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Abstract: Narrowband Internet of Things (NB-IoT) is a promising technology for healthcare appli-
cations since it reduces the latency necessary in acquiring healthcare data from patients, as well as
handling remote patients. Due to the interference, limited bandwidth, and heterogeneity of generated
data packets, developing a data transmission framework that offers differentiated Quality of Services
(QoS) to the critical and non-critical data packets is challenging. The existing literature studies
suffer from insufficient access scheduling considering heterogeneous data packets and relationship
among them in healthcare applications. In this paper, we develop an optimal resource allocation
framework for NB-IoT that maximizes a user’s utility through event prioritization, rate enhancement,
and interference mitigation. The proposed Priority Aware Utility Maximization (PAUM) system also
ensures weighted fair access to resources. The suggested system outperforms the state-of-the-art
works significantly in terms of utility, delay, and fair resource distribution, according to the findings
of the performance analysis performed in NS-3.

Keywords: NB-IoT; utility; interference mitigation; prioritized healthcare; resource allocation

1. Introduction

Establishing smart hospitals using suitable technologies is a necessity of time, and
it requires an appropriate replacement of the physical interaction between patients and
doctors by a reliable virtual one [1]. In a smart healthcare environment, the utility of
a patient quantifies how fast and how reliably his/her real-time physical condition is
reported to a central healthcare information management system. Moreover, different
health parameters are typically interdependent, and they have different importance levels.
Thus, the problem of user utility maximization is translated as a multi-objective data
delivery performance enhancement problem. Furthermore, it requires the prioritization of
critical data over normal or regular event reporting. For example, when a patient’s extreme
high/low blood pressure (BP) is considered as the most important health parameter,
the corresponding blood sugar level and respiratory rate become relatively important and
a few others as regular health parameters.

Healthcare is boosted as an application domain that appears to be very promising for
enhancing service quality of the patients due to the Internet of Things (IoT), cloud comput-
ing, and Wireless Body Area Network (WBAN) technologies, as well as the interactions
among those [2]. Some wireless technologies (e.g., ZigBee, Bluetooth, LoRa, Sigfox) are
used in healthcare applications; however, some recent studies [3,4] have already revealed
that the Narrow Band IoT (NB-IoT) is more suitable for healthcare applications in terms of
licensing policy, long-range data transmission performance, energy-efficiency, etc., than
other technologies. The fact that the NB-IoT is a Low Power Wide Area Network (LPWAN)
technology facilitating a long-range and deep indoor coverage makes it perfect for a typical
smart hospital context [5,6]. Furthermore, it offers seamless connectivity between patients
and concerned medical personnel.

Sensors 2022, 22, 1192. https://doi.org/10.3390/s22031192 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22031192
https://doi.org/10.3390/s22031192
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2542-1923
https://doi.org/10.3390/s22031192
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031192?type=check_update&version=3


Sensors 2022, 22, 1192 2 of 21

The Narrow Band Internet of Things ( NB-IoT) is a radio access technology devel-
oped by the third-generation partnership project (3GPP) that turns out to be categorically
prevalent for real-time sensing and monitoring applications [5], including smart meter-
ing, connected personal appliances, smart hospitals, etc. [6,7]. Licensed frequencies of
today’s cellular network can provide NB-IoT devices more accurate traffic management,
high-quality service (QoS) assurance over broad areas, and higher reliability [1]. Interfer-
ence mitigation in NB-IoT becomes another challenge as several transmissions frequently
occur at the same time [5] in a typical healthcare application; otherwise, it might hamper
reliable and guaranteed data delivery. Solving such a multi-objective data delivery perfor-
mance enhancement problem that requires data prioritization becomes more critical in a
resource-constrained environment.

In [8], the authors developed an optimization algorithm, named bRRM, which analyzes
inter-carrier interference for radio resource management for OFDM (Orthogonal Frequency
Division Multiplexing). Their proposed resource allocation strategy boosts up throughput;
however, event relationship, queue management, etc., parameters were not incorporated.
In [9], the authors conducted an experiment, collecting the continuous data of a patient
from a weight scale based on NB-IoT technology, which can be sent to a specific server at
any time. The system was developed to reduce unnecessary data storage operations by
transferring healthcare data from medical instruments to a web server utilizing NB-IoT.
Their system lacks in developing an application that can separate and identify patient
data, which resembles event categorization and inter-dependency of health parameters,
respectively. The problem of data collection using NB-IoT devices in a smart hospital was
first addressed in [10]; their inadequate policies of the given wireless protocols merely
handled the collection of huge data from numerous NB-IoT devices in a smart hospital.

The authors of [11] investigated the realistic performance of NB-IoT in a healthcare
monitoring system in terms of effective throughput and latency. However, the work did
not optimize the required throughput, delay, and device density jointly. The authors mainly
focused on the application-specific analysis of cell throughput, device capacity, and latency
of NB-IoT, keeping aside joint optimization and radio resource allocation with prioritized
scheduling. Later, in [12], an intelligent radio resource management algorithm, iRRM for
NB-IoT, was developed with efficient resource allocation considering inter-cell interference
(ICI), coverage extension, and the repetition factor. In a healthcare environment, due
to the periodic transmission of sensory data, a higher density of User Equipment (UE)
always incurs higher delays. However, the necessity of prioritizing interdependent health
parameters needs to be addressed to reduce the delay, and it can be implemented through
traffic classification. Moreover, achieving expected user utility under the interference-aware
radio resource allocation needs further investigation [1,9].

This paper develops an interference-aware radio resource allocation for NB-IoT devices
in healthcare applications that prioritizes data traffic from different sources and maximizes
user utility. We define user utility as a joint metric of achievable data rate and event
influenced priority, where users communicate data to the base station (eNB) minimizing
interference. The proposed resource allocation is optimized according to the interdependent
event under the same time slot with the intention to maximize the overall utility of all users
that introduces Priority Aware Utility Maximization (PAUM). This model is projected to
achieve the increased performance for healthcare applications. The key contributions of
this work are summarized as follows:

• We design a Priority Aware Utility Maximization (PAUM) system for providing
high-quality medical care in such a way that is convenient for patients so that data
transmission can occur according to the application’s urgency level.

