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Abstract: ‘Resilience’ is a new concept in the research and application of urban construction. From
the perspective of building adaptability in a mountainous environment and maintaining safety
performance over time, this paper innovatively proposes machine learning methods for evaluating
the resilience of buildings in a mountainous area. Firstly, after considering the comprehensive effects
of geographical and geological conditions, meteorological and hydrological factors, environmental
factors and building factors, the database of building resilience evaluation models in a mountainous
area is constructed. Then, machine learning methods such as random forest and support vector
machine are used to complete model training and optimization. Finally, the test data are substituted
into models, and the models’ effects are verified by the confusion matrix. The results show the
following: (1) Twelve dominant impact factors are screened. (2) Through the screening of dominant
factors, the models are comprehensively optimized. (3) The accuracy of the optimization models
based on random forest and support vector machine are both 97.4%, and the F1 scores are greater
than 94.4%. Resilience has important implications for risk prevention and the control of buildings in
a mountainous environment.

Keywords: building resilience; machine learning; evaluation model; factor screening;
model optimization

1. Introduction

‘Resilience’, derived from the Latin word ‘resilio’ [1], was first introduced into the field
of ecology by Holling [2] in the 1970s. Subsequently, scholars have broadened the definition
of ‘resilience’ to various research fields [3–7]. Different research and application fields have
different definitions [8,9], corresponding to different evaluation methods. In the fields of
engineering and construction, resilience is the ability to absorb or avoid damage without
suffering complete failure and is an objective of design, maintenance and restoration for
buildings and infrastructure, as well as communities [10,11]. At present, there are different
research methods regarding resilient cities and resilient communities [12], but most of them
consider the assets (economy, society, environment and infrastructure) and functions (social
capital, community function, transportation and communication links and planning) of
the community. Buildings, an important part of infrastructure, are inevitably damaged to
varying degrees in the actual use and operation process, resulting in property and even life
loss. The building resilience in a mountainous area [13] can be understood as the ability of
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buildings that are under the conditions of the mountainous environment to still maintain
their normal function and resist damage or to recover from the comprehensive effects of its
various attributes, natural environment and the passage of time.

Many scholars have carried out a series of studies from different perspectives on the
issue of building resilience. A resilience-based performance evaluation [14] is employed
within a multiobjective optimization methodology for the design optimization of 4, 7, 10
and 15-story buildings under seismic hazard using both life span and conditional analyses.
Himoto et al. [15] developed a computational framework using a multi-layer zone model
to evaluate the fire resilience of buildings. Dong et al. [16] proposed a method to evaluate
the seismic resilience of a steel structure considering economic, social and environmental
aspects. For key infrastructure such as hospitals, Bruneau [17] explored the operational
and physical resilience of acute care facilities.

In recent years, machine learning algorithms have attracted increasing attention in the
field of risk assessment management [18–21]. Riedel et al. [22] carried out seismic vulnera-
bility assessment of urban environments in moderate-to-low seismic hazard regions using
association rule learning and support vector machine methods. Xie et al. [23] reviewed the
promise of implementing machine learning in earthquake engineering. Some scholars have
also used machine learning methods to study the building classification problem [24,25].
Several works [26] have described a hybrid information fusion approach to quantitatively
evaluate the seismic resilience of Nepal by formulating nine indicators at the geological,
building and social dimensions. Mangalathu et al. [27] used discriminant analysis, k-nearest
neighbors, decision trees and random forests to study the damage degree of houses after
an earthquake. Zhang et al. [28] used the support vector machine to study the physical
resilience evaluation of landslide disasters in cities.

At present, the research on building resilience mainly considers the single factor effect
represented by earthquakes. Moreover, it mainly considers the building structure, ignoring
the complexity of the interaction between time and the internal and external factors of
buildings combined. Studies on resilience in a mountainous environment are limited. Barua
et al. [29] studied the resilience of rural mountain communities in relation to climate change
and poverty in a mountainous region of India. Mountains are among the regions most
affected by climate change [30,31], and climatic factors have an impact on building resilience.
Meanwhile, the geographical and geological conditions in a mountainous environment
are complex, and natural disasters such as collapse and landslide are likely to occur.
Therefore, it is necessary to study the building resilience in mountainous environments
specifically. With reference to the provisions of the technical guidelines for rural housing
safety appraisal [32] and standards for dangerous building appraisal [33] in China, this
paper classifies buildings as Grade I, II and III with regards to building resilience in
mountainous areas (Table 1).

With the development of spatial and information technologies, a large amount of
temporal and spatial data can be collected, processed and presented [34]. The objective
of this study is to develop models for evaluating the resilience of mountainous buildings
that take into account the combined effects of the various internal building properties,
the natural environment and the passage of time. Firstly, the evaluation index system of
building resilience in a mountainous area is constructed, and the dominant factors are
screened using the feature recursive elimination method. Secondly, the building resilience
models are completed by machine learning methods, including random forest and support
vector machine, and the model evaluations are performed by confusion matrix. Finally,
the predicted data are substituted into the model to obtain the classification evaluation of
building resilience in the area to be studied. The original determination of the resilience
grade requires a personal visit by professionals, which is labor-intensive. Through the
machine learning method, the building resilience rating of the area to be studied can be
determined quickly without visiting the site and without spending considerable time
and manpower. This method provides additional value and reference significance in risk
prevention and the control of buildings in a mountainous environment.



Sensors 2022, 22, 1163 3 of 17

Table 1. Resilience grades of typical buildings.

Building Resilience
Grades Grade I Grade II Grade III

Grading criteria Buildings whose structure is
basically safe for use

Local dangerous buildings in
which a part of the load-bearing

structure cannot meet the
requirements of safe use.

Whole dangerous buildings in
which the load-bearing structure
cannot meet the requirements of

safe use.

