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Abstract: Synthetically creating motion blur in two-dimensional (2D) images is a well-understood 
process and has been used in image processing for developing deblurring systems. There are no 
well-established techniques for synthetically generating arbitrary motion blur within three-dimen-
sional (3D) images, such as depth maps and point clouds since their behavior is not as well under-
stood. As a prerequisite, we have previously developed a method for generating synthetic motion 
blur in a plane that is parallel to the sensor detector plane. In this work, as a major extension, we 
generalize our previously developed framework for synthetically generating linear and radial mo-
tion blur along planes that are at arbitrary angles with respect to the sensor detector plane. Our 
framework accurately captures the behavior of the real motion blur that is encountered using a 
Time-of-Flight (ToF) sensor. This work uses a probabilistic model that predicts the location of inva-
lid pixels that are typically present within depth maps that contain real motion blur. More specifi-
cally, the probabilistic model considers different angles of motion paths and the velocity of an object 
with respect to the image plane of a ToF sensor. Extensive experimental results are shown that 
demonstrate how our framework can be applied to synthetically create radial, linear, and combined 
radial-linear motion blur. We quantify the accuracy of the synthetic generation method by compar-
ing the resulting synthetic depth map to the experimentally captured depth map with motion. Our 
results indicate that our framework achieves an average Boundary F1 (BF) score of 0.7192 for invalid 
pixels for synthetic radial motion blur, an average BF score of 0.8778 for synthetic linear motion 
blur, and an average BF score of 0.62 for synthetic combined radial-linear motion blur. 

Keywords: 3D image processing; depth maps; time-of-flight sensors 

1. Introduction
The ability to synthetically create motion blur in 2D and depth images is useful for a 

wide range of applications. In the recent decade, increasingly research of developing more 
effective and adaptive deblurring techniques has received significant attentions in appli-
cations such as 3D scanning [1,2], structural health monitoring [3–6], drone positioning [7–
9], robotics [10–12], road surveillances [13–15], and logistics [16–18]. In such applications, 
there could be relative motion between the sensor and objects within its field of view 
(FOV). The relative movement between the sensor and other objects result in motion blur 
which increases the number of blurring pixels and flying pixels that are present in a 2D 
image or a depth map and distorts the appearance of the objects [19]. Several types of 
motion blur exist such as radial motion, linear motion, out-of-focus blur, or a combination 
of blur types. Synthetically creating motion blur in 2D images is a well-understood pro-
cess [20,21]. In traditional 2D images, motion blur appears as a softening of edges within 
a 2D image along a motion path. Previous works have developed different models and 
techniques for creating motion blur in 2D images [22–24]. However, the motion blur in 
depth maps is distinct from 2D images because of the presence of invalid pixel values and 
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flying pixels which do not exist in 2D image motion blur. Other previous works primarily 
focus on different techniques for deblurring 2D images. These deblurring techniques in-
clude learning-based approaches [25–27] and blind approaches [28–30]. Motion blur in a 
ToF sensor is a function of the integration time of the ToF sensor and the relative motion 
between the ToF sensor and an object [19,31–34]. Invalid pixels from motion blur typically 
appear when a depth transition occurs during the integration time while a depth is being 
measured. The depth transition causes an ambiguity in the depth measurement which 
results in an invalid pixel. The locations of invalid pixels are scene-specific, which makes 
capturing 3D images of motion blur in a real-world environment challenging because the 
motion path and the speed of objects are not always easily controllable. This challenge 
makes using non-probabilistic approaches or machine learning approaches that require 
large training data sets less feasible. 

In other previous works, motion blur in depth maps has been observed as a baseline 
for comparing different 3D sensing technologies or for evaluating the performance of var-
ious deblurring algorithms [19,35]. These works typically focus on how to minimize the 
effects of motion blur and they do not provide any insight about how to synthetically 
create motion blur. For example, in reference [35], radial motion blur is captured using 
both a Kinect v1 sensor that uses structured light and a Kinect v2 sensor that uses ToF. 
For each Kinect sensor, a depth map is generated for a flat fan blade, a Siemens Star, while 
it is static and while it is rotating and the distortion between the static and rotating depth 
maps is computed. The focus of reference [35] is simply to compare the amount of distor-
tion that is present in the depth maps generated by the different Kinect sensors. 

In our previous work [36], we introduced a probabilistic model to predict the location 
of invalid pixels, also referred to as zero-value pixels, that are present when motion blur 
occurs. The model in [36] can only be applied to create radial and linear motion blur for 
motion that is parallel to the image plane of a ToF sensor and does not work for motion 
that is not parallel to the image plane of the ToF sensor. Reference [36] is also limited to 
only synthetically creating either radial or linear motion blurs that are independent of 
each other and is unable to create a combined radial-linear motion blur. 

This work presents a framework for synthetically generating motion blur within a 
depth map that mimics the real motion blur that is observed in ToF sensor data. Our 
framework can be applied to radial, linear, and combined radial-linear motion blur and 
takes into account the speed, motion type, and motion path of the object. Using our frame-
work, a synthetic radial, linear, or combined radial-linear motion blur can be applied to 
depth maps of static objects. If desired, the blurred depth map can then also be converted 
into a point cloud that will include the applied motion blur. The ability to synthetically 
generate motion blur in 3D images enables future works to create test benches for evalu-
ating algorithms for deblurring this motion blur. To the best of our knowledge, there are 
no well-established techniques for synthetically generating motion blur within 3D images 
such as depth maps and point clouds. 

This work contributes to the state of the art by (1) developing a framework for syn-
thetically generating motion blur in depth maps that mimics the appearance and behavior 
of real motion blur that can be observed using a ToF sensor; (2) developing the probabil-
istic model to predict the locations of invalid pixels to synthetically generate combined 
radial-linear motion blur; and (3) conducting extensive experiments to verify the perfor-
mance of our framework for generating synthetic motion blur in depth maps. Our results 
indicate that our framework is able to achieve an average BF score of 0.7192 for invalid 
pixels for synthetic radial motion blur, an average BF score of 0.8778 for synthetic linear 
motion blur, and an average BF score of 0.62 for synthetic combined radial-linear motion 
blur. Our results also indicate that our framework is able to achieve a BF score between 
0.7802 and 0.7873 for radial motion blur and a BF score between 0.8498 and 0.8954 for 
linear motion blur when the object plane of motion is rotated between zero and thirty 
degrees with respect to the image plane of a ToF sensor. 
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This work uses a Kinect v2 ToF sensor for experiments due to its popularity and 
widespread use in research and engineering applications. In addition, the Kinect v2 also 
provides the most control among commercial ToF sensors by allowing us to disable its 
internal Bilateral filter and Edge-aware filter to access the raw data from the ToF sensor. 
However, we also demonstrate that our framework for synthetically generating motion 
blur within a depth map can generally be applied to other types of ToF sensors. 