• We develop an event-influenced prioritized access scheduling of critical and non-
critical data packets exploiting Bayes Theorem, which determines the importance of
events in a probabilistic distribution.
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• Under certain constraints, the problem of maximizing user utility has been formulated
as a multi-objective non-integer linear programming (MNILP) problem that ensures
high performance and fair resource allocation to the users.

• The performances of the proposed system have been carried out in Network Simulator
version 3, and significant performance improvements are observed for various events
and prioritized users in healthcare applications.

This paper is organized as follows: Section 2 presents relevant studies, Section 3
defines the system model and assumptions, Section 4 elaborates the design components
of the PAUM system, and Section 5 analyzes the performance results. Finally, Section 6
contains the conclusion.

2. Related Works

According to various studies, the healthcare industry utilized radio communication
technologies in a variety of ways as it approached advancements in care and rehabilitation.
The Wireless Body Sensor Network (WBSN) was one of the most promising concepts; it
consisted of a network of sensor nodes worn on the body, capable of capturing, analyzing,
and wirelessly transmitting one or more types of physiological or environmental informa-
tion [13]. Wireless Body Area Network (WBAN), also known as a body sensor network
(WBSN), allowed for health monitoring everywhere on the human body at any time [14].
On the other hand, IEEE 802.15.6 provided low-power, short-range, and extremely depend-
able wireless communication within the body’s surrounding area [15]. For short-, medium-,
and long-range communications, WBSNs could communicate with other networks by a
number of wireless protocols such as ZigBee, Bluetooth, Ultra-Wide Band, Wireless LAN
(Wi-Fi), WiMAX, etc. [15]. Their uncertainty of battery lifetime and short range communi-
cation are the major disadvantages [13], which prompted the introduction of low-power,
wide-area network technology (LPWAN) for healthcare applications, such as LoRa, Sigfox,
and NB-IoT. According to [2,6], while the unlicensed LoRa and Sigfox technologies focused
only on supporting low-cost applications in an energy-efficient way, the NB-IoT is directed
to augment high QoS and low latency.

The problem of maximizing utility considering rate maximization or interference
mitigation or access prioritization to the application in an NB-IoT based healthcare system
has been categorized into two groups. These are: the basic operation of NB-IoT and
resource management in NB-IoT-based healthcare applications. This section epitomizes
state-of-the-art papers covering both of these groups.

A real-time application of a patients’ health status monitoring system based on theIoT
was discussed in [1] with a brief overview. This work aimed to automatically provide
suggestions to the patient according to his health condition. According to their analysis, a
licensed frequency supported cellular network (e.g., NB-IoT) ensures reliable and efficient
communication in the healthcare system. An intelligent medical plan was based on NB-IoT
technology and a smart hospital information management system was developed and
explored in [4].

The study in [5] explored the aspect of the physical and medium access control
(MAC) layer issues of NB-IoT in detail. The authors elaborately discuss synchronous
and asynchronous networks elongated with the 5G network. They derive theories for
resource allocation, link adaptation, coverage, and capacity issues for specific NB-IoT-based
applications, such as healthcare, smart meters, smart grids, etc. Furthermore, a continual
survey of Low Power Wide Area Network (LPWAN) technologies of LoRa and NB-IoT
in [6] is also discussed broadly with their basic specification for different services such
as IoT industries (Smart Agriculture), public services (Smart metering), personal services
(healthcare), etc. The long-range (LoRa), as an unlicensed LPWAN technology, has some
advantages in battery lifetime, cost, and capacity, whereas the licensed NB-IoT technology
offers efficiency in terms of QoS, latency, reliability, and coverage range. They compared
and described the technical differences of LoRa and NB-IoT, where the key aspects consist
of physical features, network architecture, MAC evaluation, several IoT applications, QoS,
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lifetime, and latency. In the paper, IoT cases studies were widely categorized as IoT personal,
IoT public, IoT industries, and IoT appliances. Additionally, it focused on how the network
deployment for various applications such as smart agriculture, smart metering, and smart
healthcare using NB-IoT will deliver future low-cost services in hard-to-reach areas. This
paper also presented the cases of successful implementations of diverse applications in
different countries, mainly in Korea, Japan, and China.

In [9], the authors experimented with collecting the continuous data of a patient
to a specific server from a weight scale based on NB-IoT technology. By transferring
healthcare data from medical instruments to a web server using NB-IoT, the system aimed at
decreasing unnecessary data storage operations. However, it certainly lacks in developing
an application that could differentiate and identify patient data classification.

To support the healthcare system, the introduction of connecting intelligent devices
to smart hospitals using NB-IoT was discussed in [10], as NB-IoT provided a new way
for connecting devices to meet the requirements of small-scale data over a long period of
time. They also overviewed the application scenarios and characteristics of medical IoT
devices in smart hospitals. Here, high latency and poor mobility influenced the undesirable
effects of NB-IoT. The authors briefly discussed the challenges and future directions of
building a smart hospital using NB-IoT. They mentioned the following challenges: (i) the
accuracy and reliability of the data, (ii) security and privacy, (iii) wireless communication
interference, (iv) energy consumption of terminals, and (v) NB-IoT performance testing,
i.e., frame structure, resource allocation methods, connection configuration, etc. A remote
healthcare monitoring system using NB-IoT is proposed in [11]. NB-IoT is an emerging
technology that provides low-cost, long-range, and low data rate coverage extension in
delay-tolerant applications. The paper analyzed the realistic performance of healthcare
data using NB-IoT in terms of effective throughput and latency with various modes of
operation such as in-band and stand-alone deployment.