Pictures from the
scene

2. Study Area

Banan District is located in the south of Chongqing central city, with an area of
1825 square kilometers and a built-up area of 84.5 square kilometers. It is a typical moun-
tainous county. The gap between urban and rural areas is large, and there are huge
differences in the quality of buildings and their ability to withstand natural environmental
disasters. The selection of Banan District as the research area of building resilience in a
mountainous area has high theoretical value and practical significance.

Our research team and Chongqing Municipal Public Housing Administration Office
collected and analyzed data through field research. They obtained data from 1387 build-
ings in Banan District, including 122 buildings with resilience grade
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3. Data and Methods
3.1. Data
3.1.1. Data Selection

The resilience of buildings in a mountainous area is affected by a combination of
various internal and external factors, such as geographical and geological factors, meteoro-
logical and hydrological factors, environmental factors and building factors [35,36]. Based
on the above four dimensions, 21 factors were select to establish the factor database of build-
ing resilience evaluation in a mountainous area. They are as follows: elevation, slope, slope
aspect, slope position, curvature, plan curvature, profile curvature, micro-landform [37],
terrain humidity index (TWI), terrain roughness index (TRI), lithology, average annual
rainfall (AAR), aridity, temperature, distance from fault, distance from roads, distance from
rivers, building structure, construction time, building storey and building category.

Geographical and geological factors fully consider the particularity of mountain
building topography. Elevation affects climate and human activities. Slope affects the stress
distribution of rocks and soil. Slope aspect and slope position influence hydrogeology.
Curvature affects soil erosion through water flow on the slope. Plan curvature refers to the
change rate of surface aspect at any point on the ground. Section curvature refers to the
change rate of surface slope at any point on the ground. Micro-landform is a small terrain
fluctuation with the surface complexity of large geomorphology, which affects the strength
and weathering degree of rock and soil. TWI considers comprehensively the influence of
terrain and soil characteristics on water distribution. TRI refers to the degree of concavity
of the soil surface, reflecting the effects of wind and water erosion on the soil. Due to
the different formation times and weathering degrees, the bearing capacity of different
lithologies is also different. Meteorological and hydrological factors take into account the
effect of time, average annual rainfall, aridity and temperature. They affect the durability
of buildings. Environmental factors affect the original rock stress and slope stability of
buildings through natural (fault, rivers) and human engineering activities (roads). Building
factors are internal factors that lead to differences in housing quality and ability to resist
natural disasters. Different building structures, categories, storeys and construction times
lead to different building materials, weights and aging degrees.

3.1.2. Data Source

Data were obtained from 1387 buildings in Banan District, including the building
structure, construction time, building storey and building category, through field investiga-
tion by the School of Civil Engineering of Chongqing University and Chongqing Municipal
Public Housing Administration Office. DEM of ArcGIS was used to extract and process
the data of slope, slope aspect, slope position, curvature, plan curvature, profile curvature,
micro-landform, TWI and TRI. Other data sources, types and scale are shown in Table 2.

Table 2. Statistics of data sources.

Category Data Data Source Scale

Geographical and
geological factors

Elevation ASTER 30 m
Lithology National Geological Archives of China 1:200000

Meteorological
and hydrological

factors

Average annual
rainfall

China Meteorological Data Service
Centre-Resource and Environment

Science and Data Center
30 m

Aridity Resource and Environment Science and
Data Center 500 m

Temperature Resource and Environment Science and
Data Center 1000 m

Environmental
factors

Fault National Geological Archives of China 1:200,000
Roads Google remote sensing images 1:250,000
Rivers Google remote sensing images 1:250,000
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3.1.3. Data Processing

The factors were quantified and reclassified. The continuous factors such as elevation,
slope, curvature, plan curvature, profile curvature, TWI, TRI, average annual rainfall,
aridity and temperature were classified by ArcGIS natural breaks method (Jenks). The 360◦

was divided into eight regions on average, and the flat was assigned separately, so the slope
aspect was divided into nine categories. The distances from fault, roads and rivers were
obtained by multiple ring buffer of fault, roads and rivers, respectively, through ArcGIS. The
qualitative factors such as slope position, micro-landform, lithology, building structure and
building category were classified according to their respective characteristics. In this paper,
building structure categories were distinguished mainly based on building materials. The
structures, which include timber structure, adobe–timber structure, brick–timber structure,
brick–concrete structure, as well as steel and reinforced concrete structure, were named
directly using the names of materials. The simple structure referred to the building with
simple materials such as brick or wood panels. In addition, only a few buildings built of
stone–timber and stone–concrete materials were situated in the study area, which were
collectively referred to as mixed structures. The construction time was grouped by a
minimum of ten years based on data distribution. The building storey adopted the original
data. According to their different uses, the buildings in this paper were divided into several
categories, including residential building, commercial building, teaching building, auxiliary
building and other building. Auxiliary buildings refer to buildings with auxiliary functions
as their main purpose. For rural areas, they include buildings such as toilets and those
used for storage of agricultural production tools, breeding of farm animals, drying and
storage of food crops, etc. For urban areas, they comprise buildings such as public toilets,
gatehouses, those used for auxiliary housing and public services, etc. Buildings that did
not meet the above criteria were classified as other buildings. The reclassification of impact
factors is shown in Table 3.

Table 3. Reclassification of impact Factors.

