Proposed 23.87 7.015 0.8502 0.0041
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The proposed algorithm is designed to make the MSE smallest. Thus, if the DCM of
the hazy image input does not deviate significantly from the model of DCM and scattering
coefficient, the proposed method achieves the smallest MSE of the four methods. In
addition, as MSE became smaller, other performance parameters were improved.
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5. Experiments

Based on the proposed algorithm, we performed dehazing using the DENSE dataset [42]
from Ulm University in case of natural fog.

5.1. Comparison of Dehazing Results

Ground truth of object detection is as shown in Figure 16. Figure 5.2 shows the results
of the proposed and existing algorithms and Figure 18 shows the results of qualitative
evaluation with YOLO V3 using dehazed results. We confirmed that dehazing was correctly
performed under real haze and fog conditions through the dataset. In addition, through
YOLO V3 object detection, we also confirmed that the image was improved after dehazing.
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Fattal et al. 16.56 1.542 0.8033 0.0221 

He et al. 17.60 1.955 0.8711 0.0174 
Tan et al. 14.00 0.8543 0.6079 0.0398 
Proposed 24.44 9.451 0.9658 0.0036 

Table 5. Comparison result 2 using middle image from Figure 15. 

 PSNR (dB) IEF SSIM MSE 
Fattal et al. 15.86 1.867 0.7113 0.0260 

He et al. 17.14 2.508 0.9073 0.0193 
Tan et al. 14.00 1.219 0.6601 0.0398 
Proposed 25.19 16.01 0.9252 0.0030 

Table 6. Comparison result 3 using lower image from Figure 15. 

 PSNR (dB) IEF SSIM MSE 
Fattal et al. 17.05 1.461 0.6803 0.0197 

He et al. 18.19 1.900 0.8828 0.0152 
Tan et al. 15.10 0.9326 0.6314 0.0309 
Proposed 23.87 7.015 0.8502 0.0041 

5. Experiments 
Based on the proposed algorithm, we performed dehazing using the DENSE dataset 

[42] from Ulm University in case of natural fog. 

5.1. Comparison of Dehazing Results 
Ground truth of object detection is as shown in Figure 16. Figure 17 shows the results 

of the proposed and existing algorithms and Figure 18 shows the results of qualitative 
evaluation with YOLO V3 using dehazed results. We confirmed that dehazing was cor-
rectly performed under real haze and fog conditions through the dataset. In addition, 
through YOLO V3 object detection, we also confirmed that the image was improved after 
dehazing. 
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5.2. Time Consumption
We compared computing time for 1920 × 1024 pixel images. The algorithms were written
in Python and performed on the Intel i5-3470 CPU @ 3.2Ghz, 8GB RAM. The proposed
algorithm took approximately 0.47 s per image. He’s algorithm took about 0.4 s, Tan’s
algorithm took about 0.2 s, and Fattal’s algorithm took about 75 s. Table 7 represents the
progressing time and frame per second (FPS).

Table 7. Time consumption of each algorithms.

Proposed He * Tan Fattal

Time (s) 0.47 0.4 0.2 75
FPS 2.1 2.5 5 0.013

* Guided filter used (not soft matting).
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6. Conclusions

We present a method for performing dehazing via LiDAR depth image and DCM-
scattering coefficient model. The proposed algorithm obtains the scattering coefficient
model through the DCM and scattering coefficient relationship. Dehazing is then performed
through the scattering coefficient and point cloud projection depth image obtained from
LiDAR. Through simulations, we confirmed that the dehazed image is obtained effectively.
In the simulation, MSE showed improvement over conventional algorithms, and PSNR and
IEF, which are dependent on MSE, have also shown improvements. Furthermore, SSIM, an
important parameter used in image recognition, showed an average improvement of about
24% over conventional algorithms.

However, the proposed algorithm has a problem to solve. First, when estimated using
DCM, the scattering coefficient was able to perform dehazing effectively on most haze
images, but using only pixel value mean may be unreliable. If there are many colorful
objects in the near distance, the DCM can still be low, even with much haze. Consequently,
it will deviate from the scattering coefficient estimation model, which results in dehazing
being ineffective. Such problems of DCM could be addressed by CNN and by supervised
learning for image and effective scatter coefficient.

In addition, because the depth image is obtained through LiDAR, dehazing may not
work effectively if LiDAR malfunctions. We will improve these existing problems through
further research. Moreover, there is a real-time problem. As of now, there are difficulties
in operating in real time. This occurs because the imaging operation is performed simply
with CPU only. Therefore, it is planned to secure real time by making it possible to operate
in parallel through GPU operations through future research.
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