In [16–18], NB-IoT evolutions, technologies, and open issues were narrated briefly for
their suitable applications. They opened it as the newest Long Term Evolution (LTE) by
3GPP and one of the LPWAN solutions to achieve super coverage, low power, low cost,
and massive connection, which was very likely to be used by a smart hospital system.
Other than healthcare, a comprehensive discussion in [19–22] presented the difficulties of
achieving high QoS for smart grid connection for unlicensed LPWAN technology. They
proposed NB-IoT for smart grid connection, where the data rate, latency, range, etc., were
discussed to satisfy all requirements of QoS.

A systematic analysis of NB-IoT’s Quality of Service in [21–26] approached the up-
link transfer of individual sensor data from a single sensor and the downlink transfer
of individual commands. The authors analyzed relevant physical- and application-layer
QoS parameters and contributing factors in a real NB-IoT network, which was studied
in Germany for the first time. A detailed evaluation of the end-user QoS of NB-IoT is
presented in the paper. In [8], the optimized radio resource management for OFDM (Or-
thogonal Frequency Division Multiplexing) was described, which is referred to as bRRM
and which solely considers inter-carrier interference. The basic signal format used in 4G
LTE (i.e., NB-IoT) is OFDM, which was suited for high-speed data transmission because it
resisted narrowband fading caused by reflections and the general propagation qualities at
these frequencies by using several carriers, which carried a low data rate. Radio resource
management was a vital issue for the OFDM system. The authors devised a resource allocation
technique that improved system performance while increasing throughput. Prior to resource
management, they failed to recognize the relevance of cell element organization, which is
comprehensively discussed in our work. We also looked at NB-IoT, a licensed LPWAN based
on the OFDM method that featured to make it ideal for healthcare applications.

The way in which radio resources can be efficiently managed in the NB-IoT context
to permit large IoT devices is proposed in [12] regarded as iRRM . Repetition was a vital
aspect to incorporate with the resource allocation strategy in order to achieve coverage
augmentation. Initially, the researchers looked at single-cell achievable data rates, deter-
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mining a trade-off between information rates, latency, and supported devices. Aiming to
improve the system sum rate, they proposed NB-IoT-based QoS-aware resource allocation
in a multi-cell situation. They created an optimization framework as well as a non-optimal
solution for a large number of users in this regard. Finally, the authors developed a cooper-
ative game strategy to achieve a certain system performance and evaluate their concept
with evidence-based findings. Their findings revealed that providing higher data rates
with NB-IoT comes at a cost, including fewer supported devices and increased delays. This
paper focused on jointly optimizing the data rate, delays, device density, and resource
allocation to achieve a better solution using NB-IoT. Moreover, in the case of healthcare
applications, data sizes are small, requiring less power and long-distance communication,
both of which are well supported by NB-IoT.

In this paper, we emphasize on resource allocation methods for smart healthcare
system using NB-IoT addressing parameters that were not reflected in previous works.
This paper discovers the idea of event categorization to identify an appropriate user for
data transmission in a certain time slot for the allocation of radio resources. We explore the
factors that affect event-influenced access priority in the NB-IoT healthcare environment
and formulate an optimization framework to maximize user utility in networks along with
some constraints. In this proposed model, prioritized users (uplink cases) communicate
with the base station with interference-aware radio resource allocation while considering
the appropriate users, data rate, time slot, and QoS constraints. Such a model is expected
to offer higher performance for healthcare applications.

3. System Model and Assumption

This paper addresses the problem of developing an efficient healthcare monitoring
system using NB-IoT that necessitates access prioritization of UEs to communicate with
others through a base station (eNB) and proficient channel allocation with different time
slots. This section presents the network environment and application model followed
by assumptions.

3.1. NB-IoT Network Environment and Application Model

The NB-IoT is an LTE variant, especially in Internet of Things (IoT)-specific networks.
The main mechanism of the NB-IoT network is the evolved packet system (EPS), which
employs two types of optimizations: user plane and control plane EPS optimization [6,27].

We assume that NB-IoT devices are installed in a hospital environment that generates
specific sensed data from the operation theatre, patient ward/cabin, or doctor’s chamber
(OPD) and sends them to the central server through eNB. Figure 1 represents the system
architecture of the NB-IoT-based network, which comprises a set of eNBs connected with
various healthcare monitoring applications, including remote patient monitoring, personal-
ized healthcare systems, rehabilitation systems, ambient assisted living, emergency medical
systems, and telemedicine systems [8,12].These applications use various sensors such as
temperature, pressure, motion, image, etc., where smart UEs such as watches, weight scales,
blood sugar and blood pressure sensors, gastric stimulators, pulse oxymeters, etc., are very
likely involved in healthcare applications.

As small data volumes need to be infrequently transmitted in an NB-IoT environment,
there must be some scheduling for UEs. Various UEs generate diverse data types, which
demand the necessity of maintaining various priorities p ∈ P among them based on the
urgency. The communication of uplink users is considered in this model, and usually the
NB-IoT uplink transmission occupies 180 kHz of bandwidth and supports two subcarriers
spacing, 3.75 kHz and 15 kHz. However, this network model explicitly investigates the
feasibility and effectiveness of the event-influenced prioritized access of UEs under good
resources to maximize user utility.

Certain essential issues are concerned to explore the healthcare applications using
cellular technologies such as scheduling the access of IoT devices [8,11] from the environ-
ment, then data transmission and management inside the smart hospital environment to
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communicate with the concerned area. At the same time, interference minimization is also
an important issue, as a large number of individuals are expected to connect with the smart
hospital system.

NB-IoT Backbone Network

Internet Cloud

Internet Cloud

NB-IoT Cellular Base 

Station

Personalized Healthcare System

Ambient Assisted 

Living

Emergency medical 

system

Rehabilitation System

Application Server

Concerned Doctor/Nurse

Figure 1. A smart healthcare application architecture using NB-IoT.