Category Impact Factors Number of
Categories Classification Criteria

Geographical
and

geological
factors

Elevation (m) 9
(1) ≤244; (2) 244~312; (3) 312~377; (4) 377~448;

(5) 448~525; (6) 525~605; (7) 605~691; (8)
691~802; (9) ≥802

Slope (◦) 9

(1) ≤5.03◦; (2) 5.03◦~8.70◦; (3) 8.70◦~12.33◦;
(4) 12.33◦~16.07◦; (5) 16.07◦~20.08◦; (6)

20.08~24.57; (7) 24.57~29.88; (8) 2 9.88~36.94;
(9) ≥36.94

Slope aspect 9 (1) Flat; (2) N; (3) NE; (4) E; (5) SE; (6) S; (7)
SW; (8) W; (9) NW

Slope position 6 (1) Valleys; (2) Lowslope; (3) Flat; (4)
Midslope; (5) Uppslope; (6) Ridge

Curvature 9
(1) ≤−4.09; (2) −4.09~−2.46; (3) −2.46~−1.29;
(4) −1.29~−0.47; (5) −0.47~0.35; (6) 0.35~1.17;

(7) 1.17~2.24; (8) 2.24~4.09; (9) ≥4.09

Plan curvature 9
(1) ≤−1.97; (2) −1.97~−1.21; (3) −1.21~−0.65;
(4) −0.65~−0.23; (5) −0.23~0.19; (6) 0.19~0.61;

(7) 0.61~1.17; (8) 1.17~2.00; (9) ≥2.00

Profile
curvature 9

(1) ≤−2.88; (2) −2.88~−1.70; (3) −1.70~−0.95;
(4) −0.95–0.41; (5) −0.41~0.12; (6) 0.12~0.66;

(7) 0.66~1.41; (8) 1.41~2.59; (9) ≥2.59

Micro-landform 10

(1) Canyons, deeply incised streams; (2)
Midslope drainages, shallow valleys; (3)

Upland drainages, headwaters; (4) U-shape
valleys; (5) Plains; (6) Open slopes; (7) Upper
slopes, mesas; (8) Local ridges hills in valleys;
(9) Midslope ridges, small hills in plains; (10)

Mountain tops, high ridges
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Table 3. Cont.

Category Impact Factors Number of
Categories Classification Criteria

Geographical
and

geological
factors

TWI 9
(1) ≤4.68; (2) 4.68~5.87; (3) 5.87~7.16; (4)

7.16~8.56; (5) 8.56~10.18; (6) 10.18~12.12; (7)
12.12~14.71; (8) 14.71~17.95; (9) ≥17.95

TRI 9
(1) ≤1.018; (2) 1.018~1.041; (3) 1.041~1.071; (4)
1.071~1.108; (5) 1.108~1.155; (6) 1.155~1.217;
(7) 1.217~1.304; (8) 1.304~1.450; (9) ≥1.450

Lithology 7

(1) Lower Triassic; (2) Middle Triassic; (3)
Upper Triassic; (4) Triassic; (5) Middle-Lower

Jurassic; (6) Middle Jurassic;
(7) Upper Jurassic

Meteorological
and

hydrological
factors

Average annual
rainfall (mm) 9

(1) ≤117.0; (2) 117.0~119.2; (3) 119.2~120.7; (4)
120.7~122.3; (5) 122.3~124.0; (6) 124.0~125.8;
(7) 125.8~127.7; (8) 127.7~129.9; (9) ≥129.9

Aridity 9
(1) ≤0.808; (2) 0.808~0.828; (3) 0.828~0.852; (4)
0.852~0.881; (5) 0.881~0.907; (6) 0.907~0.927;
(7) 0.927~0.948; (8) 0.948~0.971; (9) ≥0.971

Temperature (◦) 9

(1) ≤16.214; (2) 16.214~16.889; (3)
16.889~17.401; (4) 17.401~17.807; (5)
17.807~18.139; (6) 18.139~18.431; (7)

18.431~18.715; (8) 18.715~19.048; (9) ≥19.048

Environmental
factors

Distance from
fault (m) 6 (1) ≤1000; (2) 1000~2000; (3) 2000~3000; (4)

3000~4000; (5) 4000~5000; (6) ≥ 5000
Distance from

roads (m) 6 (1) ≤10; (2) 10~20; (3) 20~30; (4) 30~40; (5)
40~50; (6) ≥ 50

Distance from
rivers (m) 6 (1) ≤100; (2) 100~200; (3) 200~300; (4) 300~400;

(5) 400~500; (6) ≥500

Building
factors

Building
structure 7

(1) Timber structure; (2) Simple structure; (3)
Adobe–timber structure; (4) Brick–timber
structure; (5) Brick–concrete structure; (6)
Hybrid structure; (7) Steel and reinforced

concrete structure

Construction
time 7

(1) before 1939; (2) 1940~1949; (3) 1950~1959;
(4) 1960~1969; (5) 1970~1979; (6) 1980~1999;

(7) after 2000;
Building storey 8 (1) 1; (2) 2; (3) 3; (4) 4; (5) 5; (6) 6; (7) 7; (8) ≥8;

Building
category 5

(1) Residential building; (2) Commercial
building; (3) Teaching building; (4) Auxiliary

building; (5) Other building

After reclassification, the impact factors’ data were normalized. All values were nor-
malized to the distribution between (0,1). All factors were in the same order of magnitude
in order to facilitate correct and rapid modelling. The normalization formula is denoted as
follows

X∗ = (X − Xmin)/(Xmax − Xmin) (1)

In the formula, X∗ is the normalized data, X is the original data, Xmax and Xmin are
the maximum and minimum of the data, respectively.

For better data management and visual representation, the corresponding thematic
layers were constructed by ArcGIS, as shown in Figure 2. The specific distribution of the
impact factors of geographical and geological factors, meteorological and hydrological
factors, environmental factors and building factors can be displayed visually. However, due
to the small building area and the large study area, the buildings were only shown as points
under the full view of the study area. Figure 2r shows the construction of building factor
layers of ArcGIS with the building storey as an example. The attribute table corresponding
to the building recorded all the information of each building, including building structure,
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construction time, building storey and building category. Changing its fields in properties
switches it to other building factor layers.

Figure 2. Cont.
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Figure 2. Thematic layers of impact factors: (a) Elevation; (b) Slope; (c) Slope aspect; (d) Slope
position; (e) Curvature; (f) Plan curvature; (g) Profile curvature; (h) Micro-landform; (i) TWI;
(j) TRI; (k) Lithology; (l) Average annual rainfall; (m) Aridity; (n) Temperature; (o) Distance from fault;
(p) Distance from roads; (q) Distance from rivers; (r) Building factors.