This paper is organized as follows. Section 2 discusses our methodology for syntheti-
cally generating motion blur within a depth map. Section 3 describes our experimental 
setup and results. Section 4 provides concluding remarks. 

2. Methodology 
Motion blur appears in depth maps as an increase in the number of zero-value pixels 

(i.e., invalid pixels) and flying pixels that result in near depth discontinuities within a 
scene [19]. In general, ToF sensors determine depth values based on the amount of time it 
takes for infrared (IR) light that is emitted from the ToF sensor to return to the ToF sensor, 
after reflecting off a surface within a scene. As an object moves with respect to the ToF 
sensor, the IR light that is reflected near the edges of the object may result in erroneous 
depth values that do not accurately represent the surface of the object. The increase in the 
number of zero-value pixels and flying pixels results in fewer pixels on the surface of the 
object which tends to distort the appearance of the object within depth maps. For example, 
the distorted appearance may cause the surface area of an object to reduce and the size of 
openings to increase. In this work, we propose an approach for synthetically applying 
motion blur to the depth map of a static object. After synthetically applying the motion 
blur to the depth map, the resulting depth map mimics the appearance and behavior of a 
depth map that would be observed if the object were moving. Figure 1 provides an over-
view of our methodology, and the frequently used notations are provided in Table 1. 

 
Figure 1. Process for generating synthetic motion blur. (A) Initial depth map from ToF sensor; (B) 
Binary depth map; (C) Depth map with an example of an ROI for a pixel shown in red. The ROI has 
been enlarged for visualization purposes; (D) Binary depth map after updating the binary depth 
with the predicted zero value pixels. The zero-value pixels are shown in black and the non-zero 
value pixels are shown in white; (E) Depth map after applying the blur filter; (F) Blurred depth map 
after applying predicted zero value pixels. For visualization purposes, (A,C,E,F) are shown within 
normalized values in the uint8 range. 
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Table 1. Frequently used notations in this paper. 

Symbol Description 
p(x, y) The pixel of a depth map in Cartesian coordinates 

d 
The distance between the image plane of a ToF sensor and a point in the 

object plane 

𝜃𝜃 The rotation angle between the motion of an object and the image plane of 
a ToF sensor 

I The initial depth map in 2D matrix of pixels with dimensions M×N  
Ib The binary depth map in 2D matrix of pixels with dimensions M×N  
If The blurred depth map in 2D matrix of pixels with dimensions M×N  
v⃗ The velocity of a pixel at p(x, y) 
vx The velocity component in the x-direction 
vy  The velocity component in the y-direction 
w The ROI dimension tangential to the velocity of a pixel at p(x, y) 
h The ROI dimension orthogonal to the velocity of a pixel at p(x, y) 

s(x, y) The perspective distortion scaling function of a pixel at p(x, y) 
β The rotation angle of an ROI within a depth map 

φ⃗ The angular motor velocity of a radial motion 
µ⃗ The linear motor velocity of a linear motion 

{n0, n1, … , nl} The set of neighboring pixels within an ROI for a given pixel p(x, y)  
pp The initial probability of a given pixel p(x, y) having a value of zero 

ε(sp, sni) The potential function of the ith neighboring pixel to the given pixel p(x, y)  
p ̃p The predicted probability of a given pixel p(x, y) having a value of zero 

ŝp 
The predicted state of a given pixel p(x, y) having a value of one or zero in 

a binary depth map 

The key steps to the synthetic motion blur generation methodology are as follows. 
(1) A static ToF sensor is used to capture the depth map of a static object. We then perform 
a binarization on the depth map to generate a binary depth map by setting the non-zero 
values from the depth map to a value of one and the zero values, which correspond with 
invalid pixels, to a value of zero. (2) We then define a region-of-interest (ROI) for each 
pixel in the depth map and the binary mask. (3) After defining the ROIs, we then blur the 
depth map. This blurring process involves first performing interpolation using the previ-
ously determined ROIs to assign values to the pixels in the depth map that have a value 
of zero. After interpolation, we then apply a spatial blur filter to the depth-map that aver-
ages the pixel values of each pixel based on the pixel values of neighboring pixels within 
each of their respective ROIs. (4) We then use probabilistic modeling to predict the loca-
tions of new zero-value pixels within the binary depth map. The probabilistic model pre-
dicts whether a pixel location within the depth map should have a zero value after the 
spatial blur filter is applied. The result of this process is an updated binary depth map that 
includes the additional predicted zero value pixels. (5) We then mask the blurred depth 
map using the updated binary depth map to add the predicted zeros to the blurred depth 
map. This process is discussed in more detail below. 

2.1. ROI Generation 
Figure 2 shows a perspective view of a relationship of between a ToF sensor image 

plane and motion of an object in an object plane. In our work, the ToF sensor is positioned 
at a distance, d, from an object. For simplicity, we consider the motion of a single object in 
the FOV. However, our methodology can be easily extended to multiple object motion. 
Let the object motion plane have a rotation angle, 𝜃𝜃, with respect to the ToF sensor image 
plane. For simplicity, this study uses a single rotation angle with respect to the y-axis of 
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the ToF sensor image plane. However, the principles used in this work can be applied to 
the other axes of the ToF sensor image plane. 

As the object moves, an initial depth map, I ∈ ℝM×N, is obtained from the ToF sensor 
where I is a 2D matrix of pixels with the dimensions M×N . Each given pixel within the 
depth map is identified as p(x, y). After obtaining the depth map, an ROI (e.g., a bounding 
box) is defined for each pixel within the initial depth map based on velocity of the object, 
v⃗. In our framework, the ROI represents neighboring pixels {n0, n1, … , nl}, where {n0, n1, 
… , nl} ∈ I, that influence the value of a given pixel during the motion blurring process. 

 
Figure 2. Perspective view of a relationship of between a ToF sensor image plane and motion of an 
object in an object plane. For simplicity, the object's movement is along a single plane (left). Top 
view of the relationship between the ToF sensor image plane and the movement of the object in the 
object plane (right). 

In general, the size of the ROI is proportional to the speed of the object, and the ori-
entation of the ROI is associated with the motion type for the object. In this work, we 
consider linear motion and radial motion since these types of motion blur are the most 
applicable to a variety of applications. The ROI dimensions for radial motion and/or linear 
motion can be calculated using Equation (1) and Equation (2). For each pixel p(x, y) we 
determine its radial velocity as v⃗R, linear velocity as v⃗L, and the angle between v⃗R and 
v⃗L as γ. In this way, the dimensions for an ROI are calculated as follows. 