3.2. Assumptions

We assume the data transmission between an eNB and an uplink user z ∈ Z follows
a SC-FDMA( Single carrier frequency division multiple access) signal, which follows LP-
OFDMA (Linearly precoded orthogonal frequency division multiplexing). In this system,
a single channel c ∈ C is modulated by multiple sub-carriers, and different time slots t ∈ T
of single a time frame (T) are mapped with those sub-carriers. Here, the eNB allocates each
uplink user z ∈ Z a particular time slot t ∈ T according to its priority p ∈ P in a single
channel c ∈ C. An uplink user z ∈ Z can enjoy the maximum peak data rate rmax

z (66kbps)
through a channel using a one-time slot. The notations used in this paper are summarized
in Table 1.

Table 1. Notations.

Symbol Meaning

N, V Set of UEs and vital signs, respectively

S, E Set of hypotheses and Events, respectively

∂C, ∂R, ∂N Critical, Relevant, and Normal training data, respectively

ρ Received power of a user

h Channel gain

I Interference

N0 Additive White Gaussian Noise

rz Data rate of uplink user, z ∈ Z

U User Utility
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4. Design of the PAUM System

This section characterizes previously discussed research challenges into achievable
clarification. Addressing proper access among UEs to communicate with eNB, the events
classification model opens up the idea of handling the access based on the priorities of
different events.

The block diagram in Figure 2 illustrates a detailed understanding of our proposed
interdependent event influenced prioritized data transmission access scheduling. The fol-
lowing subsections will delineate the events classification and dispensation of proposed
algorithms. Preparing a scheduling of UEs tends to mitigate any mutual interference.
Maximizing user utility through the optimal allocation of bandwidth resources has been
depicted in the latter part of this section.

Data Collection
Sensory 

Data

Information 

Coordination
Vital sign

Vital Sign 

Collection
Classify Events

Importance of 

event in 

Probabilistic 

Distribution

Probabilistic Event 

determination

Probabilistic Event 

type Determination

Important 

Event type
Sorting

Apply delay deadline

Set Priority

Place in QueueAccess Scheduling

Resource Allocation

Data Queue 

& Time slots 

for Channels

Prioritized Time slot 

Allocation

Maximized User 

Utility

(1)

(2)

(3)

(4)

Input Process Output

Figure 2. Functional Block Diagram of the Proposed PAUM System.

4.1. Events Classification

It is significant to ensure the data transmission of the healthcare system by making
prioritization for various data from different sensors and to guarantee the diverse quality
of services to those events [28]. In this paper, the prioritized scheduling of data packets
generated from different UEs is inspired by the fact that different diagnostic reports are
related to each other, and the importance of an event is determined by the degree of its
relevance with one or more other parameters. Initially, the eNB allocates time slots to
uplink users, assuming that they are producing data within the normal range. Once it
receives data from different users, it examines and finds out the relationship among the
events, including the selection of the priority of the concerned event.

Table 2 gives some examples of the event classification using diseases, probable loca-
tions to collect data, and the corresponding diagnosis. First of all, we attempt to reference
the syndromes and analogous diagnoses to categorize the events. The instantaneous identi-
fication of any disease inside a smart hospital is reflected as a Critical Event (CE), which is
required to be handled as crisis/emergency. The diagnoses and treatments that are applied
as a direct intervention or in a supportive role for a critical event are termed as Relevant
Events (RE). Then, all unvarying procedures are named Normal Events (NE). There are
numerous diseases with their own symptoms and diagnoses. Still, some of the diseases



Sensors 2022, 22, 1192 8 of 21

and their diagnoses that can be applied with smart-sensor-based equipment are mentioned
in the proposed Table 2. By all means, CE must get a chance first to transmit data with the
highest priority, followed by RE and NE.

Table 2. Events Classification.

Disease Probable Location Event Description Event Type

Acute severe illness or life
saving patient

(i) Emergency (ii) Urgent Operation
Theatre

(a) Respiratory rate, Heart Rate,
Blood Sugar (a) Critical Event

(iii) Remote Location
(b) Blood Pressure, Oxygen
Saturation, Chest X-Ray, Kidney,
Liver Functionalities

(b) Relevant Event

Asthma (i) Emergency (ii) Urgent Operation
theatre

(a) Oxygen Saturation, Respiratory
rate (a) Critical Event

(iii) OPD (iv) Cabin (b) Heart Rate, Fever, Cough (b) Relevant Event

Acute Gastritis (i) Emergency (a) Ultrasound, Endoscopy,
Colonoscopy (a) Critical Event

(ii) OPD (iii) Cabin (b) Food Habit, Stress Measurement (b) Relevant Event

Heart Disease (i) Emergency (ii) Urgent Operation
Theatre (a) Blood Pressure, Creatinine test (a) Critical Event

(iii) OPD, Cabin (iv) Remote Location (b) Chest X-Ray, ECG, Echo (b) Relevant Event

Regular Test for Kidney,
Liver

(i) OPD (ii) Cabin (iii) Remote
location

(a) Creatinine, Uric Acid, Ultrasound,
Fever a) Normal Event

Regular Test for ENT (i) OPD (ii) Cabin (iii) Remote
location (a) X-Ray, Blood Test (a) Normal Event

Regular Test for EYE (i) OPD (ii) Cabin (iii) Remote
location (a) Opthalmology machine screening (a) Normal Event

Regular Test for Gynae and
Obs

(i) OPD (ii) Cabin (iii) Remote
location

(a) Blood Pressure, Movement of
fetus , Heart rate (a) Normal Event

Applying the Bayes Theorem [29], the sensed information is categorized into different
types of events, based on its vital sign for effective data transmission. This proposed system
uses the concept of a candidate model that approximates a target function for mapping
inputs to outputs known as a hypothesis. The learner considers these inputs as some set
of candidate hypothesis s and is interested in finding the most probable hypothesis s ∈ S
given observed data R, which returns the output as the categorized event described in
Algorithm 1 in the following subsection.