3.2. Methodology
3.2.1. Random Forest

Random forest (RF) is a data mining algorithm that contains multiple decision trees.
Based on each decision tree, the final classification result is obtained by voting [38]. Random
forest model has strong robustness and accuracy in data processing. This study selected
random forest as one of the processing algorithms of the model.

By calling the random forest program package through R language, the data obtained
from the 1387 buildings containing all the information of influencing factors in the study
area were regarded as the total samples, which were randomly divided into 971 training
samples and 416 test samples according to the ratio of 7:3. The ratio of 7:3 is an empirical
value that has been used by many researchers. The optimal parameter mtry was selected by
cyclic iteration, and it was substituted into the code to view the error stability of the model
and find the optimal ntree. Mtry refers to the number of variables used for binary trees in
nodes, and ntree refers to the number of decision trees contained in random forests.

3.2.2. Support Vector Machine

In recent years, many scholars have carried out in-depth research on disaster risk
assessment using the support vector machine (SVM) algorithm [39–41]. The basic idea
is to use kernel function to project nonlinear separable samples into high-dimensional
space to construct linear separable samples. According to the spatial distribution of sample
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features, the optimal hyperplane solution with the farthest distance between the two groups
of classifications was found, so as to correctly divide the data set. This project used the
ksvm function of kernlab software package [42]. For the three-classification problem, ksvm
used ‘one-to-one’ method to construct three secondary classifiers by permutation and
combination, and judged the resilience grade of buildings in mountainous area by voting.
In this study, the SVM model was selected as another prediction model to measure the
reliability of the RF model.

In the support vector machine model, the parameters were also optimized first. The
kernlab package was called by R language, and the optimal parameter combination sigma
and C value were selected in the for-loop iteration through the tenfold cross validation.
Sigma determines the width of the kernel function, and C refers to the tolerance of allowing
classification errors. Then, the above optimal parameter combination was substituted to
establish the model.

3.2.3. Feature Recursive Elimination

In machine learning, not all the results of variable prediction are related. Some
irrelevant variables may have a negative impact on the model prediction accuracy. Through
feature selection, the results of model effect optimization can be achieved. The main idea of
feature recursive elimination method is to eliminate the factor with the smallest ranking
criterion score at each time on the basis of all the initial influencing factors and to construct
the model repeatedly until the final feature set is obtained [43]; the ranking of features is
obtained at the same time.

3.2.4. Model Evaluation Methods

In this paper, the resilience of buildings in mountainous area is divided into grades
I, II and III. The prediction effect is analyzed by confusion matrix analysis model. The
confusion matrix is an error matrix that measures the predicted and actual values, which
can be used to evaluate the accuracy and stability of machine learning algorithms. In order
to simplify the expression, the data are referred to by the combination of the real value
before and the predicted value after (Table 4). Nij (I = 1,2,3; j = 1,2, 3) represents the number
of samples that actually belong to i but are predicted to be j [44].

Table 4. Three-classification confusion matrix.

Predicted Grade

I II III

Actual grade
I N11 N12 N13
II N21 N22 N23
III N31 N32 N33

Accuracy rate refers to the proportion of samples with correct prediction, considering
the total samples. It is the most basic, intuitive and simple method to measure the evaluation
effect of classification model. Precision refers to the proportion of the true values of a grade,
considering all the samples predicted as a certain grade, reflecting the precision of the
model prediction. Recall rate represents the proportion that is predicted accurately in the
actual sample of a certain grade. In order to take both precision and recall into account, the
harmonic mean F1 score was used as another reference index. The calculation formulas are
as follows

Accuracy =
3

∑
i=1

Nii/
3

∑
i=1

3

∑
j=1

Nij (2)

Precisioni = Nii/
3

∑
k=1

Nki (3)
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Recalli = Nii/
3

∑
k=1

Nik (4)

F1score = 2 × Precisioni × Recalli/(Precisioni + Recalli) (5)

4. Results and Discussion
4.1. Optimization Models of Building Resilience Based on Dominant Factors
4.1.1. Screening of Dominant Factors

This paper selected the feature recursive elimination (FRE) method to filter the domi-
nant factors for model optimization. Based on the R language call code, when the number
of impact factors was 12, the model worked best (Figure 3). The dominant factors screened
were elevation, lithology, TRI, aridity, temperature, average annual rainfall, distance from
roads, distance from rivers, building structure, building category, construction time and
building storey.

Figure 3. Screening diagram of dominant factors by using FRE.

4.1.2. Optimization models’ results of building resilience based on dominant factors

The dominant factor was used as input layer, while mountain building resilience
grade was used as output layer. After debugging, in the random forest model, the optimal
parameters mtry = 8 and ntree = 1000 were selected. In the support vector machine model,
the optimal parameter combination kpar = list (sigma = 0.21) and C = 5 were selected. Thus,
the confusion matrix of the prediction results of the training samples, test samples and total
samples based on the random forest and support vector machine algorithm was obtained
(Figure 4). The nine data in the matrix center are the direct output results of the confusion
matrix. The three data on the left side of the last line are the precision of building resilience
grades I, II and III. The three data above the last column are the recall of their respective
grades. The data in the bottom-right corner are the model accuracy.

Based on random forest and support vector machine, the accuracies of the building
resilience optimization models in mountainous area are calculated using training samples,
test samples and total samples, respectively. For training samples, the model accuracies
based on random forest and support vector machine are 99.7% and 98.7%, respectively. For
test samples, both are 97.4%; for the total samples, they are 99.0% and 98.3%, respectively.
Accuracy is a metric in confusion matrix for evaluating the mountainous building resilience
model, and a larger accuracy rate indicates a better model. Observing the precision of the
model in the test samples, RF and SVM are very good in the prediction of grade I buildings.
In the prediction of grade II buildings, the random forest model is better than the support
vector machine model. The support vector machine model is better in the prediction of
grade III buildings. All precisions are above 94.9%. Observing the recall of the model in
the test samples, RF and SVM are very good in the prediction of grade I buildings. In the
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prediction of grade II buildings, the SVM model is better than the RF model, while the RF
model is better in the prediction of grade III buildings. All recalls are above 93.0%. The
F1 score comprehensively considers the precision and recall. The two models have good
prediction effect on grade I buildings. There are occasional misjudgments in grade II and
grade III buildings, but all values are greater than 94.4%.