𝑤𝑤 = 𝑠𝑠(𝑥𝑥, 𝑦𝑦) ∙ (|𝑣𝑣𝑅𝑅����⃑ | + |𝑣𝑣𝐿𝐿����⃑ | ∙ cos 𝛾𝛾) (1) 

Where w is the ROI dimension tangential to the velocity of a pixel and s(x, y) is a perspec-
tive distortion scaling function. 

ℎ = 𝑠𝑠(𝑥𝑥, 𝑦𝑦) ∙ (𝐻𝐻 + |𝑣𝑣𝐿𝐿����⃑ | ∙ sin 𝛾𝛾) (2) 

Where h is the ROI dimension orthogonal to the velocity of the pixel and H is a user-
defined constant height value. For simplicity, this study assumes that both radial motion 
and linear motion are in the same object plane and that any velocity components that are 
orthogonal to the object plane are negligible. Future work may extend Equations (1) and 
(2) to account for velocity components that are orthogonal to the object plane. In the fol-
lowing sub-sections, we discuss how v⃗R and v⃗L are determined for an object. The per-
spective distortion scaling function, s(x, y), is described in Section 2.1.3. 

2.1.1. Radial Velocity 
Figure 3 illustrates a planar object with radial motion. For an object with radial mo-

tion, the velocity of the object is along a path that is tangential to the direction of motion 
and its magnitude can be expressed as follows: 

|𝑣⃑𝑣| =  𝛼𝛼 ∙ 𝑟𝑟|𝜑𝜑�⃑ | (3) 

ToF Sensor Image Plane
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where α is a scaling factor for converting radial motion to the pixel domain, r is the radius 
of radial motion, and φ is the angular velocity of the object. In our experiments, the angu-
lar velocity of the object is constant and depends on the speed of the motor that is driving 
the radial motion. The relationship between the velocity, v⃗, of a pixel when the motion 
path of the pixel is not parallel with the image plane of the ToF sensor and the velocity, 
v⃗0, of the pixel when the motion path of the pixel is parallel with the image plane of the 
ToF sensor is given as: 

|𝑣𝑣𝑥𝑥| =  |𝑣𝑣0
𝑥𝑥|  ∙ cos 𝜃𝜃 (4) 

where 

|𝑣⃑𝑣| =  �|𝑣𝑣𝑋𝑋|2 +  |𝑣𝑣𝑌𝑌|2 

|𝑣𝑣0����⃑ | =  �|𝑣𝑣0
𝑋𝑋|2 +  |𝑣𝑣0

𝑌𝑌|2 

|𝑣𝑣𝑌𝑌| =  |𝑣𝑣0
𝑌𝑌|  

𝛽𝛽0 =  tan−1 |𝑣𝑣0
𝑌𝑌|

|𝑣𝑣0
𝑋𝑋| 

 
Figure 3. Radial motion with respect to the image plane of the ToF sensor. 

In Equation (4), |vx| and |vy|  are the magnitudes of the velocity component in the 
x-direction and y-direction, respectively, when the motion path of the pixel is not parallel 
with the image plane of the ToF sensor, |v0X| and |voY| are magnitudes of the velocity 
component in the x-direction and y-direction, respectively, when the motion path of the 
pixel is parallel with the image plane of the ToF sensor, β0 is the rotation angle of the pixel 
when the motion path of the pixel is parallel with the image plane of the ToF sensor, and 
𝜃𝜃 is the rotation angle between the image plane of the ToF sensor and the motion of the 
object. Using this relationship, we can then determine the velocity for a pixel with radial 
motion by solving the following: 
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|𝑣⃑𝑣|2 − |𝑣𝑣0����⃑ |2 = � �|𝑣𝑣𝑋𝑋|2 +  |𝑣𝑣𝑌𝑌|2�
2

− ��|𝑣𝑣0
𝑋𝑋|2 +  |𝑣𝑣0

𝑌𝑌|2�
2

 (5) 

where 

|𝑣⃑𝑣|2 =  |𝑣𝑣0
𝑋𝑋|2 ∙  cos2 𝜃𝜃 +  |𝑣𝑣0

𝑌𝑌|2 

|𝑣𝑣0����⃑ |2 =  |𝑣𝑣0
𝑋𝑋|2 + |𝑣𝑣0

𝑌𝑌|2 

|𝑣𝑣0
𝑌𝑌|2 =  |𝑣𝑣0����⃑ |2 + |𝑣𝑣0

𝑋𝑋|2 

|𝑣𝑣0
𝑋𝑋|2 =  |𝑣𝑣0|2 ∙ sin 𝛽𝛽0 

Equation (6) is the result from solving Equation (5) which can be used in Equation (1) 
to determine the dimension tangential to the velocity of a pixel for an ROI. 

|𝑣⃑𝑣| =  �|𝑣𝑣0����⃑ |2 ∙  (sin2 𝛽𝛽0 ∙ cos2 𝜃𝜃 − sin2 𝛽𝛽0 + 1) (6) 

After determining the dimensions of the ROI, we can then determine the rotation 
angle, β, of the ROI as: 

𝛽𝛽 =  tan−1 �
|𝑣𝑣𝑌𝑌|
|𝑣𝑣𝑋𝑋|� (7) 

After determining the dimensions and orientation of the ROI, the pixel is then cen-
tered within the ROI. 

2.1.2. Linear Velocity 
Figure 4 illustrates a planar object with linear motion. For an object with linear mo-

tion, the velocity of the object is along a path that is tangential to the direction of motion 
and its magnitude is equal to the product of a scaling factor, α, and the linear velocity, 
|µ⃗|, of the object. The scaling factor α is used to convert the linear velocity from real-
world units (such as meters per second) to the pixel units (pixels per second). In our ex-
periments, the linear velocity, |µ⃗|, of the object is constant and depends on the speed of 
the motor that is driving the linear motion and is given by: 

|𝑣⃑𝑣| =  |𝑣𝑣0����⃑ | ∙ cos 𝜃𝜃 (8) 

where 

|𝑣𝑣0����⃑ | =  𝛼𝛼 ∙ |𝜇𝜇| 

In this case, the rotation angle, β, of ROI is approximated to be along a path that is 
parallel to the direction of motion (i.e., β = 0). 
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Figure 4. Linear motion with respect to the image plane of the ToF sensor. 