According to Algorithm 1, event classification depends on sensory data and their co-
relation. We use sensory data to determine event-wise training data based on its threshold
value. This training data act as prior knowledge to find the likelihood of events in our
proposed application. The Bayes Theorem expresses the likelihood of an event based on
prior knowledge of the conditions that may be associated with it. Therefore, the Bayes
Theorem can be relied on to identify the likelihood and categorize the occurrences with
specific conditions to determine the more accurate probability of the emerging event.
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Algorithm 1 Probabilistic determination of Event Type.
Input: N, E, V, S: Sets of UEs, events, vital signs, and hypotheses, respectively

V low
th , Vhigh

th : Lower and higher thresholds of vital sign

Output: Event Determination Probability and Maximum probable hypothesis

1: for each n ∈ N do

2: if (Vn < V low
th ||Vn > Vhigh

th ) then

3: ∂C ← Vn;

4: else

5: if (Cv → Rv returns true) then

6: ∂R ← Vn;

7: else

8: ∂N ← Vn;

9: end if

10: end if

11: end for

12: for each n ∈ N do

12: P(sn | ∂C) =
P(∂C |sn)P(sn)

P∂C
; P(sn | ∂R) =

P(∂R |sn)P(sn)
P∂R

; P(sn | ∂N) =
P(∂N |sn)P(sn)

P∂N
;

13: end for

14: for each E ∈ {∂C, ∂R, ∂N} do

15: for each n ∈ N do

15: sn = arg max
∀s∈S

(P(s | E));

16: end for

17: end for

18: return sn ;

4.2. Event Influenced Prioritized Data Transmission Access Scheduling

In the proposed PAUM system, algorithms and optimization functions are executed
in the eNBs. After determining event types, an eNB sends specific transmission slots to
the UEs according to their event priorities so as to achieve maximum utility. Individual
data sources follow the eNB for sending sensory data. In this section, we formulate two
consecutive algorithms intended for an event-influenced priority scheduling to be executed
in the eNBs.

The Algorithm 1 generates a probabilistic event recognition output for a single channel
based on gathered vital signs in a specific time window. A vital sign is defined as a sign
that aids in the detection or monitoring of medical disorders or the measuring of a live
organism’s physiological function [30]. Vital signs are proof of the body’s current physical
functioning, providing important information such as blood pressure, pulse rate, breathing
rate, etc., to determine the urgency. The Bayes Theorem [29], which is based on hypothesis
and associated individual training data, was used to determine the most likely event type
(Critical, Relevant, or Normal). In this algorithm, N is the set of UEs, V is the set of vital
signs, and S is the set of hypotheses used as input. In lines 1–11, the vital sign readings and
their thresholds are exploited to categorize traffic types—critical training data ∂C, relevant
training data ∂R, and ordinary training data ∂N , having priorities 1, 2, and 3, respectively,
where the lower number represents higher priority.

Note that the relevant training data are revealed by combining two propositions—Cv:
VC

n is a critical vital sign; and Rv: Vn is a supporting vital sign for any critical event, VC
n .
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The implication Cv → Rv denotes whether a critical event needs the support of another
vital sign. If the supporting vital sign is required for the associated critical event of that
particular moment, it is counted as relevant training data. It then employs Bayesian learning
to determine the probability of an occurrence based on new data that is connected to the
event in lines 12 to 13. In fact, Bayesian approaches can incorporate probabilistic prediction
hypotheses. In PAUM, the hypothesis is a vector of six constraints, specifying the values of
the six attributes of vital sign, location{cabin, OPD, Emergency, Remote}, range, forecast,
decision, and type, and combines training examples for the target concept “Event type”.
Finally, the algorithm searches the maximally probable hypothesis by MAP (Maximum
a posteriori) hypothesis, which returns the most probable event determination in lines
14 to 17.

Then, Algorithm 1’s outputs are received by Algorithm 2 as śn—the sorted probabilistic
determination of events. Another input is dn, the UEs’ delay deadline for individual
positioned events. Initially, the priority value is inserted in Pn applying the nth positioned
UEs vital sign record using function PRIORITY(Vn) on line 2, and that UE is placed in
a subsequent Queue position. Then, in lines 3–4, the priorities and queue positions are
updated depending on the delay deadline values of two consecutive events given that they
have a very small difference (ε) in their ś values. It assists us in assuring that important
packets are transmitted earlier than others. Finally, sorted priority events are stored in a
queue as a result of Algorithm 2.

Algorithm 2 Prioritized Data Transmission Queue Scheduling Algorithm.
Input: śn ← sn sorted in descending order. d : Set of delay-deadlines of all UEs

Output: P: Set of Priorities, Q : Transmission Queue

Initialization: counting variable, t← 1

1: for each n ∈ N do

2: Pn ← PRIORITY(Vn) ; Qt ← n;

3: if (|śn − śn+1| ≤ ε && dn > dn+1) then

4: Pn ← PRIORITY(Vn+1); Qt ← n; t← t + 1 ;

5: else

5: t← t + 1;

6: end if

7: end for

8: return Q, P;

Let us look at an example situation in which three vital signs are used to promote a
better understanding of algorithms. Assume a smart BP (Blood Pressure) sensor sends
data in a single channel from multiple places (OPD, Emergency, Ward, Cabin) during a
time slot, t ∈ T, such as VBP

t = {(80, 120), (45, 120), (82, 115), (80,185)}. A smart blood sugar
monitor collects data VBS

t = {4.2, 5.6, 6.7, 7.5} and a smart pulse oximeter collects data VPO
t

= { 97, 96.5, 98, 99} in the same time frame and channel. The Bayes Theorem thus aids in
assessing the likelihood of a forthcoming event based on its vital sign record collection
across multiple sites combine as a hypothesis. Both the second and fourth BP recordings in
our example exceed the threshold, suggesting they are critical events. A chest X-ray/ECG
is a significant relevant diagnosis in this circumstance to support the identified critical
event. Then, both blood sugar and oxygen saturation levels are within acceptable limits,
indicating that the occurrence is normal. Finally, the UE for blood pressure is given top
priority, P, and is positioned first in Queue, followed by the UEs for chest X-ray, blood
sugar, and pulse-oximeter. This is how the eNB categorizes the UEs according to the event.
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Multilevel Queue with Preemptive Round Robin Scheduling

Algorithm 2 returns the transmission queue result, which reflects the data transmission
priority. Because this queue uses a preemptive RR (Round Robin) algorithm, transmission
begins with a higher priority data packet and ends with a lower priority. We examine the
suggested method in this part, taking into account changes in location inside the smart
hospital. As a result, we investigate how other UEs obtain a schedule from the base station
during the transmission of a queue that has already been scheduled.