Figure 4. Confusion matrices of optimization models based on machine learning: (a) Training samples-
RF; (b) Training samples-SVM; (c) Test samples-RF; (d) Test samples-SVM; (e) Total samples-RF;
(f) Total samples-SVM.
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In summary, the prediction accuracy, precision, recall and F1 scores of random forest
and support vector machine are high, which proves that the machine learning method is
reliable for resilience evaluation of buildings in mountainous area.

4.2. Optimization Effect Comparison

The training samples were used to construct the model, and all the evaluation indexes
in the confusion matrix are the maximum values. The total samples cover part of the
modelling data, and the values are between the training samples and the test samples. The
test samples do not participate in model building, but can better detect model performance.
The effects of model optimization are analyzed for the test samples.

Accuracy is the most basic evaluation index of the model. After optimization, the
accuracy of the random forest model was improved from 95.7% to 97.4%, and the accuracy
of the support vector machine model was improved from 95.4% to 97.4% (Figure 5).

Figure 5. Comparison of test samples’ accuracy before and after optimization.

As shown in Figure 6, compared with the pre-optimization state, the minimum value
of each index of the model based on the dominant factors’ screening improved from 88%
to 93%. The model effect was comprehensively improved. The best optimization effect of
SVM was that the precision of grade II increased by 5.6%, and the best optimization effect
of RF was that the recall of grade II increased by 5%. The range of variation of indicators
for each building’s resilience grade was inconsistent, which may be due to the quantity
and quality of the data themselves. The two machine learning algorithms have different
emphases on model optimization but the effects are remarkable.

4.3. Discussion
4.3.1. Comparison of Two Machine Learning Models

In the test samples, the evaluation indexes of RF and SVM optimization models were
compared (Table 5). It was observed that the two machine learning methods have the same
evaluation results for accuracy rate, recall, F1 score of grade I buildings and F1 score of
grade III buildings. The RF model is superior to the SVM model in the evaluation of the
precision of grade II buildings and the recall of grade III buildings. The SVM model is better
than the RF model in the evaluation of grade III buildings’ precision, grade II buildings’
recall and F1 score. Both methods have advantages and disadvantages in each evaluation
index, but the absolute value of the difference does not exceed 1%. It was proved that RF
and SVM are reliable in the evaluation of building resilience in a mountainous area.
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Figure 6. Comparison of test samples’ evaluation indexes before and after optimization: (a) Precision-
RF; (b) Precision-SVM; (c) Recall-RF; (d) Recall–SVM; (e) F1 score-RF; (f) F1 score-SVM.

Table 5. RF and SVM optimization model evaluation indexes for the test samples.

Accuracy Precision Recall F1 score
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Score of 

MDA  

Value of 

MDG 

Score of 

MDG 

Score of 

MDA 

and 

MDG 

Compre-

hensive 

Ranking 

Geographical 

and geological 

factors 

Elevation 27.15 4 6.81 2 6 10 

TRI 86.78 11 91.35 11 22 2 

Lithology 37.78 7 11.50 3 10 8 

Meteorological 

and hydrological 

factors 

Average annual 

rainfall 
18.16 3 5.24 1 4 12 

Aridity 44.21 9 16.84 7 16 4 

Temperature 42.91 8 13.10 6 14 5 

Environmental 

factors 

Distance from 

roads 
11.72 1 12.02 4 5 11 

Distance from riv-

ers 
33.80 6 13.00 5 11 7 

Building factors 

Building structure 91.26 12 170.82 12 24 1 

Construction time 33.02 5 50.37 9 14 5 

Building storey 16.66 2 23.27 8 10 8 

Building category 56.82 10 68.79 10 20 3 

The results are in the following order: building structure, TRI, building category, 

aridity, construction time, temperature, distance from rivers, lithology, building storey, 

elevation, distance from roads and average annual rainfall. For the optimized dominant 

factor index, all building factors, all meteorological and hydrological factors, three geo-

graphical and geological factors, and two environmental factors are selected, which are 

comprehensive and representative. The alternate arrangement of internal and external 

factors fully illustrates the necessity of exploring the combined effect of various factors on 
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4.3.2. Importance of Resilience Impact Factors

The importance ranking of impact factors reflects the contribution of variables to the
resilience evaluation model of buildings in a mountainous area. Random forest provides
two methods for ranking the importance of features: Mean Decrease Accuracy (MDA) and
Mean Decrease Gini (MDG) [45]. MDA is the change in the error rate of model results
caused by disrupting the value of an impact factor in the test set. MDG is the sum of all
decreases in Gini impurity due to a given variable. Based on the study by Han et al. [46],
this paper combined MDA and MDG for a comprehensive measure. The 12 variables were
assigned scores of 12, 11, . . . , 2, and 1 based on the values of MDA and MDG from highest
to lowest, respectively. The scores obtained from both were then added and re-ranked to
obtain the combined ranking results of the importance of the influencing factors (Table 6).

Table 6. Ranking the importance of impact factors.