2.1.3. Perspective Distortion Function 
As the rotation angle, 𝜃𝜃, becomes non-zero, perspective distortion begins to appear 

in the depth maps which causes portions of the object that are closer to the ToF sensor to 
occupy more pixels in the depth map than portions of the object that are further away 
from the ToF sensor. Figure 5 illustrates a top view of an object that is rotated with respect 
to the image plane of a ToF sensor. In this study, only horizontal distortions are consid-
ered. As shown in Figure 5, the object is orientated such that d is the distance between the 
ToF sensor and a midpoint, A, of the object, L is half of the length of the object in real-
world units, P1 and P2 are points on opposite ends of the object when there is no rotation 
between the object and the image plane of the ToF sensor, P’1 and P’2 are points on oppo-
site ends of the object when there is a rotation between the object and the image plane of 
the ToF sensor, A’ is the midpoint of the object corresponding with the point P’1, and A’’ 
is the midpoint of the object corresponding with the point P’2. As denoted earlier, N is the 
width of the depth map in pixels. 

To account for this perspective distortion, our framework uses a linear approxima-
tion using similar perspective triangles [37]. In this way, the estimated perspective distor-
tion scaling function between a minimum and a maximum distortion factor can then be 
applied to Equations (1) and (2) based on the distance between a particular pixel p(x, y) on 
the object and the ToF sensor. Thus, the perspective distortion scaling function, s(x, y), is 
a function of the pixel location, p(x, y) and is given by: 
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Figure 5. Top view of an object rotated with respect to the image plane of the ToF sensor. 

𝑠𝑠(𝑥𝑥, 𝑦𝑦) =  (𝑥𝑥 − 𝑁𝑁) ∙ �
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

−𝑁𝑁
� + 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 (9) 

where the maximum scaling factor, smax , and the minimum scaling factor, smin, are given 
respectively, by:  

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑑𝑑

𝑑𝑑 − 𝐿𝐿 ∙ sin 𝜃𝜃
 (10) 

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑑𝑑

𝑑𝑑 + 𝐿𝐿 ∙ sin 𝜃𝜃
 (11) 

While these equations provide for a first-order approximation of the perspective dis-
tortion, a more comprehensive methodology can be used in future works. 

2.2. Blurring the Depth Map 
The first step in the blurring process is to perform a bilinear interpolation on the orig-

inal depth map. The depth map that is obtained from the ToF sensor includes a combina-
tion of zero-value and non-zero value pixels. A zero-value pixel is an invalid pixel where 
the ToF sensor was unable to determine a depth value. A non-zero pixel is a pixel where 
the ToF sensor was able to determine depth value. We perform the bilinear interpolation 
process to assign the zero-value pixels a depth value based on their neighboring pixels 
within an ROI as defined in Sections 2.1. This interpolation process allows the subsequent 
blurring process to be applied more accurately to the depth map. After interpolation, we 
then apply a spatial filter to the depth map to simulate the appearance of a motion blur. 
In this work, we apply a blur filter to generate a blurred depth map, If, with the same 
dimensions as the input depth map I. For combined radial-linear motion blur, the input 
is the ROIs for each pixel that was defined in Section 2.1. For radial motion blur, the input 
is the ROIs for each given pixel that was defined in Section 2.1.1. For linear motion blur, 
the input is the ROIs for each pixel that was defined in Section 2.1.2. 

2.3. Probability Modeling 
In this section, we discuss our new probabilistic model that predicts the location of 

zero-value pixels in the motion-blurred depth map based on values of neighboring pixels. 
The new probabilistic model improves the probabilistic model from [36]which could only 
predict the location of zero-value pixels when the motion of an object is parallel to the 
image plane of a ToF sensor and was limited to either radial motion blur or linear motion 
blur only. Our new probabilistic model is capable of predicting the location of zero-value 
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pixels when the motion of an object is not parallel to the image plane of a ToF sensor and 
works for combined radial-linear motion blur. 

When real motion blur occurs in the depth map from a ToF sensor, there is an increase 
in the number of zero-value pixels that are present near discontinuities and edges in the 
depth map. As the speed of the object increases, the number of zero-value pixels also in-
creases. To predict the locations of new zero-value pixels our probabilistic model uses the 
same three assumptions as used in reference [36]. (1) The number of neighboring pixels 
that are in the bounding box for predicting the final state of a pixel is proportional to the 
speed of the object. (2) For each pixel, the neighboring pixels in the bounding box with the 
same state (i.e., 0 or 1) will contribute more to the final state of the pixel. The final state of 
the pixel is also more likely to be affected by neighboring pixels with a state of zero be-
cause zero-value pixels tend to appear in clusters. (3) The pixels with an initial state of 
zero are likely to remain in state zero. In Section 3.2, we provide experimental results that 
confirm the assumptions used in the probabilistic model. 

To use the probabilistic model, we first binarize the original depth map into a binary 
depth map, Ib 𝑰𝑰𝑏𝑏, as follows. 

𝑰𝑰𝑏𝑏(𝑥𝑥, 𝑦𝑦) = � 1, 𝑰𝑰(𝑥𝑥, 𝑦𝑦) ≠ 0
 0, 𝑰𝑰(𝑥𝑥, 𝑦𝑦) = 0 (12) 

where Ib(x, y) is the binary value of Ib at pixel p(x, y) and I(x, y) is the sensed value of I at 
pixel p(x, y). We then use the probabilistic model to predict whether a pixel should be a 
zero-value pixel in the motion-blurred depth map based on its neighboring pixels. For 
each selected pixel, we use the ROIs defined in Section 2.1 based on the type of motion 
blur that is being applied. In general, the ROI dimension tangential for a given pixel is 
proportional to the speed of the object. Thus, a larger ROI tangential dimension is used to 
simulate faster-moving objects. The orientation (i.e., the rotation angle) of the ROI is con-
figured to be along the motion path of the object. When the direction of motion for the 
object is known, the ROI can be positioned to include neighboring pixels that precede the 
pixel in the direction of motion. When the direction of motion for the object is unknown, 
the ROI can be defined to include neighboring pixels that both precede and follow the 
pixel. Clearly, the accuracy of the blurring in this case would be lower and should be in-
vestigated in future work. The ROI orthogonal dimension does not change based on the 
direction of motion. Instead, the ROI is oriented to be tangential to the direction of motion. 
As an example, for a given pixel p(x, y), we use the defined bounding box to identify a 
group of neighboring pixels, {n0, n1, … , nl}, using the process described in Section 2.1. 