If any unscheduled higher priority events desire to join the eNB during the current
transmission queue process, they must be handled by an eNB for effective scheduling
and prioritized access. In this case, Figure 3 shows that the ready queue is divided into
a multilevel queue approach, with the first queue Q1 having the highest priority and
containing all critical events, the second queue Q2 having the next higher priority and
representing all relative events, and the third queue Q3 having a lower priority and holding
normal events.

Preemptive queue scheduling assigns a spot in Q1, Q2, or Q3 according to the priority
of any new UE joining this access scheduling mechanism. When multilevel queuing is
used, there is a significant risk of starvation [28]. To mitigate data transmission starvation,
the aging algorithm [31] is used.

Q1

Critical Events(CE)

Q2

Relevant Events(RE)

Q3

Normal Events(NE)

Higher Priority

Medium Priority

Lower Priority

Request From 

new UE

Request From 

new UE

Request From 

new UE

Preempted UE in Q1

Preempted UE in Q2

Preempted UE in Q3

Figure 3. Preemptive multi-level priority queue scheduling.

4.3. Interference Mitigation

The next research concern is interference mitigation among UEs while communicating
with the base station. The frequency band allocation for NB-IoT in standalone mode or
in-band mode may not be simultaneous in all cells, resulting in inter-cell interference
(ICI) [7,11]. Any possible noise/interference may cause natural readings to be disrupted,
resulting in incorrect identification and treatment [10]. As a result, an effective strategy for
eliminating interference and providing QoS to users must be developed.

The UEs are assigned to a transmission queue to prioritize event-influenced access
to the base station. Currently, the system is working on making the most efficient use of
available resources while addressing interference mitigation. For an OFDMA (Orthogonal
Frequency Division Multiplexing)-based cellular network, where cells are separated into
discrete areas with different frequencies, frequency reuse methods are the best interference
management strategies. The signal to interference and noise ratio (SINR) is the most
essential factor in determining the amount of inter-cell interference and evaluating the
interference management technique’s performance.

The SINR formula, in general, is as follows:

SINR =
ρ× h

Iz + N0
. (1)
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Here, ρ is the received power of the desired user, I is the total interference, h is the
fading channel gain, and N0 is Additive white Gaussian Noise.

Now, we can define, the interference:

Iz = ∑
k∈B

ρk
z × hk

z. (2)

Equation (2) implies that Iz is the inter-cell interference received by the user i of Base
station b in the uplink transmission scheme from the users of neighboring Base stations
using the same resource, where ρk

z is the transmit power from z the downlink/uplink user
of neighboring cell k, hk

z is the channel gain between the neighboring BS k, and j is the
uplink user of Base station b.

The data rate in Equation (3) can be defined for uplink users as follows:

rb
z = log2(1 + SINRb

z). (3)

4.4. User Utility Maximization

This section delineates user utility and develops an optimization framework to opti-
mally allocate resources based on the desired user utility. We want to allocate bandwidth
resources to the UEs so that the user data rate is maximized, the interference is minimized,
and the high-priority users obtain access to good quality resources.

Thus, the Utility function Uz for an uplink user, z ∈ Z is defined as:

Uz =
rz

PzXIz
; ∀z ∈ Z (4)

and the optimization framework is formulated as:

Maximize : f = ∑
∀t∈T

∑
∀z∈Z

∑
∀c∈C

iz,t ×Uz (5)

Subject to:
ic
z,t ∈ {0, 1}; ∀t ∈ T, ∀z ∈ Z, ∀c ∈ C (6)

rc
z,t ≤ rz,max; ∀t ∈ T, ∀z ∈ Z, ∀c ∈ C (7)

∑
t∈T

kc
z,t = 1; ∀z ∈ Z, N < T, ∀c ∈ C (8)

∑
t∈T

kc
z,t ≤ 1; ∀z ∈ Z, N > T, ∀c ∈ C (9)

ρc
z,t ≤ ρmax; ∀t ∈ T, ∀z ∈ Z, ∀c ∈ C (10)

hc
z,t ≥ hmin; ∀t ∈ T, ∀z ∈ Z, ∀c ∈ C (11)

Here, the objective function in Equation (5) is formulated as an MNILP (Multiobject
Non-Integer Linear Programming) to be solved by the eNB. Maximizing utility with an
allocated channel and its time slot for all uplink users resulted in an optimum solution with
some effective constraints.

Allocation Constraint: The binary variable ic
z,t in Equation (6) contains 1 if an uplink

user z ∈ Z is allocated a time slot t ∈ T of channel c ∈ C, and 0 otherwise.
Budget Constraint: The measurement variable rc

z,t in Equation (7) enumerates how
much data of a UE is possible to be transmitted through a particular channel c ∈ C with an
allocated time slot.

Time Slot Allocation Constraint: The constraint in Equations (8) and (9) creates a re-
striction that exactly one time slot in a time frame can be allocated to an uplink user z if
the number of users is less than the available time slots; otherwise, the allocation of a time
slot to an uplink user z is not guaranteed but is rather opportunistic following its priority.
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Interference Constraint: Constraints in Equations (10) and (11) mitigate interference
issues by keeping power within a certain range while choosing a channel that offers
gain above a certain minimum threshold. In the PAUM system, the utility of a patient
emphasized the QoS of a successful and reliable smart healthcare system. The maximization
of utility for any uplink user upgrades the system’s access reliability; under the time
slot assignment, its higher priority and its higher data rate and event-influenced delay
is achieved.