Category Impact Factors Value of MDA Score of MDA Value of MDG Score of MDG Score of MDA
and MDG

Comprehensive
Ranking

Geographical
and geological

factors

Elevation 27.15 4 6.81 2 6 10
TRI 86.78 11 91.35 11 22 2

Lithology 37.78 7 11.50 3 10 8

Meteorological
and

hydrological
factors

Average
annual rainfall 18.16 3 5.24 1 4 12

Aridity 44.21 9 16.84 7 16 4
Temperature 42.91 8 13.10 6 14 5

Environmental
factors

Distance from
roads 11.72 1 12.02 4 5 11

Distance from
rivers 33.80 6 13.00 5 11 7

Building
factors

Building
structure 91.26 12 170.82 12 24 1

Construction
time 33.02 5 50.37 9 14 5

Building storey 16.66 2 23.27 8 10 8
Building
category 56.82 10 68.79 10 20 3

The results are in the following order: building structure, TRI, building category,
aridity, construction time, temperature, distance from rivers, lithology, building storey,
elevation, distance from roads and average annual rainfall. For the optimized dominant
factor index, all building factors, all meteorological and hydrological factors, three geo-
graphical and geological factors, and two environmental factors are selected, which are
comprehensive and representative. The alternate arrangement of internal and external
factors fully illustrates the necessity of exploring the combined effect of various factors on
buildings in a mountainous area. Figure 7 shows the degree of importance of each impact
factor clearly.

4.3.3. Model Improvement Options

The building resilience models in a mountainous area work well, but there is still
room for improvement. Regarding improvement from the perspective of impact factors,
more impact factors such as extreme temperature should be considered in the preliminary
selection stage. Moreover, regarding improvement from the perspective of machine learning
methods, data imbalance should be the focus in subsequent research. The classification
algorithm will produce a certain bias when processing the data set according to the amount
of data in different categories. For unbalanced data sets, assigning different weights for
processing should be considered.
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Figure 7. Impact factors’ assignment score chart.

5. Conclusions

Based on machine learning, this paper proposed a resilience evaluation method for
buildings in a mountainous area. Considering the multi-dimensional effects of geographical
and geological conditions, meteorological and hydrological factors, environmental factors
and building factors, the database of impact factors was constructed. The models were
trained and optimized by machine learning methods, including random forest and support
vector machine, and the resilience evaluation models of buildings in a mountainous area
were established. Then, the predicted data were substituted into the model to obtain the
classification evaluation of building resilience in the area to be studied.

(1) By combining MDA and MDG to form a comprehensive measure, the impact factors
of the optimization models were ranked in order of importance: building structure,
TRI, building category, aridity, construction time, temperature, distance from rivers,
lithology, building storey, elevation, distance from roads and average annual rainfall.
In the respective rankings of MDA and MDG, the impact factors in the top three
rankings are the same, and the remaining impact factors tend to differ between
the two. The alternate arrangement of internal and external factors fully illustrates
the necessity of exploring the combined effect of various factors on buildings in a
mountainous area.

(2) Through the screening of dominant factors, the minimum value of each index in
the model test sets was increased from 88% to 93%, the models were comprehen-
sively optimized, demonstrating the need for factor screening. The two machine
learning algorithms have different emphases on model optimization, but the effects
were remarkable.

(3) The accuracy of the optimization models based on random forest and support vector
machine were both 97.4%, and the F1 scores were greater than 94.4%, which proves
that the machine learning method is reliable for resilience evaluation of buildings
in a mountainous area. This study has the advantages of accuracy, efficiency and
visualization. It provides additional value and reference significance in risk prevention
and the control of mountainous environment building construction.

Author Contributions: Conceptualization, H.W.; methodology, C.Z.; formal analysis, C.Z.; investiga-
tion, M.L., C.Z., Y.L., Y.W. and H.Z.; resources, H.W.; data curation, H.W. and C.Z.; writing—original
draft preparation, C.Z.; supervision, H.W.; funding acquisition, H.W. All authors have read and
agreed to the published version of the manuscript.



Sensors 2022, 22, 1163 16 of 17

Funding: This research was funded by Key Technologies Research and Development Program,
grant number 2018YFC1505501 and Chongqing Science and Technology Commission, grant number
cstc2018jscx-msybX0310.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: Thanks to Chongqing Municipal Public Housing Administration Office for
providing some of the building data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Framework for analytical quantification of disaster resilience. Eng. Struct. 2010, 32,

3639–3649. [CrossRef]
2. Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [CrossRef]
3. Wildavsky, A.B. Searching for Safety. J. Risk Insur. 1988, 57, 564. [CrossRef]
4. ZHOU, Y.; LU, X. State-of-the-art on rocking and self-centering structures. J. Build. Struct. 2011, 32, 1–10. [CrossRef]
5. Adger, W.N. Social and ecological resilience: Are they related? Prog. Hum. Geog. 2000, 24, 347–364. [CrossRef]
6. Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyses. Glob. Environ. Change 2006, 16,

253–267. [CrossRef]
7. Rasulo, A.; Pelle, A.; Briseghella, B.; Nuti, C. A Resilience-Based Model for the Seismic Assessment of the Functionality of Road

Networks Affected by Bridge Damage and Restoration. Infrastructures 2021, 6, 112. [CrossRef]
8. Park, J.; Seager, T.P.; Rao, P.S.C.; Convertino, M.; Linkov, I. Integrating Risk and Resilience Approaches to Catastrophe Management

in Engineering Systems. Risk Anal 2013, 33, 356–367. [CrossRef] [PubMed]
9. Rose, A. Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environ.

Hazards 2007, 7, 383–398. [CrossRef]
10. Jennings, B.J.; Vugrin, E.D.; Belasich, D.K. Resilience certification for commercial buildings: A study of stakeholder perspectives.

Environ. Syst. Decis. 2013, 33, 184–194. [CrossRef]
11. Herrera, M.; Abraham, E.; Stoianov, I. A Graph-Theoretic Framework for Assessing the Resilience of Sectorised Water Distribution

Networks. Water Resour. Manag. 2016, 30, 1685–1699. [CrossRef]
12. Marasco, S.; Cardoni, A.; Zamani Noori, A.; Kammouh, O.; Domaneschi, M.; Cimellaro, G.P. Integrated platform to assess seismic

resilience at the community level. Sustain. Cities Soc. 2021, 64, 102506. [CrossRef]
13. Wen, H.; Xie, P.; Xie, Q.; Hu, J.; Wu, S. An Evaluation Method Based on Big Data for Building Resilience in Mountainous Area.