After identifying the neighboring pixels for the given pixel, we then apply our prob-
abilistic model to the identified neighboring pixels. We first use a potential function that 
captures the interaction between the state of the neighboring pixel and the state of the 
pixel as: 

𝜀𝜀�𝑠𝑠𝑝𝑝, 𝑠𝑠𝑛𝑛𝑖𝑖� = �
�1 − �𝑠𝑠𝑛𝑛𝑖𝑖 − 𝑠𝑠𝑝𝑝��𝑝𝑝𝑥𝑥 + �𝑠𝑠𝑛𝑛𝑖𝑖 − 𝑠𝑠𝑝𝑝�(1 − 𝑝𝑝𝑥𝑥), 𝑠𝑠𝑝𝑝 = 0
�1 − �𝑠𝑠𝑛𝑛𝑖𝑖 − 𝑠𝑠𝑝𝑝��(1 − 𝑝𝑝𝑥𝑥) + �𝑠𝑠𝑛𝑛𝑖𝑖 − 𝑠𝑠𝑝𝑝�𝑝𝑝𝑥𝑥 , 𝑠𝑠𝑝𝑝 = 1

 (13) 

where ε(sp, sni) is the potential function of the ith neighboring pixel, sni is the state of the ith 
neighboring pixel, and sp is the state of the pixel having a value of one or zero. The param-
eter px is a user-defined probability weight parameter that can be set to any value between 
zero and one. We also consider the prior knowledge of the pixel by determining an initial 
probability, pp, for the pixel having a value of zero. The probability pp is determined as: 

𝑝𝑝𝑝𝑝 = �
𝑝𝑝𝑦𝑦 , 𝑠𝑠𝑝𝑝 = 0

1 − 𝑝𝑝𝑦𝑦 , 𝑠𝑠𝑝𝑝 = 1 (14) 

where pp is the initial probability of a pixel having a value of zero and sp is the state of the 
pixel having a value of one or zero. The parameter py is a user-defined probability weight 
parameter that can be set to any value between zero and one. To handle the uncertainty 
of a pixel that is assigned to a zero value in decision-making process [38,39], this process 
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ensures that a higher probability weight is used when a neighboring pixel has the same 
state as the pixel and when the pixel has an initial state of zero. We then predict a proba-
bility for each pixel based on the modeled potential function for each of its neighboring 
pixels and the initial probability for the pixel. The predicted probability, p ̃p, of the pixel 
having a value of zero is calculated as: 

𝑝𝑝�𝑝𝑝 =
1
𝑙𝑙

∙ �
𝜀𝜀�𝑠𝑠𝑝𝑝 , 𝑠𝑠𝑛𝑛𝑖𝑖� ∗ 𝑝𝑝𝑝𝑝

𝜌𝜌

𝑙𝑙

𝑖𝑖=0

 (15) 

where ρ is the normalization factor. We then assign the probability to the pixel that corre-
sponds with the likelihood that the pixel will be a zero-value pixel in the blurred depth 
map. This process is repeated to assign probabilities for all of the given pixels within the 
region-of-interest for the object. We then apply a threshold to identify pixels that will con-
vert to zero-value pixels in the blurred depth map. The predicted state sp̂ for the pixel 
having a value of one or zero in the binary depth map is given by: 

𝑠̂𝑠𝑝𝑝 = �
0, 𝑝𝑝�𝑝𝑝 > 𝑡𝑡
1, 𝑝𝑝�𝑝𝑝 ≤ 𝑡𝑡 (16) 

where p ̃p is the predicted probability for the pixel having a value of zero, and t is a user-
defined threshold value that can be set to any suitable value. Note that the selection of px, 
py, and t used in this work were determined based on a separate validation set. Once the 
zero-value pixels are identified, the blurred depth map described in Section 2.2 is updated 
by applying a mask to the blurred depth map to add the predicted zero-value pixels from 
the probabilistic model as follows. 

𝑰𝑰 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = �
 0, 𝑰𝑰 𝑏𝑏(𝑥𝑥, 𝑦𝑦) = 0

𝑰𝑰 𝑓𝑓(𝑥𝑥, 𝑦𝑦), 𝑰𝑰 𝑏𝑏(𝑥𝑥, 𝑦𝑦) = 1 (17) 

3. Experiments 
3.1. Hardware Configuration 

In our experiments, we use a Kinect v2 sensor [35] to generate depth maps at a reso-
lution of 512 × 424 pixels and a framerate of 30 frames per second [40,41]. We used Open-
Kinect libraries [42] to capture the depth information and MATLAB 2020 [43] to create the 
synthetic motion blur. In our experiments, we disabled both the Bilateral filter and the 
Edge-aware filter for the Kinect v2 while capturing depth information, to ensure raw 
depth information is captured [44]. 

The ToF sensor is mounted to a tripod using a Benro 3-way geared head [45] which 
allows for precise control of the yaw, pitch, and roll of the ToF sensor. We used a dual-
axis digital protractor [46] to ensure the ToF sensor is level with the ground plane of our 
object. The configuration of our ToF sensor is shown in Figure 6. 

 
Figure 6. Kinect v2 ToF sensor mounted to a tripod using a 3-way geared head. 
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For the experiments with radial motion blur, we used a custom radial motion device 
that is mounted on an optical table. A rotating optical breadboard [47]is installed onto the 
optical table surface which allows the radial motion device to be positioned at different 
rotation angles with respect to the image plane of the ToF sensor. The radial motion device 
includes a 381 mm diameter Siemens Star with six flat fan blades. The Siemens Star was 
laser cut from 1/8” acrylic plexiglass. The Siemens Star is attached to a 2.1 A high-torque 
Nema 17 stepper motor [48] that is controlled using a TB6600 stepper motor driver [49] 
and an Arduino Uno [50]. We collected data while rotating the Siemens star at 60–135 
RPM. Our radial motion device is shown in Figure 7. 

 
Figure 7. Radial motion device with a Siemens Star mounted to a rotating optical breadboard. 

For the experiments with linear motion blur, we used a custom linear motion device. 
The linear motion device was also mounted onto the rotating optical breadboard to allow 
the linear motion device to be positioned at different rotation angles with respect to the 
image plane of the ToF sensor. The linear motion device includes a target with three ver-
tical openings. The target was laser cut from 1/8” acrylic plexiglass. The dimensions of the 
target are 381 mm by 381 mm. The dimensions of each vertical opening are 76 mm by 254 
mm. The target is mounted to a 500 mm belt drive linear guide rail and is moved along 
the linear guide rail using a 4.2 A Nema 23 stepper motor [51] that is controlled using a 
DM542T stepper motor driver [52] and an Arduino Uno [50]. We collected data moving 
the target at the maximum speed of our linear motion device which is 3.3647 m/s. Our 
linear motion device is shown in Figure 8. 