5. Performance Evaluation

This section presents the comparative performances of the proposed Priority Aware
Utility Maximization (PAUM), Basic Radio Resource Management (bRRM) [8], and Intel-
ligent Radio Resource Management (iRRM) [12] with diversified parameters in network
simulator version-3 [NS-3] [32,33] using a typical LTE network cell for a smart healthcare
system.

5.1. Simulation Environment

Table 3 represents the simulation parameters and their values following 3GPP stan-
dards [34], where the cellular layout is considered as a hexagonal grid using three sectors
per site with an inter-site distance of 500 m along with a frequency band of 900 MHz
considering a 180 kHz channel bandwidth. The system-level performance is developed by
an NS-3-based LTE environment, where multiple UEs are connected with multiple eNBs,
supporting up to 10 to 100 eNBs and 100 to 1000 UEs with good channelization specifying
the time slot. The various NB-IoT devices installed in a typical hospital environment,
including the OPD, Ward, Emergency, Cabin, and Operation Theater, have been considered
as data generation sources in the simulation environment. Here, we consider three types of
events, namely, critical, relevant, and normal. We also consider the occurrence of an event
and its type in a certain NB-IoT UE using uniform random distribution. Therefore, in a
given scenario, the number of events varies from 0 to the total number of UEs intended
for communication, each generating 3 to 15 packets/sec randomly. The data ranges and
payload information sizes produced from different sensors are adapted from [11] and
resemble a practical healthcare application environment. The RadiobearerStatCalculator is
used as a simulation trace file to obtain a view of different parameters. The experimental
data are analyzed for uplink users, and the average results from 30 experimental runs are
plotted in the graph data points. The events happen randomly in the network at different
places, which is considered over the simulation period of 1000 s.

Table 3. Simulation Parameters.

Parameters Values

Cellular layout Hexagonal Grid, 3 sectors per site

Carrier 900 MHz

Inter-site distance 500 m/1732 m

UE deployment Uniform random distribution

Event generation at UEs Uniform random distribution

BS Transmit Power 43 dBm

UE transmit power Maximum 23 dBm

Inter-site correlation co-efficient 0.5 and 0.75

ε 0.0005

5.2. Performance Metrics

The effectiveness of the proposed PAUM system has been demonstrated using the
following performance metrics:



Sensors 2022, 22, 1192 14 of 21

Average Utility: It measures how the high priority users with higher data rate re-
ceive transmission opportunities in the network. Utilities achieved by individual UEs,
as calculated in Equation (4), are then averaged to plot the graph.

Average Packet Delivery Ratio: It is defined as the ratio of the number of packets
delivered at an eNB to the total number of packets sent from all source nodes under that
eNB. The higher value shows improved performance.

Radio Resource Access Fairness: This is used to determine whether users are receiving a
fair share of system radio resources. Our system approaches Jain’s index, which provides a
fairness criterion that considers all the users of the system, not only those assigned minimal
resources. The fairness index starts from 0, and a value close to 1 indicates a fair share of
radio resource access.

Average Packet Delivery Delay: It is the average time delay experienced by all data packets
from UEs to reach at the corresponding eNB. The lower value indicates higher performance.

Classification Accuracy: It is a measurement of how correctly events are identified as
critical, relevant, and normal after applying Bayesian learning.

5.3. Simulation Results

The obtained results from the simulation experiments using various aspects of different
scenarios are discussed in this section. The simulation trace file is the subject of our in-
depth investigation. RadioBearerStatCalculator from NS-3 is a trace sink that generates
the number of transmitted PDUs (Protocol Data Unit), received PDUs, transmitted bytes,
received bytes, and other PDU statistics for uplink users.

5.3.1. Impacts of Varying Data Generation Rates from Sensor Devices

In this subsection, we study the performances of the radio resource management
approaches for increasing data generation rates from the healthcare sensor devices. The rate
at which data are generated (in packets per second) has a considerable impact on PAUM’s
scalability and efficiency. This occurs as the traffic density is determined by the network
applications and their traffic injection rates. In PAUM, the term utility refers to how well
priority users are able to transmit data in a good channel with mitigated interference. The
graphs in Figure 4a illustrate that, as a result of the network’s event-driven prioritization,
the utility achieved by PAUM users remains stable while the data rate increases. It shows
that the PAUM’s functionality is highly appreciable by the system’s users. In the case of
PAUM’s prioritized event scheduling, the performances of average utility outperform over
bRRM and iRRM because none of the research comes up with the utility measurement
by well-managed resource allocation governed by higher priority with classified events.
It is obvious that the Utility measurement of the PAUM is effective in terms of event
prioritization as the rate of data generation increases. The graphs of Figure 4b show that as
the number of packets generated per second increases, the average packet delivery ratio
(PDR) slowly declines. The PAUM system achieves minimal data loss over bRRM and
iRRM since it avoids congestion and allocates high-quality resources. Resource allocation
is critical when it comes to assessing user usefulness. These findings support the use of
PAUM for real-time healthcare applications leveraging NB-IoT. Finally, fairness ensures that
resources are distributed to each user in accordance with their requirements. As illustrated
in Figure 4c, the value of equitable resource sharing is maximized. It can be seen that
because most schedulers focused solely on the channel conditions of UEs while allocating
radio resources, their associated fairness increases as SINR values rise. However, this is not
the case for the event-influenced prioritized Multilevel Queue with Preemptive Round Robin
scheduling scheme, which maximizes the overall system utility by considering the UEs with
best channel conditions along with their time slot; it automatically excludes all other UEs
with relatively bad channel conditions, resulting in the highest fairness index. The PAUM
outperforms bRRM and iRRM because it considers event type and priority, along with
SINR value.
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Figure 4. Impacts of varying data generation rates from sensor devices.