Chinese Patent CN2018107915103 [P/OL], 8 November 2021. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?
FileName=CN109214643B&DbName=SCPD2021 (accessed on 10 October 2021).

14. Joyner, M.D.; Gardner, C.; Puentes, B.; Sasani, M. Resilience-Based seismic design of buildings through multiobjective optimization.
Eng. Struct. 2021, 246, 113024. [CrossRef]

15. Himoto, K.; Suzuki, K. Computational framework for assessing the fire resilience of buildings using the multi-layer zone model.
Reliab. Eng. Syst. Safe 2021, 216, 108023. [CrossRef]

16. Dong, Y.; Frangopol, D.M. Performance-based seismic assessment of conventional and base-isolated steel buildings including
environmental impact and resilience. Earthq. Eng. Struct. D 2016, 45, 739–756. [CrossRef]

17. Bruneau, M.; Reinhorn, A. Exploring the concept of seismic resilience for acute care facilities. Earthq. Spectra 2007, 23, 41–62.
[CrossRef]

18. Liu, D.; Fan, Z.; Fu, Q.; Li, M.; Faiz, M.A.; Ali, S.; Li, T.; Zhang, L.; Khan, M.I. Random forest regression evaluation model of
regional flood disaster resilience based on the whale optimization algorithm. J. Clean. Prod. 2020, 250, 119468. [CrossRef]

19. Deng, W.; Zhou, J. Approach for feature weighted support vector machine and its application in flood disaster evaluation. Disaster
Adv. 2013, 6, 51–58.

20. Motta, M.; de Castro Neto, M.; Sarmento, P. A mixed approach for urban flood prediction using Machine Learning and GIS. Int. J.
Disast. Risk Re. 2021, 56, 102154. [CrossRef]

21. Riedel, I.; Guéguen, P.; Dunand, F.; Cottaz, S. Macroscale vulnerability assessment of cities using association rule learning. Seismol.
Res. Lett. 2014, 85, 295–305. [CrossRef]

22. Riedel, I.; Guéguen, P.; Dalla Mura, M.; Pathier, E.; Leduc, T.; Chanussot, J. Seismic vulnerability assessment of urban environments
in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods. Nat. Hazards
2015, 76, 1111–1141. [CrossRef]

23. Xie, Y.; Ebad Sichani, M.; Padgett, J.E.; DesRoches, R. The promise of implementing machine learning in earthquake engineering:
A state-of-the-art review. Earthq. Spectra 2020, 36, 1769–1801. [CrossRef]

http://doi.org/10.1016/j.engstruct.2010.08.008
http://doi.org/10.1146/annurev.es.04.110173.000245
http://doi.org/10.2307/252851
http://doi.org/10.14006/j.jzjgxb.2011.09.001
http://doi.org/10.1191/030913200701540465
http://doi.org/10.1016/j.gloenvcha.2006.04.002
http://doi.org/10.3390/infrastructures6080112
http://doi.org/10.1111/j.1539-6924.2012.01885.x
http://www.ncbi.nlm.nih.gov/pubmed/22967095
http://doi.org/10.1016/j.envhaz.2007.10.001
http://doi.org/10.1007/s10669-013-9440-y
http://doi.org/10.1007/s11269-016-1245-6
http://doi.org/10.1016/j.scs.2020.102506
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN109214643B&DbName=SCPD2021
https://kns.cnki.net/kcms/detail/detail.aspx?FileName=CN109214643B&DbName=SCPD2021
http://doi.org/10.1016/j.engstruct.2021.113024
http://doi.org/10.1016/j.ress.2021.108023
http://doi.org/10.1002/eqe.2682
http://doi.org/10.1193/1.2431396
http://doi.org/10.1016/j.jclepro.2019.119468
http://doi.org/10.1016/j.ijdrr.2021.102154
http://doi.org/10.1785/0220130148
http://doi.org/10.1007/s11069-014-1538-0
http://doi.org/10.1177/8755293020919419


Sensors 2022, 22, 1163 17 of 17

24. Liuzzi, M.; Aravena Pelizari, P.; Geiß, C.; Masi, A.; Tramutoli, V.; Taubenböck, H. A transferable remote sensing approach to
classify building structural types for seismic risk analyses: The case of Val d’Agri area (Italy). B Earthq. Eng. 2019, 17, 4825–4853.
[CrossRef]

25. Mangalathu, S.; Burton, H.V. Deep learning-based classification of earthquake-impacted buildings using textual damage descrip-
tions. Int. J. Disast. Risk Re. 2019, 36, 101111. [CrossRef]

26. Chen, W.; Zhang, L. Resilience assessment of regional areas against earthquakes using multi-source information fusion. Reliab.
Eng. Syst. Safe 2021, 215, 107833. [CrossRef]

27. Mangalathu, S.; Sun, H.; Nweke, C.C.; Yi, Z.; Burton, H.V. Classifying earthquake damage to buildings using machine learning.
Earthq. Spectra 2020, 36, 183–208. [CrossRef]

28. Zhang, X.; Song, J.; Peng, J.; Wu, J. Landslides-oriented urban disaster resilience assessment—A case study in Shen Zhen, China.
Sci. Total Environ. 2019, 661, 95–106. [CrossRef]

29. Barua, A.; Katyaini, S.; Mili, B.; Gooch, P. Climate change and poverty: Building resilience of rural mountain communities in
South Sikkim, Eastern Himalaya, India. Reg. Environ. Change 2014, 14, 267–280. [CrossRef]

30. Kohler, T.; Giger, M.; Hurni, H.; Ott, C.; Wiesmann, U.; Wymann Von Dach, S.; Maselli, D. Mountains and Climate Change: A
Global Concern. Mt. Res. Dev. 2010, 30, 53–55. [CrossRef]

31. Kato, T.; Rambali, M.; Blanco-Gonzalez, V. Strengthening Climate Resilience in Mountainous Areas; OECD Development Co-operation
Working Papers, No. 104; OECD Publishing: Paris, France, 2021.