For the experiments with combined radial-linear motion blur, the radial motion de-
vice was mounted to the linear guide rail in place of the target with vertical openings. In 
this configuration, both the radial motion motor and the linear motion motor are operated 
simultaneously to create a combination of radial motion blue and linear motion blur. In 
the combined radial-linear motion blur experiments, the target is configured parallel with 
the image plane of the ToF sensor. We collected data while rotating the Siemens Star at its 
maximum speed, 135 RPM, and moving the Siemens Star linearly at the maximum speed 
of our linear motion device, 3.3647 m/s. This configuration tested our model for the worst 
case of a motion blur where both the radial motion and the linear motion are at their max-
imum speeds. The proposed method is still applicable when the target moves in a plane 
that is not parallel to the ToF sensor plane. The user-defined constant height value, H, in 
the ROI orthogonal dimension is set to a value of one, two, and three pixels, the probabil-
ity weight parameter px is set to a value of 0.9, the probability weight parameter py is set 
to a value of 0.6, and the threshold value t is set to a value of 0.05 in all of our experiments. 
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Figure 8. Linear motion device with a target having vertical openings mounted to a rotating optical 
breadboard. 

3.2. Verification Results for the Probabilistic Model Assumptions 
Tables 2 and 3 show the results from our experiments to verify the assumptions used 

for the probabilistic model defined in Section 2.3. Table 2 shows the ratio of zero-value 
pixels in depth maps with real radial motion blur as velocity and the rotation angle be-
tween the Siemens Star and the image plane of the ToF sensor increase. Our results show 
that the ratio of zero-value pixels in a depth map with real radial motion blur increases as 
the speed of the object increases. Table 3 shows the percentage of zero-value pixels from 
a static depth map of the Siemens Star that are still present in a depth map of the Siemens 
Star with real radial motion blur. Our results show that on average 74.96% of the zero-
value pixels from a static depth map will remain a zero-value pixel in a depth map with 
real radial motion blur. Similar results were observed for an object with linear motion 
blur. 

Table 2. Ratio of zero-value pixels in depth maps with real motion. 

 
Angle Between the Sensor Plane and the Plane of Rotation of the Sie-

mens Star 
Speed 0 15 20 30 

60 RPM 0.1212 0.1140 0.1179 0.1170 
100 RPM 0.1884 0.1779 0.1789 0.1739 
135 RPM 0.2483 0.2355 0.2325 0.2261 

Table 3. Percentage of zero-value pixels from a static depth map that are present in a depth map 
with real motion blur. 

 
Angle Between the Sensor Plane and the Plane of Rotation of the Sie-

mens Star 
Speed 0 15 20 30 

60 RPM 77.55% 73.29% 69.18% 72.34% 
100 RPM 74.45% 75.07% 70.28% 72.22% 
135 RPM 81.80% 79.95% 75.52% 77.84% 
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3.3. Performance Metrics 
To evaluate the performance of the zero-value pixel predictions from the probabilis-

tic model described in Section 2.3, we use the Boundary F1 (BF) score which is commonly 
used in a variety of predictive applications including image processing [53]. The BF score 
provides a metric that measures how well the zero values pixels in the ground truth (i.e., 
a depth map with real motion blur) match the predicted zero value pixels in the binary 
depth map after performing our probabilistic modeling. In our experiments, we used a BF 
score with an error tolerance of 2 pixels. 

To evaluate the performance of non-zero value pixels from Section 2.2 after updating 
the blurred depth map with the predicted zero-value pixels, we use a root-mean-square 
error (RMSE) between the synthetic motion blur depth map and the real motion blur 
depth map and an RMSE ratio (RMSE-R) between their difference and the real motion 
blur depth map. These performance metrics are used because comparing a depth map 
with synthetic motion blur to a depth map with real motion blur is challenging since the 
position of objects may be different in both depth maps. Hence, traditional direct compar-
isons between two depth maps cannot be made without additional considerations to en-
sure that the position of objects within the depth maps is the same. 

Our process for evaluating synthetic motion blur performance involves first captur-
ing a series of depth maps of a static object at different positions that would occur when 
the object is in motion. We then generate a depth map of the object in motion with real 
motion blur. The depth maps of the static object are then compared to the depth map with 
the real motion blur to identify the closest match based on the position of the object. After 
identifying the depth map of the static object that best matches the depth map of the object 
in motion, we then apply our synthetic motion blur to the depth map. The depth maps 
can then be directly compared to quantify the similarity between the two depth maps. 
This process enables a direct comparison between a depth map with synthetic motion blur 
and a depth map with real motion blur since we are able to align the position of an object 
before making the comparison. The ability to compare a depth map with synthetic motion 
blur and a depth map with real motion blur enables future works to evaluate the perfor-
mance of other motion blur algorithms. 

3.4. Radial Motion Blur Experiments 
Figures 9 and10 illustrate binary depth maps from our radial motion experiments 

that show the locations of zero-value pixels (in black) and non-zero value pixels (in white). 
Figure 9 corresponds to the results when the Siemens Star is parallel to the image plane of 
the ToF sensor. Figure 10 corresponds to the results when the Siemens Star is at a 30° 
rotation from the image plane of the ToF sensor. In each figure, the first row shows depth 
maps of the Siemens Star in a static position without motion, the middle row shows depth 
maps with synthetic radial motion blur at different speeds, and the bottom row shows 
depth maps with real motion blur at different speeds. 

Our results show that in general as motion blur occurs, the number of zero-value 
pixels that occur near the edges of the fan blades increases. As the fan blades move, the 
motion of the fan blades causes pixels near the edges of the fan blades to become zero-
value pixels or flying pixels that are no longer on the surface of the fan blade. As the speed 
of the Siemens Star increases, the amount of motion blur increases which also increases 
the number of zero-value pixels and flying pixels that are present near the edges of the 
fan blades in the depth map. Our results also show that this behavior results in the surface 
area of the fan blades appearing reduced due to an increase in the number of pixels on the 
surface of the fan blades becoming zero-value pixels and flying pixels. 

As the rotation angle between the Siemens Star and the image plane of the ToF sensor 
increases, the number of zero-value pixels in the portion of the Siemens Star that is fur-
thest away from the ToF sensor begins to decrease and the number of zero-value pixels in 
the portion of the Siemens Star that is closer to the ToF sensor begins to increase. This 
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behavior can be seen in Figure 10. As the rotation angle between the Siemens Star and the 
image plane of the ToF sensor approaches 45°, zero-values pixels become harder to detect 
in the portion of the Siemens Star that is furthest away from the ToF sensor because the 
IR light that is projected by the ToF sensor begins to reflect away from the ToF sensor. 