5.3.2. Impacts of Varying Number of User Equipment (UEs)

In this experiment, we choose the number of UEs randomly (with uniform distribution)
from a range of 3–15 and the performance of varied numbers of UEs keeping the bandwidth,
bit error rate, and the number of uplink channels at 66 kbps, 10−3 BER, and 2 with a 1 ms
time slot, respectively. The high priority users having a higher data rate and less interference
requirements are more valuable for data transmission than others, which is not addressed
in bRRM and iRRM. As a result, the graphs in Figure 5a illustrate that in the case of PAUM,
even a little increase in UE can maintain a steady utility for all UEs. Thus, the PAUM
outperforms the bRRM and iRRM systems significantly due to smart user classification
and prioritization.

The graphs in Figure 5b demonstrate that as the number of UEs grows, the average
packet delivery ratio (PDR) decreases consistently for all examined approaches, indicating
that the PAUM is effective for all classified events. It avoids interference and prioritizes UEs
with higher PDR over UEs with lower PDR, such as bRRM and iRRM. It occurs because the
priority-sorted event minimizes the average hop distance of delivered data packets. Despite
the fact that iRRM and bRRM reduce interference while managing the radio resources, the
packet delivery ratio of PAUM demonstrates the benefits of employing prioritized classified
events, which outperforms both of them.
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Figure 5. Impacts of varying number of User Equipment (UEs).

Finally, when compared to other systems, the proposed PAUM has the highest resource
sharing fairness for changing numbers of UEs, as shown in Figure 5c. This is due to the
network’s bandwidth being divided with suitable event urgency, using channelization
on time by Equations (8) and (9). Due to a lack of priority and correct coordination with
channelization and time slot with bandwidth, bRRM and iRRM do not adequately share
resource allocation. The resources are equitably distributed across the UEs following their
priorities, and the bandwidth is distributed in such a way that data transfer from the
assigned node is reduced. As a result, PAUM achieved a higher fairness index over bRRM
and iRRM.

5.3.3. Delays Experienced by Different Packet Types vs. Data Generation Rate

This experiment investigates the effects of varying data generation rates on the average
delays experienced by different data packet types. The average packet delivery delay constantly
increases for all the studied systems with the increasing data generation rates, as illustrated
in Figure 6. As a result of event-influenced prioritization, Critical Events (CE) experienced
the least amount of delay compared to Relevant Events (RE) and Normal Events (NE),
as expected theoretically. It is also revealed from the graphs of the Figure 6 that, on an
average, the delays of the RE and NE packets are almost 1.5 times and 3 times higher,
respectively, compared to the CE packets.
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Figure 6. Delays experienced by different packet types vs. data generation rate.

Such an excellent performance improvement is achieved due to the fact that, with the
increasing data generation rates, the PAUM system efficiently categorizes different events
and allocates radio resources in a prioritized manner and mitigating interference, whereas
the generation of additional data packets cause resource allocation overhead to both the
iRRM and bRRM systems since they do not differentiate among the data packets; rather, they
try to allocate resources to all packets simultaneously, causing interference and congestion.
Thus, the data delivery performances of the latter systems are degraded.

5.3.4. Delays Experienced by Different Packet Types for Varying Number of UEs

Next, we investigate the average data delivery delay experienced by different data
packet types under an increased number of UEs, as shown in Figure 7. Since the increased
number of UEs demands augmented transmission opportunities and injects more packets
into the network, the general trend of increased delay is observed in all the studied cases.
The iRRM considers the repetition factor, time offset, and data rate for radio resource
management, which performs better than bRRM in terms of delay and which accounts
for inter-carrier-interference only. Finally, the proposed PAUM system exhibits less delay
compared to bRRM and iRRM for all data packets due to minimized interference and
prioritized network access.
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Figure 7. Delays Experienced by different packet types vs. User Equipment.

5.3.5. Classification Accuracy

The graphs in Figure 8a,b show classification accuracy of various event types exploiting
the Bayes Theorem according to Algorithm 1. At the beginning, sensory data generated
by the UEs are used as normal data for communication with eNB in an NB-IoT network.
Subsequently, all collected data and their co-relations are used by eNB to classify the
events. The eNB identifies event-wise training data, which serve as prior information for
determining the likelihood of events, and then Bayesian learning assists in determining
the probability of events using prior knowledge and associated conditions. The Figure 8a
shows that as the number of UEs grow, the accuracy level gradually decreases. Note
that when the number of UEs increases, many sensory inputs may not reach the eNB in
a timely manner, causing the event relationships to be misinterpreted. If available data
are not present, it can be difficult to locate relevant data for a comparable critical event;
nevertheless, there is no trouble identifying a normal occurrence. As a result, regular events
are identified with high accuracy, followed by critical events and relevant events. We did
not compare classification accuracy with others because they do not have a classification
system. Figure 8b depicts categorization accuracy as a function of simulation time, from 5
to 50 s. In the case of probabilistic determination, training data accumulate over time,
allowing for more precise estimations of occurrence likelihood. As time passes, training
data accumulate, resulting in a more accurate type of event and a more accurate event
association. In this diagram, the accuracy for normal events has remained constant since the
beginning, whereas critical and relevant event accuracies have been increased over time.
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Figure 8. Classification Accuracy vs. User Equipment and Simulation Time.

6. Conclusions

This work investigated how healthcare application events are influenced by priority
access scheduling and utility maximization in NB-IoT. Our suggested system, PAUM,
greatly contributed to resource allocation for prioritized access by allocating a suitable
channel, a non-interfering time slot with greater data rate to different data packets by
formulating a mixed non integer linear programming solution. Using event-induced
prioritization, our system maximizes the utility value of users by allocating resources
optimally. Our in-depth examination of the simulation trace file revealed that interference
was reduced as a result of prioritized access scheduling to the time slots. Due to event
classification, the critical event received the greatest priority to meet its urgency, followed
by the other events. The simulation results showed significant performance improvement
in terms of utility, fair share of resources, delay, and packet delivery ratio by 65%, 45%,
25%, and 15%, respectively, compared to the iRRM system.

In the future, in place of Bayesian learning, other learning approaches including
instance-based algorithms, analytical learning, and reinforcement learning can be explored
to study scopes for further performance improvement.
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