32. Ministry of Housing and Urban-Rural Development of the People’s Republic of China Web Page. Available online: http:
//www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201912/20191202_242931.html (accessed on 2 October 2019).

33. Ministry of Housing and Urban-Rural Development of the People’s Republic of China Web Page. Available online: https:
//www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201608/20160801_228380.html (accessed on 1 August 2016).

34. Xiao, L.; Zhang, Y.; Peng, G. Landslide Susceptibility Assessment Using Integrated Deep Learning Algorithm along the China-
Nepal Highway. Sensors 2018, 18, 4436. [CrossRef]

35. Narjabadifam, P.; Hoseinpour, R.; Noori, M.; Altabey, W. Practical seismic resilience evaluation and crisis management planning
through GIS-based vulnerability assessment of buildings. Earthq. Eng. Eng. Vib. 2021, 20, 25–37. [CrossRef]

36. Xue, M.; Wen, H.; Lin, Y.; Sun, D. Random Forest Evaluation Model for Physical Toughness of Slopes Along Mountain Roads-
Taking Maoxian County of Sichuan Province as an example. Bull. Fo Soil Water Conserv. 2020, 40, 168–175. [CrossRef]

37. Sun, D.; Wen, H.; Zhang, Y.; Xue, M. An optimal sample selection-based logistic regression model of slope physical resistance
against rainfall-induced landslide. Nat. Hazards. 2020, 105, 1255–1279. [CrossRef]

38. Taalab, K.; Cheng, T.; Zhang, Y. Mapping landslide susceptibility and types using Random Forest. Big Earth Data 2018, 2, 159–178.
[CrossRef]

39. Al Rifat, S.A.; Liu, W. Measuring community disaster resilience in the conterminous coastal United States. Isprs Int J Geo-Inf 2020,
9, 469. [CrossRef]

40. El-Tawil, S.; Ibrahim, A.; Eltawil, A. Stick-Slip Classification Based on Machine Learning Techniques for Building Damage
Assessment. J. Earthq. Eng. JEE 2021, 1–18. [CrossRef]

41. Mahmoudi, S.N.; Chouinard, L. Seismic fragility assessment of highway bridges using support vector machines. B Earthq. Eng.
2016, 14, 1571–1587. [CrossRef]

42. kernlab: Kernel-Based Machine Learning Lab Web Page. Available online: http://cran.r-project.org/web/packages/kernlab/
index.html (accessed on 12 November 2019).

43. Zhou, X.; Wen, H.; Zhang, Y.; Xu, J.; Zhang, W. Landslide susceptibility mapping using hybrid random forest with GeoDetector
and RFE for factor optimization. Geosci. Front. 2021, 12, 101211. [CrossRef]

44. Deng, X.; Liu, Q.; Deng, Y.; Mahadevan, S. An improved method to construct basic probability assignment based on the confusion
matrix for classification problem. Inform. Sci. 2016, 340–341, 250–261. [CrossRef]

45. Banks, S.; Millard, K.; Pasher, J.; Richardson, M.; Wang, H.; Duffe, J. Assessing the Potential to Operationalize Shoreline Sensitivity
Mapping: Classifying Multiple Wide Fine Quadrature Polarized RADARSAT-2 and Landsat 5 Scenes with a Single Random
Forest Model. Remote Sens. 2015, 7, 13528–13563. [CrossRef]

46. Han, H.; Guo, X.; Yu, H. Variable Selection Using Mean Decrease Accuracy and Mean Decrease Gini Based on Random Forest. In
Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
26–28 August 2016; pp. 219–224. [CrossRef]

http://doi.org/10.1007/s10518-019-00648-7
http://doi.org/10.1016/j.ijdrr.2019.101111
http://doi.org/10.1016/j.ress.2021.107833
http://doi.org/10.1177/8755293019878137
http://doi.org/10.1016/j.scitotenv.2018.12.074
http://doi.org/10.1007/s10113-013-0471-1
http://doi.org/10.1659/MRD-JOURNAL-D-09-00086.1
http://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201912/20191202_242931.html
http://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201912/20191202_242931.html
https://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201608/20160801_228380.html
https://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201608/20160801_228380.html
http://doi.org/10.3390/s18124436
http://doi.org/10.1007/s11803-021-2003-1
http://doi.org/10.13961/j.cnki.stbctb.2020.04.023
http://doi.org/10.1007/s11069-020-04353-6
http://doi.org/10.1080/20964471.2018.1472392
http://doi.org/10.3390/ijgi9080469
http://doi.org/10.1080/13632469.2021.1891156
http://doi.org/10.1007/s10518-016-9894-7
http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/kernlab/index.html
http://doi.org/10.1016/j.gsf.2021.101211
http://doi.org/10.1016/j.ins.2016.01.033
http://doi.org/10.3390/rs71013528
http://doi.org/10.1109/ICSESS.2016.7883053

	Introduction 
	Study Area 
	Data and Methods 
	Data 
	Data Selection 
	Data Source 
	Data Processing 

	Methodology 
	Random Forest 
	Support Vector Machine 
	Feature Recursive Elimination 
	Model Evaluation Methods 


	Results and Discussion 
	Optimization Models of Building Resilience Based on Dominant Factors 
	Screening of Dominant Factors 
	Optimization models’ results of building resilience based on dominant factors 

	Optimization Effect Comparison 
	Discussion 
	Comparison of Two Machine Learning Models 
	Importance of Resilience Impact Factors 
	Model Improvement Options 


	Conclusions 
	References