 
Figure 9. Siemens Star that is parallel to the image plane of the ToF sensor without motion (top), 
with synthetic motion blur (middle), with real motion blur (bottom) at 60 RPM (left), 100 RPM 
(center), and 135 RPM (right). 

 
Figure 10. Siemens Star with a 30° rotation from the image plane of the ToF sensor without motion 
(top), with synthetic motion blur (middle), with real motion blur (bottom) at 60 RPM (left), 100 
RPM (center), and 135 RPM (right). 

Tables 4–6 show the performance of the proposed synthetically generated radial mo-
tion blur process. For each speed, we compare the depth maps of the Siemens Star with 
synthetic motion blur and real motion blur. Our experiments were performed using a 
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user-defined constant height value of one pixel, two pixels, and three pixels for the ROI 
orthogonal dimension. 

Table 4. Synthetic radial motion blur performance-BF score. 

Height Value: 1 
Pixel 

Rotation Angle 

Speed 0 15 20 30 
60 RPM 0.7873 0.7802 0.7866 0.7872 

100 RPM 0.7157 0.7091 0.7211 0.7337 
135 RPM 0.6401 0.6362 0.6593 0.6740 

Height value: 2 pix-
els 

Rotation Angle 

Speed 0 15 20 30 
60 RPM 0.7757 0.7598 0.7579 0.7688 

100 RPM 0.6633 0.6604 0.6745 0.6991 
135 RPM 0.5808 0.5803 0.6075 0.6334 

Height value: 3 pix-
els 

Rotation Angle 

Speed 0 15 20 30 
60 RPM 0.0170 0.0188 0.0229 0.0230 

100 RPM 0.0220 0.0248 0.0285 0.0282 
135 RPM 0.0312 0.0330 0.0389 0.0378 

Table 5. Synthetic radial motion blur performance-RMSE (mm). 

Height value: 1 
pixel 

Rotation Angle 

Speed 0 15 20 30 
60 RPM 15.5832 16.3344 20.3076 19.7015 

100 RPM 19.06 21.3124 24.9468 24.7282 
135 RPM 27.5602 28.9867 35.3897 32.7857 

Height value: 2 
pixels 

Rotation Angle 

Speed 0 15 20 30 
60 RPM 16.5201 16.4827 19.6956 19.7207 

100 RPM 20.6372 22.3107 25.4945 25.3598 
135 RPM 28.6869 30.2006 35.8323 34.1595 

Height value: 3 
pixels 

Rotation Angle 

Speed 0 15 20 30 
60 RPM 16.5795 18.1961 22.7809 22.9275 

100 RPM 21.6180 24.0258 28.1812 28.1346 
135 RPM 30.6426 31.9231 38.7674 37.3976 

Table 6. Synthetic radial motion blur performance-RMSE-R. 

Height Value: 1 Pixel Rotation Angle 

Speed 0 15 20 30 
60 RPM 0.0159 0.0168 0.02 0.0194 

100 RPM 0.0195 0.0217 0.0251 0.0245 
135 RPM 0.0281 0.0295 0.0354 0.0327 
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Height value: 2 pix-
els 

Rotation Angle 

Speed 0 15 20 30 
60 RPM 0.0170 0.0172 0.0202 0.0199 

100 RPM 0.0208 0.0230 0.0257 0.0255 
135 RPM 0.0291 0.0310 0.0358 0.0343 

Height value: 3 pix-
els 

Rotation Angle 

Speed 0 15 20 30 
60 RPM 0.0170 0.0188 0.0229 0.0230 

100 RPM 0.0220 0.0248 0.0285 0.0282 
135 RPM 0.0312 0.0330 0.0389 0.0378 

Table 4. shows that as the speed of the Siemens Star increases, the BF score decreases. 
Table 4 also shows that as the rotation angle between the Siemens Star and the image 
plane of the ToF sensor increases, the standard deviation of the BF scores increases as the 
speed of the Siemens Star increases. The BF score also begins to degrade as the ROI or-
thogonal dimension increases. Our results show that our framework for synthetically gen-
erating radial motion blur is able to achieve an average BF score of 0.7192 over a range of 
speeds between 60 RPM and 135 RPM and over a range of rotation angles between 0° and 
30°. 

Table 5 shows that as the speed of the Siemens Star increases, the RMSE increases. 
Table 5 also shows that as the rotation angle between the Siemens Star and the image 
plane of the ToF sensor increases, the standard deviation of the RMSE increases as the 
speed of the Siemens Star increases. The RMSE also increases as the ROI orthogonal di-
mension increases. Table 6 shows the same behavior for the RMSE-R as the RMSE. Our 
results show that our framework for synthetically generating radial motion blur is able to 
achieve an average RMSE of 23.8914 and an average RMSE-R of 0.0241 over a range of 
speeds between 60 RPM ad 135 RPM and over a range of rotation angles between 0° and 
30°. 

In general, our results show that the locations of zero value pixels can be accurately 
predicted for radial motion which translates to a reasonably accurate synthetic represen-
tation of radial motion blur. 

3.5. Linear Motion Blur Experimental Results 
Figures 11 and 12 illustrate binary depth maps from our linear motion experiments. 

Figure 11 corresponds to the results when the linear target is parallel to the image plane 
of the ToF sensor. Figure 12 corresponds to the results when the linear target is configured 
at a 30° rotation from the image plane of the ToF sensor. 

Similar to our findings in our radial motion experiments, our results show that as the 
rotation angle between the linear target and the image plane of the ToF sensor increases, 
the number of zero-value pixels in the portion of the linear target that is furthest away 
from the ToF sensor begins to decrease and the number of zero-value pixels in the portion 
of the linear target that is closer to the ToF sensor begins to increase. This behavior can be 
seen in Figure 12. Increasing the ROI orthogonal dimension also negatively impacts the BF 
score, the RMSE, and the RMSE-R, as shown in Table 7. Our results demonstrate that our 
framework for synthetically generating linear motion blur is able to achieve an average 
BF score of 0.8793, an average RMSE of 7.4633, and an average RMSE ratio of 0.0073 over 
a range of rotation angles between 0° and 30°. 

Our results show the locations of zero value pixels can also be accurately predicted 
for linear motion which enables a reasonably accurate synthetic representation of linear 
motion blur. 
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Table 7. Synthetic linear motion blur performance. 

Height Value: 1 Pixel Rotation Angle 
Metrics 0 15 20 30 

BF Score 0.8943 0.8498 0.8954 0.8778 
RMSE (mm) 8.2291 7.4568 7.2266 6.9405 

RMSE-R 0.0082 0.0072 0.0072 0.0066 
Height value: 2 pixels Rotation Angle 

Metrics 0 15 20 30 
BF Score 0.8292 0.7163 0.8493 0.8074 

RMSE (mm) 8.2540 9.1342 8.0566 7.7380 
RMSE-R 0.0082 0.0086 0.0081 0.0076 

Height value: 3 pixels Rotation Angle 
Metrics 0 15 20 30 

BF Score 0.8191 0.6592 0.8127 0.7752 
RMSE (mm) 8.7983 9.3763 8.5384 8.1487 

RMSE-R 0.0088 0.0089 0.0085 0.0081 

 
Figure 11. Linear motion parallel to the image plane of the ToF sensor without motion (left), with 
synthetic motion blur (middle), and with real linear motion blur (right). 

 
Figure 12. Linear motion with a 30° rotation from the image plane of the ToF sensor without motion 
(left), with synthetic motion blur (middle), and with real linear motion blur (right). 

3.6. Combined Radial and Linear Motion Blur Experimental Results 
Figures 13 and 14 illustrate binary depth maps from our combined radial-linear mo-

tion experiments. Figure 13 corresponds to the results when the target is rotating clock-
wise while moving from left to right. Figure 14 corresponds to the results when the target 
is rotating while moving from right to left. 

In our experiments for combined radial-linear motion, one of the fan blades of the 
Siemens Star is marked with an IR reflective marker that artificially creates a hole in the 
fan blade. Our results show that as motion blur occurs, the number of zero-value pixels 
that are present in the IR reflective marker and near the edges of the fan blades increases. 

Our results show how the direction of the radial motion combined with the direction 
of the linear motion affects the number of zero-value pixels that are present. When the 
radial motion is in the same direction as the linear motion, there is an increase in the num-
ber of zero-value pixels that are present. When the radial motion is in the opposite direc-
tion from the linear motion, there is a decrease in the number of zero-value pixels that are 
present. This behavior can be seen in the upper and lower hemispheres of the Siemens 
Star in Figures 13 and 14. Since there is no rotation angle between the target and the image 
plane of the ToF sensor, there is no significant difference in the number of zero-value pix-
els that are present at the left and right edges of the target. 
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As shown in Table 8, the proposed framework for synthetically generating combined 
radial-linear motion blur achieves an average BF score of 0.6201, an average RMSE of 
99.6939, and an average RMSE ratio of 0.0694 while operating the target with a radial 
speed of 135 RPM and a linear speed of 3.3647 m/s. 

Table 8. Synthetic combined radial and linear motion blur performance. 

Height Value: 1 Pixel Movement Direction 
Metrics Left-to-Right Right-to-Left 

BF Score 0.6092 0.6309 
RMSE (mm) 106.0410 93.3467 

RMSE-R 0.0733 0.0654 
Height value: 2 pixels Movement Direction 

Metrics Left-to-Right Right-to-Left 
BF Score 0.5943 0.6131 

RMSE (mm) 153.2062 148.2040 
RMSE-R 0.0994 0.0965 

Height value: 3 pixels Movement Direction 
Metrics Left-to-Right Right-to-Left 

BF Score 0.5790 0.6013 
RMSE (mm) 197.8745 202.5617 

RMSE-R 0.1254 0.1281 

 
Figure 13. Combined radial-linear motion from left to right without motion (left), with synthetic 
motion blur (middle), and with real linear motion blur (right). 

 
Figure 14. Combined radial-linear motion from right to left without motion (left), with synthetic 
motion blur (middle), and with real linear motion blur (right). 

3.7. Validating Synthetic Motion Generating Framework Using Other ToF Sensors 
Since the presence of invalid pixels due to motion blur is an artifact of the underlying 

hardware architecture that all ToF sensors use to determine depth values [19,31–34], this 
means that our framework can be generally applied to depth maps from other ToF sen-
sors. To verify that our framework can be successfully used with other ToF sensors, we 
applied our synthetic motion blur generating process to a depth map that was obtained 
from a TI OPT8241 ToF sensor [54]. Figure 15 illustrates an example of the experiment 
results using our proposed framework with the TI OPT8241 ToF sensor. In the example 
shown in Figure 15, the Siemens Star is parallel to the image plane of the TI OPT8241 ToF 
sensor and is rotating at a speed of 135 RPM. 

Note that the TI OPT8241 ToF sensor uses internal filtering, which we cannot disable, 
to remove zero-value pixels in both the static depth map and the depth map with real 
motion blur. This filtering causes randomness in locations of zero-value pixels and in 
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which depth discontinuities they appear. For example, the zero-value pixels along some 
edges of the Siemens Star in the static depth map are filtered out by the ToF sensor when 
generating the depth map with real motion blur. Similarly, the zero-value pixels along 
some edges of the Siemens Star in the depth map with real motion blur are filtered out by 
the ToF sensor when generating the static depth map. Our framework relies on the pres-
ence of zero-value pixels within the static depth map to create additional zero-value pixels 
in the depth map with synthetic motion blur. For this reason, the zero-value pixels for 
some of the edges in the depth map with real motion blur are not represented in the depth 
map with synthetic motion blur. As shown in this example, our framework can accurately 
predict the locations of zero value pixels to generate synthetic motion blur. For concise-
ness, only one example is provided, however, similar results were obtained for other types 
of motion and orientations. 

 
Figure 15. Siemens Star that is parallel to the image plane of the TI OPT8241 ToF sensor without 
motion (left), with synthetic motion blur (middle), with real motion blur (right). 

4. Conclusions 
In this work, we present a framework for synthetically generating motion blur in 

depth maps that mimics the behavior of real motion blur that is observed using a ToF 
sensor. This work introduces an improved probabilistic model that can predict the loca-
tion of zero-value pixels that are present when motion blur occurs and there is a rotation 
angle between an object and the image plane of a ToF sensor. This work also introduces a 
process for synthetically generating combined radial-linear motion blur. 

One of the limitations in our framework is that our framework relies on the presence 
of zero-value pixels in the static depth map to create new additional zero-value pixels in 
our depth map with synthetic motion blur. Future work can work to incorporate more 
sophisticated models to generate zero-value pixels for multiple object planes. A more 
comprehensive methodology can also be investigated for accounting for perspective dis-
tortion as the rotation angle between an object and the image plane of a ToF sensor in-
creases. 
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